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Abstract

This paper considers the application of method of percentile matching available in
statistical theory of estimation for estimating the parameters involved in uncertainty
distributions. An empirical study has been carried out to compare the performance
of the proposed method with the method of moments and the method of least
squares considered by Wang and Peng (J. Uncertainty Analys. Appl. 2, (2014)) and Liu
(Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty,
(2010)), respectively. The numerical study clearly establishes the superiority of the
proposed method over the other two methods in estimating the parameters
involved in linear uncertainty distribution when appropriate orders of percentiles are
used in the estimation process.

Keywords: Uncertainty distribution, Uncertain statistics, Method of least squares,
Method of moments, Method of percentile matching

Introduction
Indeterminacy that occurs in real-life situations when the outcome of a particular

event is unpredictable in advance leads to uncertainty. According to Liu [5], frequency

generated from samples (historical data) and belief degree evaluated by domain experts

are the two ways to explain indeterminate quantities. A fundamental premise of axiomatic

approach of probability theory which came into existence in 1933 is that the estimated

probability distribution should be close to the long run cumulative frequency. This ap-

proach is reliable when large samples are available. In cases where samples are not available

for estimating the unknown parameters of uncertainty distributions, the only choice left

out is to go for belief degrees. Belief degree refers to the belief of individuals on the occur-

rence of events. In order to model belief degrees, Liu [2] introduced the uncertainty theory.

Since then, it has developed vigorously throughout the years. Liu [4] explains the need for

uncertainty theory. Zhang [8] discusses about characteristics of uncertain measure. Liu [5]

explains linear, zigzag, normal, lognormal, and empirical uncertainty distributions.

Several methods are available for estimating the unknown parameters of probability

distributions. Method of least squares, method of moments, and method of maximum likeli-

hood are some among them. Method of moments is one of the popular methods meant for

estimating parameters in a probability distribution. Method of maximum likelihood is an

equally popular estimation method possessing several optimum properties. Method of least

squares is a common technique mainly used for estimating parameters of regression models.
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Analogous to various methods used in probability theory, estimation techniques have

also been developed in uncertainty theory. Uncertain statistics refers to a methodology

used for collecting and interpreting expert’s experimental data by uncertainty theory.

The study of uncertain statistics was started by Liu [3]. Liu [2, 5] introduced the con-

cept of moments in uncertainty theory. Wang and Peng [7] proposed the method of

moments as a technique for estimating the unknown parameters of uncertainty distri-

butions. Liu [5] gives detailed explanation of method of least squares, method of mo-

ments, and Delphi method. Apart from these methods, exploration on the applications

of alternative methods remains unattended. Method of percentile matching is an esti-

mation technique used in statistical theory of estimation which plays a vital role in

dealing with estimation of parameters when other popular methods fail to be effective.

More details about the method of percentile matching can be found in Klugman et al.

[1]. The absence of concepts like uncertainty density function makes the task of defin-

ing a function similar to likelihood function (available in statistical theory) a difficult

one. Hence, adopting a method similar to the maximum likelihood estimation in the

uncertainty framework becomes difficult. In this paper, it is proposed to investigate the

utility of the method of percentile matching in estimating the unknown parameters of

uncertainty distributions. It is proposed to compare the percentile matching method

with the existing competitors by way of numerical studies.

The paper is organized as follows. The second section of this paper gives a detailed

description on preliminary concepts of uncertainty theory. The third section deals with

the commonly used estimation methods in probability theory and also explains the

method of percentile matching. The fourth section is devoted for discussion on methods

meant for estimating unknown parameters of uncertainty distributions. The fifth section

discusses the experimental studies carried out for estimating the unknown parameters of

linear uncertainty distribution. Findings and conclusions are given in the sixth section.

Uncertainty Theory
This section gives a short description on different terminologies associated with uncer-

tainty theory due to Liu [2, 3, 5]. Certain results due to Sheng and Kar [6] on linear un-

certainty distribution and details about the method developed by Wang and Peng [7]

for estimating parameters of uncertainty distributions are also discussed.

Let Γ be a nonempty set and ℒ be a σ-algebra over Γ. Each element Λ ∈ℒ is called an

event. A number ℳ(Λ) indicates the level that Λ will occur.

Uncertain measure: Liu [2] defines a set function ℳ to be an uncertain measure if it

satisfies the following three axioms:

Axiom 1 (normality axiom) ℳ{Γ} = 1.

Axiom 2 (duality axiom) ℳ{Λ} +ℳ{Λc} = 1.

Axiom 3 (subadditivity axiom) For every countable sequence of events,

ℳ ∪
i¼1

∞
Λi

� �
≤
X∞
i¼1

ℳ Λif g.

Although the probability measure satisfies the first three axioms, the probability

theory is not a special case of uncertainty theory because product probability

measure does not satisfy the product axiom.
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Axiom 4 (product axiom) Let (Γk,ℒk,ℳk) be uncertainty spaces for k = 1, 2, 3,…. The

product uncertain measure is an uncertain measure satisfying

ℳ
Y∞
k¼1

Λk

( )
¼ ∧

∞

k¼1
ℳk Λkf g

where Λk are arbitrarily chosen events from ℒk for k = 1,2,3,…, respectively.

Uncertain variable: It is defined by Liu [2] as a measurable function ξ from an uncer-

tainty space (Γ,ℒ,ℳ) to the set of real numbers such that {ξ∈ B} is an event for any

Borel set B of real numbers.

Uncertainty distribution: Uncertainty distribution Φ of an uncertain variable ξ is

defined by Liu [2] as

Φ(x) =ℳ{ξ ≤ x}, ∀ x∈ℜ.

Liu [5] made studies on various uncertainty distributions, namely, linear, zigzag, normal,

and lognormal. This work is related to linear uncertainty distribution stated below.

Linear uncertainty distribution: An uncertain variable ξ is called linear if it has uncer-

tainty distribution of the form

Φ xð Þ ¼
0; if x ≤ a
x−a
b−a

; if a ≤ x ≤ b

1; if x ≥ b

8><
>:

where a and b are real numbers with a < b. It is usually denoted by ℒ (a,b).

Empirical uncertainty distribution (Liu [3]): Empirical uncertainty distribution based

on a given experimental data is defined as

Φn xð Þ ¼
0; if x < x1

αi þ αiþ1−αið Þ x−xið Þ
xiþ1−xi

; if xi ≤ x ≤ xiþ1; 1 ≤ i < n

1; if x > xn

8><
>:

where x1 < x2 <… < xn and 0 ≤ a1 ≤ a2 ≤… ≤ an ≤ 1.

Regular uncertainty distribution: An uncertainty distribution Φ(x) is said to be regu-

lar by Liu [3] if it is a continuous and strictly increasing function with respect to x

where 0 <Φ(x) < 1 and limx→−∞ Φ xð Þ ¼ 0; limx→þ∞ Φ xð Þ ¼ 1 . For example, linear, zigzag,

normal, and lognormal uncertainty distributions are all regular.

Expected value of an uncertain variable: The expected value of an uncertain variable

ξ is defined by Liu [2] as

E ξ½ � ¼
Zþ∞

0

ℳ ξ ≥ xf gdx−
Z0

−∞

ℳ ξ ≤ xf gdx

provided that at least one of the two integrals is finite.

It has been shown by Liu [2] that

E ξ½ � ¼
Zþ∞

0

1−Φ xð Þð Þdx−
Z0

−∞

Φ xð Þdx:

Also from this expression, using integration by parts Liu [3] gets
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E ξ½ � ¼
Zþ∞

−∞

xdΦ xð Þ:

If ξ has a regular uncertainty distribution Φ, then by substituting Φ(x) with a, x with Φ− 1(α)

in the previous expression and following the change of variables of integral, Liu [3] gives

E ξ½ � ¼
Z1

0

Φ−1 αð Þdα:

Moments: If ξ is an uncertain variable and k is a positive integer, then Liu [2] gives the

kth moment of ξ as E[ξk].
Let ξ be an uncertain variable with uncertainty distribution Φ. Then by Liu [5],

(i) If k is an odd number, then the kth moment of ξ is defined as

E ξk
h i

¼
Zþ∞

0

1−Φ
ffiffiffi
xk

p� �� �
dx−

Z0

−∞

Φ
ffiffiffi
xk

p Þdx:�
(ii)If k is an even number, then the kth moment of ξ is defined as

E ξk
h i

¼
Zþ∞

0

1−Φ
ffiffiffi
xk

p Þ þΦ −
ffiffiffi
xk

p ÞÞdx:���

(iii) If k is a positive integer, then the kth moment of ξ is defined as

E½ξk � ¼
Zþ∞

−∞

xkdΦðxÞ:

Sheng and Kar [6] proved that, if an uncertain variable ξ has a regular uncertainty

distribution Φ and k is a positive integer, then the kth moment of ξ is

E ξk
h i

¼
Z1

0

Φ−1 αð Þ� �k
dα:

Sheng and Kar [6] derived the expressions for the first three moments of a linear un-

certain variable ξ ~ℒ (a, b). They are given below.

E ξ½ � ¼ aþ b
2

; ð1Þ

E ξ2� � ¼ a2 þ abþ b2

3
; ð2Þ

E ξ3� � ¼ aþ bð Þ a2 þ b2
� �
4

: ð3Þ

For a given expert’s experimental data

x1; α1ð Þ; x2; α2ð Þ;…; xn; αnð Þ
that meet the condition

0≤x1 < x2 < … < xn; 0 ≤α1 ≤α2 ≤… ≤αn ≤1

where xr′s are the observed values and αr′s are the respective belief degree values,

Wang and Peng [7] gives the kth empirical moment of the uncertain variable ξ based

on empirical uncertainty distribution as
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ξ
k ¼ α1x1

k þ 1
k þ 1

Xn−1
i¼1

Xk
j¼0

αiþ1 −αið Þxijxiþ1
k−j þ 1−αnð Þxnk : ð4Þ

Thus, in this section, prerequisites needed for tackling the main problem considered

in this paper have been presented. Before venturing to the problem of estimating the

parameters of an uncertainty distribution, some of the common methods employed in

estimating the unknown parameters of probability distributions are briefly listed in the

following section.

Methods for Estimating the Unknown Parameters of Probability Distributions
Some of the frequently used methods for estimating the parameters of probability dis-

tributions include method of moments, method of maximum likelihood, and method

of least squares. These methods can be used for any probability distributions. However,

their efficiencies will depend on the nature of distributions. Three methods of estima-

tion, namely, method of moments, method of least squares, and the method of percent-

ile matching, are presented below. Method of least squares is used for estimating

parameters by minimizing the squared distance between the observed data and their

fitted values. Method of moments is possibly the oldest method of finding point estima-

tors. The moment estimators are obtained by equating the first k sample moments to

the corresponding k population moments and solving the system of resulting simultan-

eous parametric equations in terms of sample moments. Percentile matching method

uses percentiles of different orders of available data towards estimation of parameters

in a distribution. When sample data is discrete, finding the percentile involves smoothing

of data. If there are n observations, then the kth percentile is found by interpolating

between the two data points that are around the nkth observation. A percentile matching

estimate of the vector valued parameter θ = (θ1, θ2,…, θp) is any solution of the p equa-

tions πg
k
θð Þ ¼ π̂g

k
; k ¼ 1; 2; 3;…; p where g1, g2,… gp are p arbitrarily chosen percentiles.

Here, the left hand side, namely, πg
k
θð Þ, represents the theoretical percentile of order

gk(k = 1, 2,…, p) and the right hand side π̂gk gives the corresponding smoothed empirical

estimate. It is pertinent to note that the smoothed empirical estimate of a percentile is

found by π̂g ¼ 1−hð Þx jð Þ þ hx jþ1ð Þ where j = ⌊(n + 1)g⌋ and h = (n + 1)g − j. ⌊.⌋ indicates the

greatest integer function and x(1) ≤ x(2) ≤… ≤ x(n) are the order statistics from the sample.

It is to be noted that F πgk

		θ� � ¼ gk ; k ¼ 1; 2; 3;…; p where F(.) is the true cumulative

distribution of the underlying probability distribution. On substituting π̂gk in lieu of πgk

in this equation, a system of p equations is formed. Solutions based on this system of

equations are taken as estimates of the parameters. It may be noted that π̂g cannot be

obtained for g < 1
nþ1ð Þ or g > n

nþ1ð Þ. This is reasonable as it is not meaningful to find the

value of very large or small percentiles from small samples. Smoothed version is used

whenever an empirical percentile estimate is needed.

The next section will explain the method of moments for estimating the unknown

parameters of linear uncertainty distribution.

Methods for Estimating Parameters of Uncertainty Distributions
The problem of estimating parameters involved in uncertainty distributions has

received the attention of researchers. Some methods parallel to those available in
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statistical estimation theory have been utilized by uncertainty researchers. Two

methods used in uncertain parameter estimation, namely, method of least squares and

method of moments, are explained below.

Method of Least Squares

The method of least squares is due to Liu [3]. Suppose that an uncertainty distribution

to be determined has a known functional form Φ(x|θ1, θ2,…, θp) having parameters

θ1, θ2,…, θp.To estimate the parameters θ1, θ2,…, θp, the method of least squares mini-

mizes the sum of the squares of the distance of expert’s experimental data from the

uncertainty distribution. For a given set of expert’s experimental data

x1; α1ð Þ; x2; α2ð Þ; ::; xn; αnð Þ;

the least square estimates of θ1, θ2,…, θp are found by minimizing

Xn
i¼1

Φ xijθ1; θ2;…; θp
� �

−αi
� �2

with respect to θ.

While estimating uncertain parameters, it may be noted that closed form solutions

for least square estimates may not be available always. Hence most of the times certain

tools available in numerical mathematics are employed to estimate such parameters. A

MATLAB toolbox available in literature makes the computation of least square esti-

mates an easy one.

Method of Moments

Wang and Peng [7] proposed the method of moments for estimating unknown parame-

ters of an uncertainty distribution. The method is as follows.

Let a non-negative uncertain variable ξ have an uncertainty distribution Φ(x|θ1, θ2,

…, θp) with unknown parameters (θ1, θ2,…, θp). Given a set of expert’s experimental

data

x1; α1ð Þ; x2; α2ð Þ; ::; xn; αnð Þ

where 0 ≤ x1 < x2 <… < xn, 0 ≤ α1 ≤ α2 ≤… ≤ αn ≤ 1.

The expression for kth empirical moment of ξ due to Wang and Peng [7] obtained

with the help of empirical uncertainty distribution is given by (4). The moment esti-

mates θ̂1; θ̂2;…; θ̂p


 �
are obtained by equating the first p theoretical moments of ξ to

the corresponding empirical moments. That is, the moment estimates should solve the

system of equations,

Z
0

þ∞

1−Φ
ffiffiffi
xk

p jθ1; θ2;…; θp
��

dx ¼ ξ
k
; k ¼ 1; 2; 3;…; p





where ξ
1
; ξ

2
;…; ξ

p
are the empirical moments found using (4).

For example, let ξ be a linear uncertain variable ξ ~ℒ (a, b) with two unknown

parameters a and b which are two positive real numbers satisfying a < b. The linear

uncertainty distribution function is given by
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Φ xð Þ ¼
0; if x ≤ a
x−a
b−a

; if a ≤ x ≤ b

1; if x ≥ b:

8><
>:

Since there are two unknown parameters in a linear uncertainty distribution, method

of moments makes use of the first and second theoretical and empirical moments of a

linear uncertain variable. First and second theoretical moments of a linear uncertain

variable derived by Sheng and Kar [6] are given by (1) and (2), respectively. First and

second empirical moments denoted by ξ
1
and ξ

2
are calculated using the expression

given in (4) by putting k = 1 and 2, respectively. Equating the first and second theore-

tical moments to the corresponding empirical moments and solving the resulting quad-

ratic equation, the estimates of unknown parameters are obtained. Minimum among

the positive and negative roots give â and the maximum among them gives b̂.

In this paper, the utility of percentile matching method for estimation of parameters

of uncertainty distributions is examined.

Method of Percentile Matching

Given a set of expert’s experimental data

x1; α1ð Þ; x2; α2ð Þ; ::; xn; αnð Þ

where xi, i = 1, 2, 3,…, n are the observed values and αi, i = 1, 2, 3,…, n are the belief

degrees. Here, it is assumed that 0 ≤ x1 < x2 <… < xn, 0 ≤ α1 ≤ α2 ≤… ≤ αn ≤ 1.

The observed values xi, i = 1, 2, 3,…, n are expected to lie in the interval (a,b). Follow-

ing the definition given by Liu [3] which was stated in the “Uncertainty Theory”

section, empirical uncertainty distribution can be constructed. An empirical percentile

of order k of an uncertainty distribution is defined as the solution of the equation Φn

xð Þ ¼ k
100 where Φn(x) is the smoothed empirical uncertainty distribution. Similarly, a

theoretical percentile of order k is defined as the solution of the equation Φ xð Þ ¼ k
100

where Φ(x) is the true uncertainty distribution. As in the case of percentile matching

method meant for probability distributions, p empirical percentiles of desired orders

are obtained using smoothed empirical uncertainty distribution and p equations invol-

ving the parameters are constructed with the help of true uncertainty distribution func-

tion. Solving these parametric equations, the required estimates are found.

In this paper, the percentile matching method has been employed to estimate the

parameters in linear uncertainty distribution. The underlying steps are explained below.

Let ξ be a linear uncertain variable ξ ~ℒ (a, b) with two unknown parameters a and

b which are two positive real numbers satisfying a < b. Since there are two parameters

in the linear uncertainty distribution function, the method of percentile matching uses

two percentiles of predefined orders p1 and p2. On making use of the empirical uncer-

tainty distribution, empirical percentiles of orders p1 and p2 are obtained and quantile

values denoted by x1 and x2, respectively, are computed. It may be noted that x1 ¼ Φn−1

p1ð Þ and x2 ¼ Φn−1 p2ð Þ . Two equations involving the parameters a and b are formed

using x1 and x2 in the true uncertainty distribution function Φ. Solving for the parame-

ters from the resulting equations, the percentile matching estimates of the parameters

are obtained.
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In the following section, a detailed study has been carried out on the estimation of

parameters in linear uncertainty distribution. It gives a comparison of the performance

of method of percentile matching and method of moments in estimation procedure.

Experimental Study
It is to be noted that while using percentile matching method, the estimated values and

hence the accuracy of estimates depends on the orders of the percentiles used in

estimation process. Hence, it is necessary to use percentiles of appropriate order to

enhance the quality of estimates. In this section, it is proposed to make a detailed study

on this aspect with reference to estimation of parameters in linear uncertainty distribu-

tion using experimental data sets. The main objective is to explore whether it is pos-

sible to identify optimal orders of percentiles which can be used for estimating the

parameters appearing in linear uncertainty distribution based on numerical studies.

The error involved in the estimation of uncertain parameters can be measured by the

quantity
Xn
i¼1

Φ̂ xið Þ−αi
		 		 where Φ̂ xið Þ′s are the estimated belief values and αi′s are the

corresponding experimental belief values. In further discussion, it will be denoted by

AE. That is,

AE ¼
Xn
i¼1

Φ̂ xið Þ−αi
		 		: ð5Þ

In the comparative study, experimental data sets simulated by a random mechanism are

used. The process of generating one set of experimental data associated with the linear

uncertainty distribution ℒ (a, b) for a pre-fixed a and b is explained below.

(i) Determine a sequence of n equally spaced values in the interval (a,b), say x1, x2,… xn.
(ii)Compute the values of linear uncertainty distribution Φ xi

's obtained in step (i) for

Φ(x1) ,Φ(x2) ,…,Φ(xn).

(iii)Φ(xi) values obtained in step (ii) are either added with or subtracted in a randomized

manner by ε ¼ Φ x2ð Þ−Φ x1ð Þ
c where c is a positive integer greater than 1. It is to be noted

that Φ(xi) −Φ(xi − 1) is a constant for all i since the distribution is linear. This leads to

a sequence of values, namely, Φ(x1) ± ε,Φ(x2) ± ε,…,Φ(xn) ± ε.

These values are taken as belief degree values α1, α2,…, αn corresponding to x1, x2,…,

xn leading to the expert’s experimental data set (x1, α1), (x2, α2),…, (xn, αn).

In the experimental study, for a and b, 20 pairs of values with varying differences,

namely, 10, 20, 30, and 50 (each comprising five sets) as given in Table 1 are used. In

order to reach reliable conclusions from the numerical study, for one set of values of

parameters a and b, experimental data sets are generated by repeating the procedure

mentioned above 100 times by using randomly generated ε’s (described in step (iii) of

the method of simulation explained above) taking the value of c as 3. The values of

parameters a and b are estimated for each set of expert’s experimental data using

method of moments and method of percentile matching for every choice of p1 and p2
which are determined by the procedure given below.
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Values ranging from min(α) + 0.01 to 0.5 in step 0.01 are assigned for p1 and for a given

p1, values ranging from p1 + 0.01 to max(a) − 0.0001 are assigned to p2 in step 0.01.

For each pair of p1 and p2, the value of AE is computed and the pair corresponding

to minimum AE is recorded as the best pair of percentiles for the data being used. The

AE due to the use of such best pair of percentiles is denoted by AEP. For each data, the

method of moments as well as the method of least squares are also applied. The result-

ing Absolute Errors denoted by AEM and AELS are obtained.

The numerical study carried out by following the above procedure for one set of

values of parameters is explained in detail below.

Consider the interval (a,b) of length 10 by taking a = 5 and b = 15 and assume xi,

i = 1, 2,…, 10 takes values in (5,15). The x values defined by a + (b − a) 0.10 x are

obtained as 6.00, 6.89, 7.78, 8.67, 9.56, 10.44, 11.33, 12.22, 13.11, and 14.00 with uncer-

tainty distribution function values (as provided by linear uncertainty distribution)

0.10, 0.19, 0.28, 0.37, 0.46, 0.54, 0.63, 0.72, 0.81, and 0.90. In this case, the ε value

is found to be 0.03. The belief degree values 0.07, 0.16, 0.31, 0.34, 0.43, 0.57, 0.66,

0.69, 0.78, and 0.93 are obtained by randomly adding and subtracting the ε value

with the linear uncertainty distribution function values. Thus, the experimental data set

obtained is (6.00,0.07), (6.89,0.16), (7.78,0.31), (8.67,0.34), (9.56,0.43), (10.44,0.57),

(11.33,0.66), (12.22,0.69), (13.11,0.78), (14.00,0.93). Using percentile matching method for

estimation of parameters, the minimum absolute error AEP was found to be 0.24 for the

above experimental data set considered with the orders of best choices of the percentiles

p1 and p2 being 0.07 and 0.13. The best percentile matching estimates of a and b are

found to be 5.3 and 15.3, respectively. The moment estimates of the parameters a and b

are obtained as 5.37 and 14.74 with absolute error (AEM) 0.24. The least square estimates

of a and b are found to be 5.21 and 14.90 with AELS 0.26.

The process of finding the best pair, AEP and AEM, is repeated for all the 100 experi-

mental data sets generated using the interval (a,b). It was found that in all simulated

data sets, the value of AEP is less when compared to the values of AEM and AELS.

Careful analysis over the best choice of percentiles did not lead to any conclusive

evidence towards a universally best choice for each one of the intervals considered in

the numerical study. One can think of different approaches for analyzing the results ob-

tained in the numerical study in order to find the best pair of percentiles for one set of

parametric values. It is reasonable to expect the level of deviation (created through ε)

between the simulated belief levels, and the uncertainty distribution values have impact

on the ultimate values of AE. That is, AE is likely to depend on the pattern followed in

the simulation based on uncertainty distribution values. It is to be mentioned that the

pattern followed in simulation can be quantified using entropy of the distribution

of + ε and − ε. The entropy based on the distribution of + ε and − ε is defined as

Table 1 Choices of intervals

Differences (a,b)

10 (5,15) (10,20) (15,25) (20,30) (25,35)

20 (5,25) (10,30) (15,35) (20,40) (25,45)

30 (10,40) (15,45) (20,50) (25,55) (30,60)

50 (10,60) (15,65) (20,70) (25,75) (30,80)
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e ¼ −
X2
i¼1

pi log2 pið Þ ¼ −p1 log2 p1ð Þ−p2 log2 p2ð Þ

where p1 and p2 are the proportions of + ε and − ε generated while simulating belief

degree values. Entropy value 0 indicates that the belief values are obtained by a

complete shift of + ε or − ε from the uncertainty distribution function. On the other

hand, the entropy value becomes higher if the number of positive and negative shifts

tends to be equal.

In order to get an insight into results obtained in the experimental study, output re-

lated to 10 data sets simulated from (5,15) when x takes 10 values is provided in Table 2.

Entries in a row are values of the absolute errors due to three different methods of esti-

mation considered in this work along with the estimated values of parameters. It may

be noted that the entropy value reported in a row is determined by using the distribu-

tion of + ε and − ε in the simulation process. From Table 2, it is clear that AEP due to

method of percentile matching is always less than the moment error (ME) due to

method of moments and least square error (LSE) due to method of least squares. Fur-

ther, there are two cases where AELS happens to be equal to AEP due to error in

approximation.

It is to be noted that the set of possible entropy values differ according to the number

of values generated for experts’ opinion. The best values of p1 and p2 are grouped

according to the entropy values, and the weighted average of best percentile orders is

computed for different values of entropies. The weighted average is considered since it

is not necessary that the frequencies of occurrence of different entropy values differ.

The frequency of occurrence of an entropy value in the simulated set is treated as the

weight of that possible value. In this study, six different lengths which originate from

various intervals of lengths 10, 20, 30, and 50 are considered as values provided to the

experts for eliciting their belief levels. Generally, the best choices of p1 start from a

smaller value (around 0.12) and increases (up to value around 0.18) as the entropy

values increase up to a point and start decreasing (towards a value around 0.15) beyond

that value. In all the simulated data sets, it was observed that the optimal choices

of p2 exhibit an increasing pattern irrespective of the number of values generated from

different intervals for expert’s opinion. It increases from 0.30 to 0.70. When the difference

between the optimal orders as the entropy values change is apparent in the case of p2,

Table 2 Sample output

Sl number Entropy p1 p2 â b̂ AEP AEM AELS

1 0.97 0.07 0.13 5.3 15.3 0.23 0.24 0.26

2 0.97 0.31 0.66 4.38 15.42 0.21 0.3 0.24

3 0.97 0.07 0.84 5.35 14.58 0.12 0.14 0.12

4 0.97 0.16 0.84 5.43 14.57 0.22 0.23 0.24

5 0.97 0.25 0.72 5.3 15.3 0.23 0.26 0.27

6 0.97 0.13 0.42 4.59 15.49 0.21 0.32 0.23

7 1 0.5 0.78 4.48 15.53 0.13 0.29 0.13

8 0.88 0.39 0.92 4.7 14.7 0.17 0.22 0.21

9 0.88 0.07 0.36 5.3 15.3 0.17 0.26 0.24

10 0.88 0.13 0.7 4.57 15.61 0.15 0.27 0.15
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such conclusion could not be arrived in the case of p1. To illustrate this, box plots of the

values of optimal orders corresponding to different entropy values for the cases of provid-

ing five and ten values for eliciting experts’ opinion are presented in Figs. 1 and 2,

respectively.

In order to examine the significance of differences between p1 values with respect to

variation in entropy values, one-way ANOVA was performed for each parametric setting

of a and b. It may be noted that the cases where the entropy assumes the value 0 practic-

ally have no meaning, because no one will think of fitting a curve which completely lies

either fully above or fully below the points in the experimental data. Hence, such

values are excluded while performing analysis of variance. It was found that differ-

ences between the p1 values are statistically significant with respect to the entropy

values irrespective of the number of values provided to experts for expressing their belief

levels under all choices of the parameters. Hence, Tukey Honest Significance Difference

(HSD) test has been carried out to reach conclusive evidence. It was observed that the pairs

(0.72,0.97), (0.65,1), (0.59,0.98), (0.81,0.95), and (0.91,0.99) are the pairs of entropy values in

which optimal choices of p1 happened to be equal for the cases of experts being provided with

5, 6, 7, 8, and 9 values. In the case of 10 values, the two pairs (0.72,1) and (0.88,0.97) use equal

values for p1.

The entries in Table 3 can be used as guidance for deciding the appropriate order of

percentiles to be used in the process of estimation of parameters in the case of linear

uncertainty distribution.

Conclusion
In this paper, the utility of the method of percentile matching is investigated for estimat-

ing the parameters in linear uncertainty distribution. A detailed study on identifying

optimal orders of percentiles to be used has been carried out numerically. Based on the

experimental study, it is concluded that there is no globally optimum choices for the

percentiles p1 and p2. The optimal choices of the percentiles depends on the number of

values provided to the experts for obtaining their belief levels as well as the pattern

present in the experimental data set. The patterns present in the data set are gauged with

the help of entropy values as explained earlier. The entries in Table 3 can be used for

deciding suitable orders of percentiles.

Even though the study is confined to linear uncertainty distribution, it can be extended

in similar fashion to other uncertainty distributions as well by using appropriate number

of percentiles. The superiority of the percentile method over the method of

Fig. 1 Box plot of distribution of percentiles for data sets with 5 values
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moments and the method of least squares has been established through extensive

numerical study. In the present study, we have used a kind of search procedure to

determine the optimal orders of the percentiles being used. One can use soft computing

algorithms like genetic algorithm, ant colony optimization to identify the optimal choices,

and correct form of uncertainty distribution. The authors are working in that direction.
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