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Abstract

Uncertain differential equation is a type of differential equation involving uncertain
process. This paper will give uncertainty distributions of the extreme values, first hitting
time, and integral of the solution of uncertain differential equation. Some solution
methods are also documented in this paper.
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Background
Probability theory, since it was founded by Kolmogorov in 1933, has been a crucial tool
to model indeterminacy phenomena when probability distributions of the possible events
are available. However, due to economical or technological reasons, we often cannot
obtain sample data, based on which we estimate the probability distribution via statis-
tics. In this case, we have to invite domain experts to evaluate their belief degree. Since
human beings tend to overweight unlikely events, the belief degree usually has a much
larger range than the real frequency (Kahneman and Tversky [1]). As a result, it cannot be
treated as probability, otherwise some counterintuitive results may happen. An extreme
counterexample was proposed by Liu [2].
In order to model the belief degree, an uncertainty theory was founded by Liu [3], and

refined by Liu [4] based on normality, duality, subadditivity and product axioms. So far,
it has been applied to many areas, and has brought many branches such as uncertain
programming (Liu [5]), uncertain risk analysis (Liu [6]), uncertain inference (Liu [7]),
uncertain logic (Liu [8]), and uncertain statistics (Liu [4]).
In order to describe the evolution of an uncertain phenomenon, Liu [9] proposed a

concept of uncertain process. Then Liu [10] designed a Liu process that is an uncer-
tain process with stationary and independent normal uncertain increments, and founded
uncertain calculus to deal with the integral and differential of an uncertain process with
respect to Liu process. Then Liu and Yao [11] extended uncertain integral from single Liu
process to multiple ones. Besides, Chen and Ralescu [12] founded uncertain calculus with
respect to general Liu process. As a complementary, Yao [13] founded uncertain calculus
with respect to uncertain renewal process.
Uncertain differential equation was first proposed by Liu [9] as a type of differential

equation driven by Liu process. Chen and Liu [14] gave an analytic solution for linear
uncertain differential equation. Following that, Liu [15] and Yao [16] gave some methods
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to solve two types of nonlinear uncertain differential equations. Then Yao and Chen [17]
proposed a numerical method for solving uncertain differential equation. As extensions of
uncertain differential equation, uncertain differential equation with jumps was proposed
by Yao [13], and uncertain delayed differential equation was studied among others by
Barbacioru [18], Liu and Fei [19], and Ge and Zhu [20]. In addition, backward uncertain
differential equation was proposed by Ge and Zhu [21].
Due to the paradox of stochastic finance theory (Liu [22]), Liu [10] presented an uncer-

tain stock model via uncertain differential equation, and gave its European option pricing
formulas, opening the door of uncertain finance theory. Then Chen [23] derived the
American option pricing formulas of the stock model. After that, Peng and Yao [24]
presented a mean-reverting uncertain stock model, and Chen et al [25] proposed an
uncertain stock model with periodic dividends. Besides, Chen and Gao [26] proposed an
uncertain interest rate model, and Liu et al [27] proposed an uncertain currency model.
In addition, Zhu [28] applied uncertain differential equation to optimal control problems.
With many applications of uncertain differential equation, the study on properties of

the solutions was also developed well. Chen and Liu [14] gave a sufficient condition for
an uncertain differential equation having a unique solution. Then Gao [29] weakened the
condition. After that, Yao et al [30] gave a sufficient condition for an uncertain differential
equation being stable.
In this paper, we will consider the extreme values, first hitting time, and integral of the

solution of an uncertain diffusion process. The rest of this paper is organized as follows. In
the section of Preliminary, we will review some basic concepts about uncertain variable,
uncertain process and uncertain differential equation. After that, we study the extreme
values of the solution of an uncertain differential equation, and give their uncertainty dis-
tributions in the section of Extreme values. Then by the relationship between first hitting
time and extreme value, we give an uncertainty distribution of the first hitting time of the
solution of an uncertain differential equation in the section of First hitting time. Follow-
ing that, we consider the integral of the solution of an uncertain differential equation, and
give its inverse uncertainty distribution in the section of Integral. At last, some remarks
are given in the section of Conclusions.

Preliminary
In this section, we will first review some basic concepts and results in uncertainty theory.
Then we introduce the concept of uncertain process, uncertain calculus and uncertain
differential equation.

Uncertainty theory

Definition 1. (Liu [3]) Let L be a σ -algebra on a nonempty set �. A set function M :
L →[ 0, 1] is called an uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality Axiom)M{�} = 1 for the universal set �.
Axiom 2: (Duality Axiom)M{�} + M{�c} = 1 for any event �.
Axiom 3: (Subadditivity Axiom) For every countable sequence of events �1,�2, · · · ,
we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i} .
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Besides, in order to provide the operational law, Liu [10] defined the product uncertain
measure on the product σ -algebre L as follows.

Axiom 4: (Product Axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · ·
Then the product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
i=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

An uncertain variable is essentially a measurable function from an uncertainty space
to the set of real numbers. In order to describe an uncertain variable, a concept of
uncertainty distribution is defined as follows.

Definition 2. (Liu [3]) The uncertainty distribution of an uncertain variable ξ is defined
by

�(x) = M{ξ ≤ x}
for any x ∈ �.

Expected value is regarded as the average value of an uncertain variable in the sense of
uncertain measure.

Definition 3. (Liu [3]) The expected value of an uncertain variable ξ is defined by

E[ ξ ]=
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals exists.

Assuming ξ has an uncertainty distribution �, Liu [3] proved that the expected value of
ξ is

E[ ξ ]=
∫ +∞

0
(1 − �(x)) dx −

∫ 0

−∞
�(x)dx.

The inverse function �−1 of the uncertainty distribution � of uncertain variable ξ is
called the inverse uncertainty distribution of ξ if it exists and is unique for each α ∈
(0, 1). Inverse uncertainty distribution plays a crucial role in operations of independent
uncertain variables.

Definition 4. (Liu[10]) The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent
if

M

{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi}

for any Borel set B1,B2, · · · ,Bn of real numbers.

Theorem 1. (Liu [4]) Let ξ1, ξ2, · · · , ξn be independent uncertain variables with uncer-
tainty distributions �1,�2, · · · ,�n, respectively. If f (x1, x2, · · · , xn) is strictly increasing
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with respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn,
then ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with an inverse uncertainty distribution

�−1(α) = f
(
�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α)

)
.

Theorem 2. (Liu and Ha [31]) Let ξ1, ξ2, · · · , ξn be independent uncertain vari-
ables with uncertainty distributions �1,�2, · · · ,�n, respectively. If f (x1, x2, · · · , xn) is
strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn, then the expected value of uncertain variable ξ = f (ξ1, ξ2, · · · , ξn) is

E[ ξ ]=
∫ 1

0
f
(
�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α)

)
dα.

Uncertain process

In order to model the evolution of uncertain phenomena, an uncertain process was
proposed by Liu [9] as a sequence of uncertain variables driven by time or space.

Definition 5. (Liu [9]) Let T be an index set, and let (�,L,M) be an uncertainty space.
An uncertain process is a measurable function from T × (�,L,M) to the set of real
numbers, i.e., for each t ∈ T and any Borel set B of real numbers, the set

{Xt ∈ B} = {γ |Xt(γ ) ∈ B}

is an event.

Definition 6. Let Xt be an uncertain process and let z be a given level. Then the
uncertain variable

τz = inf
{
t ≥ 0

∣∣ Xt = z
}

is called the first hitting time that Xt reaches the level z.

Independent increment uncertain process is an important type of uncertain processes.
Its formal definition is given below.

Definition 7. (Liu [9]) An uncertain process is said to have independent increments if

Xt0 ,Xt1 − Xt0 ,Xt2 − Xt1 , · · · ,Xtk − Xtk−1

are independent uncertain variables where t0 is the initial time and t1, t2, · · · , tk are any
times with t0 < t1 < · · · < tk .

For a sample-continuous independent increment process Xt , Liu [32] proved the
following extreme value theorem,
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M

{
sup
0≤t≤s

Xt ≤ x
}

= inf
0≤t≤s

M {Xt ≤ x} ,

M

{
inf

0≤t≤s
Xt ≤ x

}
= sup

0≤t≤s
M{Xt ≤ x}.

Definition 8. (Liu [9]) An uncertain process is said to have stationary increments if for
any given t > 0, the increments Xt+s − Xs are identically distributed uncertain variables
for all s > 0.

Uncertain calculus

Definition 9. (Liu [10]) An uncertain process Ct is said to be a canonical Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t − Cs is a normal uncertain variable with expected value 0
and variance t2, whose uncertainty distribution is

�t(x) =
(
1 + exp

(
− πx√

3t

))−1
, x ∈ �.

Definition 10. (Liu [10]) Let Xt be an uncertain process and Ct be a canonical Liu
process. For any partition of closed interval [ a, b] with a = t1 < t2 < · · · < tk+1 = b, the
mesh is written as

� = max
1≤i≤k

|ti+1 − ti|.

Then Liu integral of Xt is defined by
∫ b

a
XtdCt = lim

�→0

k∑
i=1

Xti · (Cti+1 − Cti)

provided that the limit exists almost surely and is finite. In this case, the uncertain process
Xt is said to be Liu integrable.

Definition 11. (Liu [10]) Let Ct be a canonical Liu process, and μs and σs be two
uncertain processes. Then the uncertain process

Zt = Z0 +
∫ t

0
μsds +

∫ t

0
σsdCs

is called a Liu process with drift μt and diffusion σt . The differential form of Liu process
is written as

dZt = μtdt + σtdCt .

Theorem 3. (Liu [10]) (Fundamental Theorem of Uncertain Calculus) Let Ct be a
canonical Liu process, and h(t, c) be a continuously differentiable function. Then Zt =
h(t,Ct) is a Liu process with

dZt = ∂h
∂t

(t,Ct)dt + ∂h
∂c

(t,Ct)dCt .
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Uncertain differential equation

An uncertain differential equation is essentially a type of differential equation driven by
Liu process.

Definition 12. (Liu [9]) SupposeCt is a canonical Liu process, and f and g are two given
functions. Then

dXt = f (t,Xt)dt + g(t,Xt)dCt

is called an uncertain differential equation.

Yao and Chen [17] proposed a concept of α-path, and found a connection between an
uncertain differential equation and a spectrum of ordinary differential equations.

Definition 13. (Yao and Chen [17]) Let α be a number with 0 < α < 1. An uncertain
differential equation

dXt = f (t,Xt)dt + g(t,Xt)dCt

is said to have an α-path Xα
t if it solves the corresponding ordinary differential equation

dXα
t = f (t,Xα

t )dt + |g(t,Xα
t )|�−1(α)dt

where �−1(α) is the inverse uncertainty distribution of a standard normal uncertain
variable.

Theorem 4. (Yao and Chen [17]) Let Xt and Xα
t be the solution and α-path of the

uncertain differential equation

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Then

M{Xt ≤ Xα
t ,∀t} = α,

M{Xt > Xα
t ,∀t} = 1 − α.

As a corollary, the solution Xt has an inverse uncertainty distribution �−1
t (α) = Xα

t .

Extreme values
In this section, we study the extreme values of the solution of an uncertain differential
equation, and give their uncertainty distributions. In addition, we design some numerical
methods to obtain the uncertainty distributions.

Supremum

Theorem 5. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Then for a strictly increasing function J(x), the supremum

sup
0≤t≤s

J(Xt)
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has an inverse uncertainty distribution

−1
s (α) = sup

0≤t≤s
J
(
Xα
t
)
.

Proof. Since J(x) is a strictly increasing function, we have{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
Xα
t
)} ⊃ {

Xt ≤ Xα
t ,∀t

}
and {

sup
0≤t≤s

J(Xt) > sup
0≤t≤s

J
(
Xα
t
)} ⊃ {

Xt > Xα
t ,∀t

}
.

By Theorem 4 and the monotonicity of uncertain measure, we have

M

{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
Xα
t
)} ≥ M

{
Xt ≤ Xα

t ,∀t
} = α

and

M

{
sup
0≤t≤s

J(Xt) > sup
0≤t≤s

J
(
Xα
t
)} ≥ M

{
Xt > Xα

t ,∀t
} = 1 − α.

It follows from the duality axiom of uncertain measure that

M

{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
Xα
t
)} = α,

i.e., the supremum

sup
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

−1
s (α) = sup

0≤t≤s
J
(
Xα
t
)
.

In order to calculate the inverse uncertainty distribution of the supremum, we design a
numerical method as below.

Step 1: Fix α in (0, 1), and fix h as the step length. Set i = 0, N = s/h, Xα
0 = X0, and

H = J(X0).
Step 2: Employ the recursion formula

Xα
i+1 = Xα

i + f
(
ti,Xα

i
)
h + g

(
ti,Xα

i
)
�−1(α)h,

and calculate Xα
i+1.

Step 3: Set H ← max
(
H , J

(
Xα
i+1

))
, i ← i + 1.

Step 4: Repeat Step 2 and Step 3 for N times.
Step 5: The inverse uncertainty distribution of

sup
0≤t≤s

J(Xt)

is determined by

−1
s (α) = H .
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Theorem 6. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt + g(t,Xt)dCt . Assume Xt has an uncertainty distribution �t(x) at each time t.
Then for a strictly increasing function J(x), the supremum

sup
0≤t≤s

J(Xt)

has an uncertainty distribution

s(x) = inf
0≤t≤s

�t
(
J−1(x)

)
.

Proof. Since Xα
t = �−1

t (α), we have

M

{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
�−1

t (α)
)}

= α

by Theorem 5. Write

x = sup
0≤t≤s

J
(
�−1

t (α)
)
,

i.e.,

α = inf
0≤t≤s

�t
(
J−1(x)

)
.

Then we have

M

{
sup
0≤t≤s

J(Xt) ≤ x
}

= inf
0≤t≤s

�t
(
J−1(x)

)
.

In other words, the supremum

sup
0≤t≤s

J(Xt)

has an uncertainty distribution

s(x) = inf
0≤t≤s

�t
(
J−1(x)

)
.

Theorem 7. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Then for a strictly decreasing function J(x), the supremum

sup
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

−1
s (α) = sup

0≤t≤s
J
(
X1−α
t

)
.

Proof. Since J(x) is a strictly decreasing function, we have{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
X1−α
t

)}
⊃

{
Xt ≥ X1−α

t ,∀t
}
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and {
sup
0≤t≤s

J(Xt) > sup
0≤t≤s

J
(
X1−α
t

)}
⊃

{
Xt < X1−α

t ,∀t
}
.

By Theorem 4 and the monotonicity of uncertain measure, we have

M

{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
X1−α
t

)}
≥ M

{
Xt ≥ X1−α

t ,∀t
}

= α

and

M

{
sup
0≤t≤s

J(Xt) > sup
0≤t≤s

J
(
X1−α
t

)}
≥ M

{
Xt < X1−α

t ,∀t
}

= 1 − α.

It follows from the duality axiom of uncertain measure that

M

{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
X1−α
t

)}
= α,

i.e., the supremum

sup
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

−1
s (α) = sup

0≤t≤s
J
(
X1−α
t

)
.

Theorem 8. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt + g(t,Xt)dCt . Assume Xt has an uncertainty distribution �t(x) at each time t.
Then for a strictly decreasing function J(x), the supremum

sup
0≤t≤s

J(Xt)

has an uncertainty distribution

s(x) = 1 − sup
0≤t≤s

�t
(
J−1(x)

)
.

Proof. Since X1−α
t = �−1

t (1 − α), we have

M

{
sup
0≤t≤s

J(Xt) ≤ sup
0≤t≤s

J
(
�−1

t (1 − α)
)}

= α

by Theorem 7. Write

x = sup
0≤t≤s

J
(
�−1

t (1 − α)
)
,

i.e.,

α = 1 − sup
0≤t≤s

�t
(
J−1(x)

)
.

Then we have

M

{
sup
0≤t≤s

J(Xt) ≤ x
}

= 1 − sup
0≤t≤s

�t
(
J−1(x)

)
.
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In other words, the supremum

sup
0≤t≤s

J(Xt)

has an uncertainty distribution

s(x) = 1 − sup
0≤t≤s

�t
(
J−1(x)

)
.

Infimum

Theorem 9. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Then for a strictly increasing function J(x), the infimum

inf
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

ϒ−1
s (α) = inf

0≤t≤s
J
(
Xα
t
)
.

Proof. Since J(x) is a strictly increasing function, we have{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
Xα
t
)} ⊃ {

Xt ≤ Xα
t ,∀t

}
and {

inf
0≤t≤s

J(Xt) > inf
0≤t≤s

J
(
Xα
t
)} ⊃ {

Xt > Xα
t ,∀t

}
.

By Theorem 4 and the monotonicity of uncertain measure, we have

M

{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
Xα
t
)} ≥ M

{
Xt ≤ Xα

t ,∀t
} = α

and

M

{
inf

0≤t≤s
J(Xt) > inf

0≤t≤s
J
(
Xα
t
)} ≥ M

{
Xt > Xα

t ,∀t
} = 1 − α.

It follows from the duality axiom of uncertain measure that

M

{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
Xα
t
)} = α,

i.e., the infimum

inf
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

ϒ−1
s (α) = inf

0≤t≤s
J
(
Xα
t
)
.

In order to calculate the uncertainty distribution of the infimum, we design a numerical
method as below.

Step 1: Fix α in (0, 1), and fix h as the step length. Set i = 0, N = s/h, Xα
0 = X0,

and H = J(X0).
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Step 2: Employ the recursion formula

Xα
i+1 = Xα

i + f
(
ti,Xα

i
)
h + g

(
ti,Xα

i
)
�−1(α)h,

and calculate Xα
i+1 and J

(
Xα
i+1

)
Step 3: Set H ← min

(
H , J

(
Xα
i+1

))
, i ← i + 1.

Step 4: Repeat Step 2 and Step 3 for N times.
Step 5: The inverse uncertainty distribution of inf

0≤t≤s
Xt is determined by

ϒ−1
s (α) = H .

Theorem 10. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt + g(t,Xt)dCt . Assume Xt has an uncertainty distribution �t(x) at each time t.
Then for a strictly increasing function J(x), the infimum

inf
0≤t≤s

Xt

has an uncertainty distribution

ϒs(x) = sup
0≤t≤s

�t
(
J−1(x)

)
.

Proof. Since Xα
t = �−1

t (α), we have

M

{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
�−1

t (α)
)}

= α

by Theorem 9. Write

x = inf
0≤t≤s

J
(
�−1

t (α)
)
,

i.e.,

α = sup
0≤t≤s

�t
(
J−1(x)

)
.

Then we have

M

{
inf

0≤t≤s
Xt ≤ x

}
= sup

0≤t≤s
�t

(
J−1(x)

)
.

In other words, the infimum

inf
0≤t≤s

J(Xt)

has an uncertainty distribution

ϒs(x) = sup
0≤t≤s

�t
(
J−1(x)

)
.

Theorem 11. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt ,
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respectively. Then for a strictly decreasing function J(x), the infimum

inf
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

ϒ−1
s (α) = inf

0≤t≤s
J
(
X1−α
t

)
.

Proof. Since J(x) is a strictly decreasing function, we have{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
X1−α
t

)}
⊃

{
Xt ≥ X1−α

t ,∀t
}

and {
inf

0≤t≤s
J(Xt) > inf

0≤t≤s
J
(
X1−α
t

)}
⊃

{
Xt < X1−α

t ,∀t
}
.

By Theorem 4 and the monotonicity of uncertain measure, we have

M

{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
X1−α
t

)}
≥ M

{
Xt ≥ X1−α

t ,∀t
}

= α

and

M

{
inf

0≤t≤s
J(Xt) > inf

0≤t≤s
J
(
X1−α
t

)}
≥ M

{
Xt < X1−α

t ,∀t
}

= 1 − α.

It follows from the duality axiom of uncertain measure that

M

{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
X1−α
t

)}
= α,

i.e., the infimum

inf
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

ϒ−1
s (α) = inf

0≤t≤s
J
(
X1−α
t

)
.

Theorem 12. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt + g(t,Xt)dCt . Assume Xt has an uncertainty distribution �t(x) at each time t.
Then for a strictly decreasing function J(x), the infimum

inf
0≤t≤s

J(Xt)

has an uncertainty distribution

ϒs(x) = 1 − inf
0≤t≤s

�t
(
J−1(x)

)
.

Proof. Since X1−α
t = �−1

t (1 − α), we have

M

{
inf

0≤t≤s
J(Xt) ≤ inf

0≤t≤s
J
(
�−1

t (1 − α)
)}

= α

by Theorem 11. Write

x = inf
0≤t≤s

J
(
�−1

t (1 − α)
)
,
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i.e.,

α = 1 − inf
0≤t≤s

�t
(
J−1(x)

)
.

Then we have

M

{
inf

0≤t≤s
Xt ≤ x

}
= 1 − inf

0≤t≤s
�t

(
J−1(x)

)
.

In other words, the infimum

inf
0≤t≤s

J(Xt)

has an uncertainty distribution

ϒs(x) = 1 − inf
0≤t≤s

�t
(
J−1(x)

)
.

First hitting time
In this section, we study the first hitting time of the solution of an uncertain differential
equation, and give the uncertainty distributions in different cases.

First hitting time of strictly increasing function of the solution

Theorem 13. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt

with an initial value X0, respectively. Given a strictly increasing function J(x), and a level
z > J(X0), the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

(s) = 1 − inf
{

α ∈ (0, 1)

∣∣∣∣∣ sup
0≤t≤s

J
(
Xα
t
) ≥ z

}
.

Proof. Write

α0 = inf
{

α ∈ (0, 1)

∣∣∣∣∣ sup
0≤t≤s

J
(
Xα
t
) ≥ z

}
.

Since J(x) is a strictly increasing function, we have

{τz ≤ s} ⊃ {J(Xt) ≥ J
(
Xα0
t

)
,∀t} = {Xt ≥ Xα0

t ,∀t},
{τz > s} ⊃ {J(Xt) < J

(
Xα0
t

)
,∀t} = {Xt < Xα0

t ,∀t}.
By Theorem 4 and the monotonicity of uncertain measure, we have

M{τz ≤ s} ≥ M{Xt ≥ Xα0
t ,∀t} = 1 − α0,

M{τz > s} ≥ {Xt < Xα0
t ,∀t} = α0.

It follows from the duality axiom of uncertain measure that

M{τz ≤ s} = 1 − α0.

This completes the proof.

For a strictly increasing function J(x), in order to calculate the uncertainty distribution
(s) of the first hitting time τz that J(Xt) reaches zwhen J(X0) < z, we design a numerical
method as below.



Yao Journal of Uncertainty Analysis and Applications 2013, 1:2 Page 14 of 21
http://www.juaa-journal.com/content/1/1/2

Step 1: Fix ε as the accuracy, and fix h as the step length. Set N = s/h.
Step 2: Employ the recursion formula

Xε
i+1 = Xε

i + f
(
ti,Xε

i
)
h + g

(
ti,Xε

i
)
�−1(ε)h

for N times, and calculate Xε
i , i = 1, 2, · · · ,N . If

max
1≤i≤N

J
(
Xε
i
) ≥ z,

then return 1 − ε and stop.
Step 3: Employ the recursion formula

X1−ε
i+1 = X1−ε

i + f
(
ti,X1−ε

i

)
h + g

(
ti,X1−ε

i

)
�−1(1 − ε)h

for N times, and calculate X1−ε
i , i = 1, 2, · · · ,N . If

max
1≤i≤N

J
(
X1−ε
i

)
< z,

then return ε and stop.
Step 4: Set α1 = ε,α2 = 1 − ε.
Step 5: Set α = (α1 + α2)/2.
Step 6: Employ the recursion formula

Xα
i+1 = Xα

i + f
(
ti,Xα

i
)
h + g

(
ti,Xα

i
)
�−1(α)h

for N times, and calculate Xα
i+1, i = 1, 2, · · · ,N . If

max
1≤i≤N

J
(
Xα
t
)

< z,

then set α1 = α. Otherwise, set α2 = α.
Step 7: If |α2 − α1| ≤ ε, then return 1 − α and stop. Otherwise, go to Step 5.

Theorem 14. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt+g(t,Xt)dCt with an initial value X0. Assume Xt has an uncertainty distribution
�t(x) at each time t. Then given a strictly increasing function J(x) and a level z > J(X0),
the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

(s) = 1 − inf
0≤t≤s

�t
(
J−1(z)

)
.

Proof. Since the event {τz ≤ s} is equivalent to the event{
sup
0≤t≤s

J(Xt) ≥ z
}

provided z > J(X0), it follows from Theorem 6 that

(s) = M

{
sup
0≤t≤s

J(Xt) ≥ z
}

= M

{
sup
0≤t≤s

Xt ≥ J−1(z)
}

= 1 − inf
0≤t≤s

�t
(
J−1(z)

)
.

This completes the proof.
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Theorem 15. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt

with an initial value X0, respectively. Given a strictly increasing function J(x) and a level
z < J(X0), the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

ϒ(s) = sup
{
α ∈ (0, 1)

∣∣∣∣ inf
0≤t≤s

J
(
Xα
t
) ≤ z

}
.

Proof. Write

α0 = sup
{
α ∈ (0, 1)

∣∣∣∣ inf
0≤t≤s

J
(
Xα
t
) ≤ z

}
.

Then

{τz ≤ s} ⊃ {J(Xt) ≤ J
(
Xα0
t

)
,∀t} = {Xt ≤ Xα0

t ,∀t},
{τz > s} ⊃ {J(Xt) > J

(
Xα0
t

)
,∀t} = {Xt > Xα0

t ,∀t}.
By Theorem 4 and the monotonicity of uncertain measure, we have

M{τz ≤ s} ≥ M{Xt ≤ Xα0
t ,∀t} = α0,

M{τz > s} ≥ {Xt > Xα0
t ,∀t} = 1 − α0.

It follows from the duality axiom of uncertain measure that

M{τz ≤ s} = α0.

This completes the proof.

For a strictly increasing function J(x), in order to calculate the uncertainty distribution
ϒ(s) of the first hitting time τz that J(Xt) reaches zwhen J(X0) > z, we design a numerical
method as below.

Step 1: Fix ε as the accuracy, and fix h as the step length. Set N = s/h.
Step 2: Employ the recursion formula

Xε
i+1 = Xε

i + f
(
ti,Xε

i
)
h + g

(
ti,Xε

i
)
�−1(ε)h

for N times, and calculate Xε
i , i = 1, 2, · · · ,N . If

min
1≤i≤N

J
(
Xε
i
)

> z,

then return 1 − ε and stop.
Step 3: Employ the recursion formula

X1−ε
i+1 = X1−ε

i + f
(
ti,X1−ε

i

)
h + g

(
ti,X1−ε

i

)
�−1(1 − ε)h

for N times, and calculate X1−ε
i , i = 1, 2, · · · ,N . If

min
1≤i≤N

J
(
X1−ε
i

)
≤ z,

then return ε and stop.
Step 4: Set α1 = ε,α2 = 1 − ε.
Step 5: Set α = (α1 + α2)/2.
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Step 6: Employ the recursion formula

Xα
i+1 = Xα

i + f
(
ti,Xα

i
)
h + g

(
ti,Xα

i
)
�−1(α)h

for N times, and calculate Xα
i+1, i = 1, 2, · · · ,N . If

min
1≤i≤N

J
(
Xα
t
)

< z,

then set α1 = α. Otherwise, set α2 = α.
Step 7: If |α2 − α1| ≤ ε, then return α and stop. Otherwise, go to Step 5.

Theorem 16. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt+g(t,Xt)dCt with an initial value X0. Assume Xt has an uncertainty distribution
�t(x) at each time t. Then given a strictly increasing function J(x) and a level z < J(X0),
the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

(s) = sup
0≤t≤s

�t
(
J−1(z)

)
.

Proof. Since the event {τz ≤ s} is equivalent to the event{
inf

0≤t≤s
J(Xt) ≤ z

}

provided z < J(X0), it follows from Theorem 10 that

(s) = M

{
inf

0≤t≤s
J(Xt) ≤ z

}

= M

{
inf

0≤t≤s
Xt ≤ J−1(z)

}

= sup
0≤t≤s

�t
(
J−1(z)

)
.

This completes the proof.

First hitting time of strictly decreasing function of the solution

Theorem 17. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt

with an initial value X0, respectively. Given a strictly decreasing function J(x), and a level
z > J(X0), the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

(s) = sup
{

α ∈ (0, 1)

∣∣∣∣∣ sup
0≤t≤s

J
(
Xα
t
) ≥ z

}
.

Proof. Write

α0 = sup
{

α ∈ (0, 1)

∣∣∣∣∣ sup
0≤t≤s

J
(
Xα
t
) ≥ z

}
.

Since J(x) is a strictly decreasing function, we have

{τz ≤ s} ⊃ {J(Xt) ≥ J
(
Xα0
t

)
,∀t} = {Xt ≤ Xα0

t ,∀t},
{τz > s} ⊃ {J(Xt) < J

(
Xα0
t

)
,∀t} = {Xt > Xα0

t ,∀t}.
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By Theorem 4 and the monotonicity of uncertain measure, we have

M{τz ≤ s} ≥ M{Xt ≤ Xα0
t ,∀t} = α0,

M{τz > s} ≥ {Xt > Xα0
t ,∀t} = 1 − α0.

It follows from the duality axiom of uncertain measure that

M{τz ≤ s} = α0.

This completes the proof.

Theorem 18. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt+g(t,Xt)dCt with an initial value X0. Assume Xt has an uncertainty distribution
�t(x) at each time t. Then given a strictly decreasing function J(x) and a level z > J(X0),
the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

(s) = sup
0≤t≤s

�t
(
J−1(z)

)
.

Proof. Since the event {τz ≤ s} is equivalent to the event{
sup
0≤t≤s

J(Xt) ≥ z
}

provided z > J(X0), it follows from Theorem 10 that

(s) = M

{
sup
0≤t≤s

J(Xt) ≥ z
}

= M

{
inf

0≤t≤s
Xt ≤ J−1(z)

}

= sup
0≤t≤s

�t
(
J−1(z)

)
.

This completes the proof.

Theorem 19. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt

with an initial value X0, respectively. Given a strictly decreasing function J(x) and a level
z < J(X0), the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

ϒ(s) = 1 − inf
{
α ∈ (0, 1)

∣∣∣∣ inf
0≤t≤s

J
(
Xα
t
) ≤ z

}
.

Proof. Write

α0 = inf
{
α ∈ (0, 1)

∣∣∣∣ inf
0≤t≤s

J
(
Xα
t
) ≤ z

}
.

Then

{τz ≤ s} ⊃ {J(Xt) ≤ J
(
Xα0
t

)
,∀t} = {Xt ≥ Xα0

t ,∀t},
{τz > s} ⊃ {J(Xt) > J

(
Xα0
t

)
,∀t} = {Xt < Xα0

t ,∀t}.
By Theorem 4 and the monotonicity of uncertain measure, we have
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M{τz ≤ s} ≥ M{Xt ≥ Xα0
t ,∀t} = 1 − α0,

M{τz > s} ≥ {Xt < Xα0
t ,∀t} = α0.

It follows from the duality axiom of uncertain measure that

M{τz ≤ s} = 1 − α0.

This completes the proof.

Theorem 20. Let Xt be the solution of an uncertain differential equation dXt =
f (t,Xt)dt+g(t,Xt)dCt with an initial value X0. Assume Xt has an uncertainty distribution
�t(x) at each time t. Then given a strictly decreasing function J(x) and a level z < J(X0),
the first hitting time τz that J(Xt) reaches z has an uncertainty distribution

(s) = 1 − inf
0≤t≤s

�t
(
J−1(z)

)
.

Proof. Since the event {τz ≤ s} is equivalent to the event{
inf

0≤t≤s
J(Xt) ≤ z

}

provided z < J(X0), it follows from Theorem 6 that

(s) = M

{
inf

0≤t≤s
J(Xt) ≤ z

}

= M

{
sup
0≤t≤s

Xt ≥ J−1(z)
}

= 1 − inf
0≤t≤s

�t
(
J−1(z)

)
.

This completes the proof.

Integral
In this section, we study the integral of the solution of an uncertain differential equation,
and give its uncertainty distribution. Besides, we design a numerical method to obtain the
uncertainty distribution.

Theorem 21. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Assume J(x) is a strictly increasing function. Then the integral∫ s

0
J(Xt)dt

has an inverse uncertainty distribution

−1(α) =
∫ s

0
J
(
Xα
t
)
dt.

Proof. Since J(x) is a strictly increasing function, we have{∫ s

0
J(Xt)dt ≤

∫ s

0
J
(
Xα
t
)
dt

}
⊃ {

J(Xt) ≤ J
(
Xα
t
)
,∀t} = {

Xt ≤ Xα
t ,∀t

}
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and {∫ s

0
J(Xt)dt >

∫ s

0
J
(
Xα
t
)
dt

}
⊃ {

J(Xt) > J
(
Xα
t
)
,∀t} = {

Xt > Xα
t ,∀t

}
.

By Theorem 4 and the monotonicity of uncertain measure, we have

M

{∫ s

0
J(Xt)dt ≤

∫ s

0
J
(
Xα
t
)
dt

}
≥ M

{
Xt ≤ Xα

t ,∀t
} = α

and

M

{∫ s

0
J(Xt)dt >

∫ s

0
J
(
Xα
t
)
dt

}
≥ M

{
Xt > Xα

t ,∀t
} = 1 − α.

It follows from the duality axiom of uncertain measure that

M

{∫ s

0
J(Xt)dt ≤

∫ s

0
J
(
Xα
t
)
dt

}
= α.

In other words, the integral∫ s

0
J(Xt)dt

has an inverse uncertainty distribution

−1
s (α) =

∫ s

0
J
(
Xα
t
)
dt.

Example 1. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation dXt = f (t,Xt)dt + g(t,Xt)dCt , respectively. Consider a function h(t, x) =
exp(−rt) x. Since h(t, x) is strictly increasing with respect to x, the integral∫ s

0
h(t,Xt)dt =

∫ s

0
exp(−rt)Xtdt

has an inverse uncertainty distribution

−1
s (α) =

∫ s

0
h

(
t,Xα

t
)
dt =

∫ s

0
exp(−rt)Xα

t dt.

When J(x) is a strictly increasing function, in order to calculate the uncertainty
distribution of the integral of J(Xt), we design a numerical method as below.

Step 1: Fix α in (0, 1), and fix h as the step length. Set i = 0, N = s/h, and Xα
0 = X0.

Step 2: Employ the recursion formula

Xα
i+1 = Xα

i + f
(
ti,Xα

i
)
h + g

(
ti,Xα

i
)
�−1(α)h,

and calculate Xα
i+1 and J

(
Xα
i+1

)
.

Step 3: Set i ← i + 1.
Step 4: Repeat Step 2 and Step 3 for N times.
Step 5: The inverse uncertainty distribution of∫ s

0
J(Xt)dt

is determined by

−1
s (α) =

N∑
i=1

J
(
Xα
i
)
h.
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Theorem 22. Let Xt and Xα
t be the solution and α-path of the uncertain differential

equation

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Assume J(x) is a strictly decreasing function. Then the integral∫ s

0
J(Xt)dt

has an inverse uncertainty distribution

ϒ−1
s (α) =

∫ s

0
J
(
X1−α
t

)
dt.

Proof. Since J(x) is a strictly decreasing function, we have{∫ s

0
J(Xt)dt ≤

∫ s

0
J
(
X1−α
t

)
dt

}
⊃

{
J(Xt) ≤ J

(
X1−α
t

)
,∀t

}
=

{
Xt ≥ X1−α

t ,∀t
}

and {∫ s

0
J(Xt)dt >

∫ s

0
J
(
X1−α
t

)
dt

}
⊃

{
J(Xt) > J

(
X1−α
t

)
,∀t

}
=

{
Xt < X1−α

t ,∀t
}
.

By Theorem 4 and the monotonicity of uncertain measure, we have

M

{∫ s

0
J(Xt)dt ≤

∫ s

0
J
(
X1−α
t

)
dt

}
≥ M

{
Xt ≥ X1−α

t ,∀t
}

= α

and

M

{∫ s

0
J(Xt)dt >

∫ s

0
J
(
X1−α
t

)
dt

}
≥ M

{
Xt < X1−α

t ,∀t
}

= 1 − α.

It follows from the duality axiom of uncertain measure that

M

{∫ s

0
J(Xt)dt ≤

∫ s

0
J
(
X1−α
t

)
dt

}
= α.

In other words, the integral∫ s

0
J(Xt)dt

has an inverse uncertainty distribution

ϒ−1
s (α) =

∫ s

0
J
(
X1−α
t

)
dt.

Conclusions
This paper considered the solution of an uncertain differential equation, and gave the
uncertainty distributions of its extreme values, first hitting time, and integral. In addition,
we designed some numerical methods to obtain the uncertainty distributions.
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