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Abstract

In this paper, we introduce a new concept ‘safety factor’ in a transportation problem.
When items are transported from plants to destinations through different
conveyances, there are some difficulties/risks to transport the items due to bad road,
insurgency, land slide, etc. in some routes. Due to these, a desired total safety factor
is being introduced, and depending upon the nature of the safety factor, we
develop five models. In this paper, a solid transportation problem (STP) with
imprecise unit costs is considered. The sources' availabilities, destinations' demands,
and capacities of conveyances are also represented by fuzzy numbers like trapezoidal
and triangular numbers. The transportation problem has been formulated with and
without a safety factor. To reduce the different models into its crisp equivalent, we
introduce different methods as chance-constraint programming, an approach using
interval approximation of fuzzy numbers and the application of the expected value
model. Generalized reduced gradient technique is used to find the optimal solutions
for a set of given numerical data. To illustrate the model, a numerical example has
been presented and solved using LINGO.12 software. The effect of safety factors on
transported amount is illustrated.

Keywords: Solid transportation problem; Safety factor; Fuzzy variable; Random
variable; Hybrid variable; Expected value model; An approach using interval
approximation of fuzzy number; Chance-constraint programming
Introduction
A transportation model plays a vital role in ensuring the efficient movement and in-

time availability of raw materials and finished goods from sources to destinations.

Transportation problem is a linear programming problem that stemmed from a net-

work structure consisting of a finite number of nodes and arcs attached to them. Ef-

fective algorithms have been developed to solve the transportation problem when the

cost coefficients and the supply and demand quantities are known exactly. The occur-

rence of randomness and imprecision in the real world is inevitable owing to some un-

expected situations. There are cases that the cost coefficients and the supply and

demand quantities of a transportation problem may be uncertain due to some unman-

ageable factors. To deal quantitatively with imprecise information in making decisions,

Bellman and Zadeh [1] and Zadeh [2,3] introduced the impression of fuzziness. In

many industrial problems, a homogeneous product is delivered from an origin to a

destination by means of different modes of transport called conveyances, such as
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trucks, cargo flights, goods trains, and ships. As a generalization of traditional transpor-

tation problem, solid transportation problem (STP) was stated by Shell [4] in 1955,

which he considered the three item properties in the constraint set instead of two

items, namely source and destination. Haley [5] described a solution procedure of a

solid transportation problem, which is an extension of the Modi method. In general,

real-life problems are modeled with multi-objective functions which are measured in

different respects, and they are noncommensurable and conflicting in nature. Further-

more, it is frequently difficult for the decision maker to combine the objective functions

in one overall utility function. Due to insufficient information, lack of evidence, and

fluctuating financial market, the available data of a transportation system such as re-

sources, demands, and conveyance capacities are not always crisp or precise but are

fuzzy, random, or both. Thus, the fuzziness and randomness can be present in the ob-

jective function as well as in the constraints of a STP. Since then, significant work has

been done by researchers based on the uncertainty theory both in theoretical and prac-

tical aspects. If the cost parameters of the transportation problem are uncertain vari-

ables, we call the problem uncertain cost transportation problem. Along with global

economic development, production and demand have much more importance. The im-

portance of goods transportation is also increasingly reflected. Dealing with different

types of uncertainty, Kundu et al. [6] solve solid transportation problems with budget

constraint in an uncertain environment. Our aim is to formulate and solve solid trans-

portation problems with safety constraints with different types of uncertain (fuzzy, ran-

dom, and hybrid) parameters. Recently, Baidya et al. [7,8] solved two problems based

on safety factors and uncertainty in transportation problem.

In this paper, we develop five models and consider three types of uncertainty (sto-

chastic, fuzzy, and hybrid) in different models for unit transportation cost and safety

factor. Also, we consider resources, demands, and conveyance capacities as fuzzy.

Model 1 was solved without considering a safety factor, but other models were solved

with safety factors that are crisp, random, fuzzy, and hybrid for their respective

models. To derive the crisp equivalences of the models, appropriate methods, i.e.,

chance-constrained programming, an approach that uses interval approximation of

fuzzy numbers, and expected value model techniques are applied in these five differ-

ent models. The models are illustrated with specific numerical data. Finally, all the

models are solved using generalized reduced gradient method using LINGO.12 soft-

ware. A comparison of the different models is presented.

Literature review
Zadeh [2] first introduced the concept of fuzzy set theory. Later on, several authors

such as Zadeh [3], Kaufmann [9], Zimmermann [10], Liu [11], and Dubois and Prade

[12] developed and applied the fuzzy set theory. Chanas and Kuchta [13] studied

transportation problem with fuzzy cost coefficients. Jimenez and Verdegay [14] con-

sidered two types of uncertain STP, one with interval numbers and the other with

fuzzy numbers. Charnes and Cooper [15] introduced chance-constrained program-

ming to deal with uncertain environment. Liu and Iwamura [16] presented chance-

constrained programming with fuzzy parameters. Liu and Liu [17] presented expected

value model for fuzzy programming. Yang and Liu [18] applied expected value model,

chance-constrained programming model, and dependent-chance programming in a
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fixed charge solid transportation problem in a fuzzy environment. Mula, Poler, and

Garcia Sabater [19] applied possibilistic programming approach to a material re-

quirement planning problem with fuzzy constraints and fuzzy coefficients using the

definition of possibility measure of fuzzy number. Chen and Tsai [20] considered

time–cost trade-off problem with fuzzy parameters and constructed a two-level

mathematical program for it using the concept α-cut of fuzzy number. Fegad, Jadhav,

and Muley [21] obtained an optimal solution of a transportation problem using

interval and triangular membership functions. Hulsurkar, Biswal, and Sinha [22]

applied the fuzzy programming approach to multi-objective stochastic program-

ming problems after transforming them into crisp forms. Some methodologies to

deal with objective function having random parameters are highlighted in Rao's

book [23].

Preliminaries

Definition 1. (Fuzzy number) [24] A fuzzy subset ~A of real number ℜ with membership

function μ~A : ℜ→ 0; 1½ � is said to be a fuzzy number if the following conditions are met:

1. μ~A xð Þ is an upper semicontinuous membership function;

2. ~A is normal, i.e., ∃ an element x0 s.t. μ~A x0ð Þ ¼ 1;

3. ~A is fuzzy convex, i.e., μ~A λx1 þ 1−λð Þx2ð Þ ≥ μ~A x1ð Þ∧μÃ x2ð Þ∀x1; x2∈ℜ and λ∈ 0; 1½ �;
4. Support of ~A ¼ x∈ℜ : μ Ã xð Þ > 0

� �
is bounded.

Definition 2. (Triangular fuzzy number) By a triangular fuzzy number η, we mean

the fuzzy variable fully determined by the triplet A = (a1, a2, a3) of crisp numbers with

a1 < a2 < a3 whose membership function is given by

μA xð Þ ¼

x−a1
a2−a1

if a1 ≤ x < a2

x−a3
a2−a3

if a2 ≤ x < a3

0 otherwise:

8>>>><>>>>:
Definition 3. (Trapezoidal fuzzy number) A TrFN ~ξ is a fuzzy number fully deter-
mined by quadruplet ~a ¼ a1; a2; a3; a4ð Þ of crisp numbers with r1 ≤ r2 ≤ r3 ≤ r4, whose
membership function is given by

μ~a xð Þ ¼

x−a1
a2−a1

; if a1≤x≤a2;

1; if a2≤x≤a3;
a4−x
a4−a3

; if a3≤x≤a4;

0; otherwise:

8>>>>>><>>>>>>:
Example. A man is driving along a highway where the speed limit is 55 mph. He

tries to hold his speed at exactly 55 mph, but his car lacks ‘cruise control,’ so the

speed varies from moment to moment. If a graph of his instantaneous speed over a

period of several minutes is to be plotted and the result will be in rectangular coor-

dinates, he will get a function that looks like the curves shown in Figures 1 and 2

which represent a triangular fuzzy number and trapezoidal fuzzy number,



Figure 1 Triangular fuzzy number.
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respectively. Crisp number b can be expressed as fuzzy number ~b; whose member-

ship function μ~b (Figure 3) is given by

μ~b xð Þ ¼ 1 for x ¼ b;
0 for x≠ b:

�

Definition 4. (Credibility measure) Credibility measure was presented by Liu and Liu
[17]. For a fuzzy variable ξ with membership function μξ(x) and for any set B of real

numbers, credibility measure of fuzzy event {ξ ∈ B} is defined as

Cr ξ∈Bf g ¼ 1
2

Pos ξ∈Bf g þNec ξ∈Bf gð Þ;

where possibility and necessity of {ξ ∈ B} are respectively defined as

and

Pos ξ∈Bf g ¼ supx∈B μξ xð Þ

and

Nec ξ∈Bf g ¼ 1−supx∈Bc μξ xð Þ:

Definition 5. [11,25]. Let ξ be a fuzzy variable. Then, the expected value of ξ is de-

fined as
Figure 2 Trapezoidal fuzzy number.



Figure 3 Geometrical representation of hybrid variable.
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E ξð Þ ¼
Z ∞

0
cr ξ ≥ rf gdr−

Z 0

−∞
cr ξ ≤ rf gdr

provided that at least one of the two integral is finite.

For example, the expected value of a triangular fuzzy variable (r1, r2, r3) is ξ½ � ¼ r1þ2r2þr3
4 .

Definition 6. [11]. Let ξ be a fuzzy variable and α ∈ [0, 1]. Then

ξsup(α) = sup{r: cr{ξ ≥ r} ≥ α} is called α-optimistic value to ξ, and

ξinf(α) = inf{r: cr{ξ ≤ r} ≥ α} is called α-pessimistic value to ξ.

Example 1. Let ξ = (r1, r2, r3, r4) be a trapezoidal fuzzy variable. Then, its α-optimistic

and α-pessimistic values are

ξsup αð Þ ¼ 2αr3 þ 1−2αð Þr4; if α ≤ 0:5;
2α−1ð Þr1 þ 2 1−αð Þr2; if α > 0:5:

�

ξ inf αð Þ ¼ 2αr2 þ 1−2αð Þr1; if α ≤ 0:5;
2α−1ð Þr4 þ 2 1−αð Þr3; if α > 0:5:

�

Nearest interval approximation

The nearest interval approximation of a fuzzy number [24] ~A with distance metric d is

given by Cd
~A

� � ¼ CL−CU½ �; where CL ¼
Z 1

0
AL αð Þdα and CU ¼

Z 1

0
AU αð Þdα, where dis-

tance metric d measure distance of ~A from Cd
~A

� �
is given by

d d;Cd
~A

� �� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
AL αð Þ−CLf g2dαþ

Z 1

0
AU αð Þ−CUf g2dα

s

and [AL(α), AU(α) is the α−cut 0 ≤ α ≤1Þof ~A:�
For example, α − cut of a trapezoidal

fuzzy number (r1, r2, r3, r4) is [r1 + α(r2 − r1), r4 − α(r4 − r3)] and its interval approxima-

tion is r1þr2
2 ; r3þr4

2

� 	
.

Theorem 1. [18] Suppose that ξ is a fuzzy number with continuous membership func-

tion μξ(x), and r0 = sup{r: μξ(x) = 1}, g(x, ξ) = h(x) − ξ. Then, we have Cr{g(x, ξ) ≥ 0} ≥ α if

and only if h(x) ≥ Fα, where
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Fα ¼
inf F jF ¼ μξ

−1 2αð Þ� �
;

inf F jF ¼ μξ
−1 2 1−αð Þð Þ; F > r0

� � if α≤ 0:5;
if α > 0:5:

(

Theorem 2. [18] Suppose that ξ is a fuzzy number with continuous membership.

Function μξ(x) and r0 = inf{r : μξ(r) = 1}, g(x, ξ) = h(x) − ξ. Then, we have Cr{g(x, ξ) ≤ 0} ≥ α

if and only if h(x) ≤ Fα, where

Fα ¼
sup F jF ¼ μξ

−1 2αð Þ� �
; if α≤ 0:5;

sup F F ¼ μξ
−1 2 1−αð Þð Þ; F < r0g if α > 0:5:



�(

Theorem 3. [11,25] Assume that the function g(x, ξ) can be written as

g x; ξð Þ ¼ h1 xð Þξ1 þ h2 xð Þξ2 þ⋯⋯⋯⋯⋯þ ht xð Þξ t þ h0 xð Þ

where ξk are trapezoidal fuzzy variables (rk1, rk2, rk3, rk4), k = 1, 2,… t, respectively. We
define two functions hþk xð Þ ¼ hk xð Þ ∨ 0 and h−k xð Þ ¼ − hk xð Þ∨ 0ð Þ for k ¼ 1; 2;…:t: Then,

we have the following:

1. When α≤ 1
2 ;Cr g x; ξð Þ≤0f g≥ α if and only if

1−2αð Þ
Xt

k¼1
rk1h

þ
k xð Þ−rk4h−k xð Þ� 	þ 2α

Xt

k¼1
rk2h

þ
k xð Þ−rk3h−k xð Þ� 	þ h0 xð Þ ≤ 0;

2. When α > 1
2 ;Cr g x; ξð Þ ≤ 0f g≥ α if and only if

2−2αð Þ
Xt

k¼1
rk3h

þ
k xð Þ−rk2h−k xð Þ� 	þ 2α−1ð Þ

Xt

k¼1
rk4h

þ
k xð Þ−rk1h−k xð Þ� 	þ h0 xð Þ ≤ 0;

Corollary 1. If ~ξ ¼ r1; r2; r3; r4ð Þ is a trapezoidal fuzzy variable and h(x) is a function

of x, then Cr h xð Þ ≤ ~ξ� �
≥ α if and only if h(x) ≤ Fξ, where

Fξ ¼
1−2αð Þr4 þ 2αr3; if α ≤

1
2

2 1−αð Þr2 þ 2α−1ð Þr1; if α >
1
2

8><>:
Proof. Cr h xð Þ≤ ~ξ� �

≥ α↔Cr ~ξ
0 þ h xð Þ≤ 0

n o
≥α; where ~ξ

0 ¼ −~ξ ¼ −r4;−r3;−r2;−r1ð Þ:
Then, from the above theorem, it follows that this inequality holds if and only if

1. 1−2αð Þ −r4ð Þ þ 2α −r3ð Þ þ h xð Þ ≤ 0; if α ≤ 1
2 ;

2. 2−2αð Þ −r2ð Þ þ 2α−1ð Þ −r1ð Þ þ h xð Þ ≤ 0; if α > 1
2 :

Hence, the corollary follows.

Corollary 2. If ~ξ ¼ r1; r2; r3; r4ð Þ is a trapezoidal fuzzy variable and h(x) is a function

of x, then Cr h xð Þ ≥ ~ξ
� �

≥α if and only if h(x) ≥ Fξ, where



8

Baidya et al. Journal of Uncertainty Analysis and Applications 2013, 1:18 Page 7 of 22
http://www.juaa-journal.com/content/1/1/18
Fξ ¼
1−2αð Þr1 þ 2αr2; if α ≤

1
2
;

2−2αð Þr3 þ 2α−1ð Þr4; if α >
1
2
:

><>:
Proof. Cr h xð Þ≥~ξ� �

≥ α⇔Cr ~ξ
0
−h xð Þ≤ 0

n o
≥ α; where ~ξ

0 ¼ −~ξ ¼ −r4;−r3;−r2;−r1ð Þ:

Then, from the above theorem, it follows that this inequality holds if and only if

1. 1−2αð Þr1 þ 2αr2−h xð Þ≤0; if α ≤ 1
2 ;

2. 2−2αð Þr3 þ 2α−1ð Þr4−h xð Þ ≤ 0; if α > 1
2 :

Hence, the corollary follows.

Corollary 3. If ~ξ ¼ r1; r2; r3; r4ð Þand ~η ¼ t1; t2; t3; t4ð Þ are trapezoidal fuzzy variable

and h(x) ≥ 0 ∀ x, then Cr h xð Þ~ξ ≤ ~η
� �

≥ α if and only if

1. 1−2αð Þh xð Þr1 þ 2αh xð Þr2−h xð Þ≤ 1−2αð Þt4 þ 2αt3; if α ≤ 1
2 ;

2. 2−2αð Þh xð Þr3 þ 2α−1ð Þh xð Þr4−h xð Þ≤ 2−2αð Þt2 þ 2α−1ð Þt1; if α > 1
2 :

Proof. Cr h xð Þ~ξ≤ ~η
� �

≥ α⇔Cr h xð Þ~ξ−~η ≤ 0� �
≥ α⇔Cr h xð Þ~ξ þ ~η

0
≤ 0

� �
≥ α;where ~η

0 ¼ −

~η ¼ −t4;−t3;−t2;−t1ð Þ: Then, from the above theorem, it follows that this inequality holds

if and only if

1. 1−2αð Þ h xð Þr1−t4ð Þ þ 2α h xð Þr2−t3ð Þ≤0; if α≤ 1
2 ;

2. 2−2αð Þ h xð Þr3−t2ð Þ þ 2α−1ð Þ h xð Þr4−t1ð Þ þ h xð Þ≤ 0; if α > 1
2

Hence, the corollary follows.

It is obvious that these three corollaries help us to determine crisp equivalences of

various inequalities with fuzzy parameters.

Random variable
For the probability spaces (Ω, S, P) where Ω is a set of elementary events, S is a set of

all events (a σ − field of events) and P: S→ [0, 1] is a probability function, the mappingbX : Ω; S; Pð Þ→N is called a random variable.

By the probability distribution function of the random variable bX , we mean a function

F xð Þ ¼ P ω: X̂ ωð Þ≤X� �
for all x ∈ N with F(−∞) = 0 and F(∞) = 1.

Hybrid variable
Recall that a random variable is a measurable function from a probability space to the

set of real number and that a fuzzy variable is a function from a credibility space to the

set of real numbers. In order to describe a quantity with both fuzziness and random-

ness, we introduce the concept of hybrid variable as follows:

Definition 7. [11] A hybrid variable is a measurable function from a chance space

(Θ, P, Cr) × (Ω, S, Pr) to real numbers, i.e., for any Borel set B of real numbers, the set



Baidya et al. Journal of Uncertainty Analysis and Applications 2013, 1:18 Page 8 of 22
http://www.juaa-journal.com/content/1/1/18
ξ ∈Bf g ¼ θ;ωð Þ ∈Θ�Ω: ξ θ;ωð Þ∈Bf g

is an event.

Remark 1. [11] A hybrid variable degenerates to a fuzzy variable if the value of ξ(θ, ω)

does not vary with ω. For example, ξ(θ, ω) = θ, ξ(θ, ω) = θ2 + 1, ξ(θ, ω) = sinθ.

Remark 2. [11] A hybrid variable degenerate to a random variable if the value of ξ(θ, ω)

does not vary with θ. For example, ξ(θ,ω) =ω, ξ(θ,ω) =ω2 + 1, ξ(θ,ω) = sinω.

Remark 3. A hybrid variable ξ(θ, ω) may also be regarded as a function from a cred-

ibility space Θ;P;Crð Þ to the set {ξ(θ,.) | θ ∈Θ} of random variable. Thus, ξ is a random

fuzzy variable defined by Liu [11].

Remark 4. A hybrid variable ξ(θ, ω) may also be regarded as a function from a prob-

ability space Ω;A;Prð Þ to the set {ξ(., ω) | ω ∈Ω} of fuzzy variables. If Cr{ξ(., ω) ∈ B} is a
measurable function of ω for any Borel set B of real number, then ξ is a fuzzy random

in the sense of [17].

Definition 8. [17] Then, a chance measure of an event ∧ is defined as

ch ∧ð Þ ¼ supθ∈Θ Cr θf g∧Pr ∧ θð Þf gð Þ; if supθ∈Θ Cr θf g∧Cr ∧ θð Þf gð Þ < 0:5;
1−supθ∈Θ Cr θf g∧Pr ∧ θð Þf gð Þ if supθ∈Θ Cr θf g∧Pr ∧ θð Þf gð Þ ≥ 0:5:

�

Then ch(ϕ) = 0, ch{Θ ×Ω} = 1, 0 ≤ ch{∧} ≤ 1 for any event ∧.
Example 2. If ~a is a fuzzy variable and η̂ is a random variable, then the sum ~̂ξ ¼ ~a þ η̂

is a hybrid variable, i.e., if f : N2→N is a measurable function, then ~̂ξ ¼ f ~a; η̂ð Þ is a hybrid

variable. Now, suppose that ~a has a membership function μ; and η̂ has a probability dens-

ity function ϕ. Then, for any Borel set B of real numbers, we have

ch f ~a; η̂ð Þ∈Bf g ¼
supx

μ xð Þ
2

∧ ∫f x;yð Þ∈Bϕ yð Þdy
� �

; if supx
μ xð Þ
2

∧ ∫f x;yð Þ∈Bϕ yð Þdy
� �

< 0:5;

1−supxsupx
μ xð Þ
2

∧ ∫f x;yð Þ∈Bϕ yð Þdy
� �

; if supx
μ xð Þ
2

∧ ∫f x;yð Þ∈Bϕ yð Þdy
� �

≥ 0:5:

8>><>>:

Definition 9. [17] Let ~̂ξ be a hybrid variable. Then, the expected value of ~̂ξ is defined by

E ~̂ξ
h i

¼
Z þ∞

0
ch ~̂ξ≥ r
n o

dr−
Z 0

−∞
ch ~̂ξ≥ r
n o

dr

provided that at least one of the integrals is finite.

Example 3. For the hybrid variable ~̂ξ ¼ ~a þ η̂ , expected value of ~̂ξ is E ~̂ξ

 �

¼ E ~að Þ þ E

η̂ð Þ: For example, if ~a ¼ t1; t2; t3ð Þ is the triangular fuzzy number and η̂ ¼ N μ; σ2ð Þ is

normally distributed as random variable. Then, E ~̂ξ

 �

¼ t1þ2t2þt3
4 þ μ:
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Description of the problem
STP is a problem of transporting goods from some sources to some destinations

through some conveyances (modes of transportation), and the main objective is to

find the optimal transportation plan so that the total transportation cost is mini-

mum. Also, the goods transported through each source cannot exceed its supply

capacity, the requirements of each destination must be satisfied, and the total trans-

ported amount must not exceed the capacity of conveyances. In this manuscript, we

impose a desired total safety factor for the whole transportation system. The deci-

sion of future transportation planning is generally founded upon the past record.

However, the available data from previous experiments are not always precise; those

are often imprecise due to uncertainty in judgment, fluctuating financial market, lin-

guistic information, imperfect statistical analysis, insufficient information, etc. For

example, transportation cost depends on the fuel price, labor charges, tax charges,

etc., each of which are fluctuating from time to time. Similarly, the supply of a

source cannot be always exact because it depends upon the availability of manpower,

raw materials, market competition, product demands, etc. Fuzzy set theory and ran-

dom set theory are most widely used and are successfully applied tools to deal with

uncertainty. In the next section, we formulate five STPs with safety constraints and

different uncertain (fuzzy, random, hybrid) parameters.

Model formulation
Sometimes, information about supplies at plants, demands at destination, and convey-

ance capacity are not known precisely, i.e., these amounts are erstwhile vague in nature.

For this reason, we consider here that the supplies at plants, demands at destination,

and conveyance capacity are all fuzzy in nature.

Model 1: solid transportation problem with hybrid penalties, fuzzy resources, demands,

conveyance capacities, and without safety factor

To formulate the model, we assume that there are no risks to transport the commod-

ities from plants to destination by different conveyances, i.e., all routes are totally safe

for the transport of goods, and unit transportation cost is a hybrid variable.

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1

~̂Cijk xijk ð1Þ

subject to constraintsXn

j¼1

Xk

k¼1
xijk ≤ ~ai; i ¼ 1; 2;…;m; ð2ÞXm

i¼1

Xk

k¼1
xijk ≥ ~bj; j ¼ 1; 2;…; n; ð3ÞXn

j¼1

Xk

k¼1
xijk ≤~ek ; k ¼ 1; 2;…;K ; ð4Þ

xijk ≥ 0; ∀i; j; k;

where ~ai denotes the fuzzy amount of the product available at the ith origin, ~bj denotes

the fuzzy demand of the product of the jth destination, ~ek denotes the fuzzy transporta-

tion capacity of conveyance k, ~̂Cijk denotes the hybrid unit transportation penalty from

the ith origin to the jth destination via the kth conveyance for the objective function.
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The penalty could represent transportation cost or quantity of goods delivered or un-

derused capacity, etc. Here, the penalties represent per unit transportation costs.

Solution methodology (expected value model)

Liu and Liu [17] presented a spectrum of expected value model of fuzzy programming

to obtain the optimum expected value of objective function under some expected con-

straints. Considering ~̂Cijk as ~̂Cijk ¼ Cijk þ Ĉ ijk and constructing the expected value

model [17,18,26] for the model I, we have the corresponding crisp form as

Min E Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
E ~̂Cijk


 �
xijk ð5Þ

subject to constraintsXn

j¼1

Xk

k¼1
xijk ≤E ~aið Þ; i ¼ 1; 2;…;m; ð6ÞXm

i¼1

Xk

k¼1
xijk ≥ E ~bj

� �
; j ¼ 1; 2;…; n; ð7ÞXn

j¼1

Xk

k¼1
xijk ≤E ~ekð Þ; k ¼ 1; 2;…;K ; ð8Þ

xijk ≥ 0; ∀i; j; k:

Model 2: solid transportation problem with crisp penalties, fuzzy resources, demands,

conveyance capacities, and desired safety measure as crisp

To formulate the model, we assume that all transportation routes are not equally safe

to transport the commodity from the source to the destination by different conve-

yances, and we consider a crisp safety factor for each transportation:

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
Cijk xijk

subject to the constraintXm

i¼1

Xn

j¼1

XK

k¼1
Sijk yijk ≥B; ð9Þ

with constraints (2), (3), and (4),

xijk ≥ 0; ∀i; j; k;

where Sijk is the safety factor when an item is transformed from the ith origin to the

jth destination by the kth conveyance. If an item is transported from source i to des-

tination j by conveyance k, then the safety factor Sijk is considered. This implies that

if xijk > 0, then we consider the safety factor for this route as a part of the safety con-

straint. Thus, for the convenience of modeling, the following notation is introduced:

yijk ¼
1 for xijk > 0
0 otherwise

�

and B is the desired safety measure for the whole transportation system.
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Solution methodology

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
Cijk xijk

subject to constraints

Cr
Xn

j¼1

Xk

k¼1
xijk ≤ ~ai


 �
≥ αi; i ¼ 1; 2;…;m; ð10Þ

Cr
Xm

i¼1

Xk

k¼1
xijk ≥ ~bj


 �
≥ βj; j ¼ 1; 2;…; n; ð11Þ

Cr
Xn

j¼1

Xk

k¼1
xijk ≤~ek


 �
≥ γk ; i ¼ 1; 2;…; k; ð12Þ

and (9)

xijk ≥ 0; ∀i; j; k:

Crisp equivalences

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
Cijk xijk

subject to constraintsXn

j¼1

Xk

k¼1
xijk ≤ Fαi ; i ¼ 1; 2;…;m; ð13ÞXm

i¼1

Xk

k¼1
xijk ≥ Fβj ; j ¼ 1; 2;…; n; ð14ÞXn

j¼1

Xk

k¼1
xijk ≤ Fγk ; k ¼ 1; 2;…;K ; ð15Þ

and (9)

xijk ≥ 0; ∀i; j; k:

where ~ai ¼ a1i ; a
2
i ; a

3
i ; a

4
i

� �
; ~bj ¼ b1j ; b

2
j ; b

3
j ; b

4
j


 �
; ~ek ¼ e1k ; e

2
k ; e

3
k ; e

4
k

� �
and

Fαi ¼ aisup αið Þ ¼ 1−2αið Þa4i þ 2αia3i ; if αi ≤ 0:5;

2 1−αið Þa2i þ 2αi−1ð Þa1i ; αi > 0:5:

(

Fβj ¼ ajinf βj


 �
¼

ð1−2βjÞb1j þ 2βjb
2
j ; if αi ≤ 0:5;

2ð1−βjÞb3j þ ð2βj−1Þb4j ; αi > 0:5:

(

Fγk ¼ aksup αið Þ ¼ 1−2γk
� �

e4k þ 2γke
3
i ; if αi ≤ 0:5;

2 1−γk
� �

e2k þ 2γk−1
� �

e1i ; αi > 0:5:

(

Model 3: solid transportation problem with random penalties, fuzzy resources, demands,

conveyance capacities, and DSM as random

Here, we formulate the respective model by taking unit transportation cost, desired total

safety factor, and safety factor as a random variables because it may happen that the safety

factor is uncertain, not precisely known, but some past data about it is available:

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
Ĉ ijk xijk
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subject to the constraintXm

i¼1

Xn

j¼1

XK

k¼1
Ŝ ijk yijk ≥ B̂ ð16Þ

with constraints (2), (3), and (4),

xijk ≥ 0; ∀i; j; k;

where Ĉ ijk are random unit transportation cost from the ith origin to the jth destin-

ation by the kth conveyance, Ŝ ijk is the random safety factor for a particular route,

and B̂ is the desired total random safety factor for the whole transportation system.

Solution methodology (an approach using interval approximation of fuzzy number)

Let us denote the interval approximations of ~ai; ~bj; ~ek ; and ~B obtained using α − cut

of these fuzzy numbers are Cd ~aið Þ ¼ aiL; aiU½ �;Cd
~bj
� � ¼ bjL; bjU

� 	
;Cd ekð Þ ¼ ekL; ekU½ �;

respectively. Then, using these interval approximations and predetermined probabil-

ity confidence level δ for the constraint (11), the above model becomes

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
Ĉ ijk xijk ð17Þ

subject to constraintsXn

j¼1

Xk

k¼1
xijk ≤Cd ~aið Þ ð18ÞXm

i¼1

Xk

k¼1
xijk ≥Cd

~bj
� � ð19ÞXn

j¼1

Xk

k¼1
xijk ≤Cd ~ekð Þ ð20Þ

Prob
Xm

i¼1

Xn

j¼1

XK

k¼1
Ŝ ijk yijk ≥ B̂

h i
≥ �; ð21Þ

xijk ≥ 0; ∀i; j; k:

Crisp equivalences

We assumed that all Ĉ ijk are mutually independent normally distributed random vari-

ables with known mean E Ĉ ijk
� � ¼ �Cijk and variance var Ĉ ijk

� �
: Then, Z will also be a

normally distributed random variable with mean �z ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
�Cijk xijk and var

zð Þ ¼ XTVX; where V is the covariance matrix of Ĉ ijk ; where

V ij ¼
var Ĉ ij1

� �
cov Ĉ ij1; Ĉ ij2

� �
⋯ cov Ĉ ij1; Ĉ ijk

� �
cov Ĉ ij2; Ĉ ij1

� �
⋯

var Ĉ ij2
� �

⋯
⋯ ⋯

cov Ĉ ij2; Ĉ ijk
� �

⋯
cov Ĉ ijk ; Ĉ ij1

� �
cov Ĉ ijk ; Ĉ ij2

� �
⋯ var Ĉ ijk

� �
0BBB@

1CCCA
For i = 1, 2,…,m; j = 1, 2,…, n; and k = 1, 2,…, K.
Then, a new deterministic nonlinear objective function for minimization can be for-

mulated as

z Xð Þ ¼ λ1�z þ λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XTVX

p
ð22Þ
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where λ1 and λ2 are nonnegative constants whose values indicate the relative impor-

tance of mean and standard deviation of z for minimization. Thus, λ2 = 0(i. e., λ1 = 1)

indicates that only the expected value (mean value) of the objective function is to be

minimized without caring for the standard deviation (SD) of the objective function.

Similarly, λ1 = 0 λ indicates that only the SD, i.e., the variability of the objective function

about its mean is to be minimized without caring of for its mean. λ1 = λ2 = 1 indicates

that equal importance is given to the minimization of both the mean and SD of the

objective function.

If the r.v. Ĉ ijk are independent, then Z(X) reduces to

Z Xð Þ ¼ λ1
Xm

i¼1

Xn

j¼1

XK

k¼1
�Cijk xijk þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

XK

k¼1
var Ĉ ijk

� �
x2ijk

r
ð23Þ

If ε are the probabilities of nonviolation of the constraint (16) then the constraint can
be written as

Prob
Xm

i¼1

Xn

j¼1

XK

k¼1
Ŝ ijk yijk ≥ B̂

h i
≥ �;

⇒Prob
Xm

i¼1

Xn

j¼1

XK

k¼1
Ŝ ijk yijk−B̂ ≥ 0

h i
≥ �;

⇒Prob Q̂ ≥ 0
� 	

≥�; where Qb ¼ Xm

i¼1

Xn

j¼1

XK

k¼1
Sb ijk yijk−B̂

⇒Prob
Q̂−E Q̂

� �
Var Q̂

� � ≥−
E Q̂
� �

Var Q̂
� �" #

≥ �;

⇒Prob T̂≥−K
� 	

≥ �;

⇒Prob T̂≤K
� 	

≥ �;

where T̂ ¼ Q̂−E Q̂ð Þ
Var Q̂ð Þ are the standard normal variate and K ¼ E Q̂ð Þ

Var Q̂ð Þ
⇒E Q̂

� �
≥ λ Var Q̂

� �
:

⇒
Xm

i¼1

Xn

j¼1

XK

k¼1
E Ŝijk
� �

yijk−E B̂
� �

≥ λ
Xm

i¼1

Xn

j¼1

XK

k¼1
Var Ŝ ijk

� �
yijk−Var B̂

� �h i
:

ð24Þ

where λ be the real number such that Prob T̂≥ λ
� 	 ¼ �:

Now, denote the left-hand side expressions of the constraints (19), (20), (21), and

(23) by Si, Dj, Ek. The right-hand side expressions of the constraints are interval num-

bers. Now, using the idea of possibility degree of interval numbers [27] that represent a

certain degree by which one interval is larger or smaller than the other, we define the

possibility degree of satisfaction of these constraints as follows:

PSi ≤ aiL;aiU½ � ¼
1 Si ≤ aiL;
aiU−Si
aiU−aiL

aiL ≤ Si ≤ aiU ;

0 Si > aiU :

8><>:
PDj≥ bjL;bjU½ � ¼

0 Dj ≤ bjL;
Dj−biL
bjU−ajL

ajL ≤ Sj ≤ ajU ;

1 Dj > ajU :

8>><>>:
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PEk≤ ekL;ekU½ � ¼
1 Ek ≤ ekL;
ekU−ek
ekU−ekL

ekL ≤ Ek ≤ ekU ;

0 Ei > ekU :

8><>:
Now, for a predetermined possibility degree of satisfaction, αi, βj, γk and ϵ(0 ≤ αi, βj, γk ≤ 1),

respectively, for the constraints, i.e., PSi ≤ aiL;aiU½ � ≥ αi; PDj ≥ bjL;bjU½ � ≥ βj;PEk≤ ekL;ekU½ � ≥ γk∀i; j; k;

then the equivalent deterministic inequalities of the respective constraints are obtained as

follows:

Si ≤ aiU−αi aiU−aiLð Þ ¼ aic sayð Þ;
Dj ≥ bjL þ βj bjU−bjL

� � ¼ bjc;

Ek ≤ ekU−γk ekU−ekLð Þ ¼ ekc; ð25Þ

Now, using the deterministic form (23) of the objective function (17) and the con-

straints (27), the deterministic form of problems (17) to (21) becomes

Min z xð Þ ¼ λ1
Xm

i¼1

Xn

j¼1

XK

k¼1
�Cijk xijk þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

XK

k¼1
var Ĉ ijk

� �
x2ijk ;

r
ð26Þ

subject to constraints (25) and (24)

xijk ≥ 0; ∀i; j; k:

Model 4: solid transportation problem with fuzzy penalties, resources, demands,

conveyance capacities, and DSM as fuzzy

In this section, we formulate the model by taking the unit transportation cost, desired

total safety factor, and safety factor as fuzzy numbers because it may happen that the

safety factor is vague in nature, i.e., imprecisely known:

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
~Cijk xijk

subject to the constraintXm

i¼1

Xn

j¼1

XK

k¼1
~Sijk yijk ≥ ~B ð27Þ

with constraints (2), (3), and (4),

xijk ≥ 0; ∀i; j; k;

where ~Cijk is the fuzzy unit transportation cost from the ith origin to the jth destination

by the kth conveyance, ~Sijk is the fuzzy safety factor for a particular route, and ~B is the

desired total fuzzy safety measure for the whole transportation system.

Solution methodology (chance-constrained programming)

Chance-constrained programming technique was introduced by Charnes and Cooper

[15] for stochastic programming. Chance-constrained programming in a fuzzy case was

developed by Liu and Iwamura [16], Liu [25], Yang and Liu [18], and many more au-

thors. This method is used to solve the problems with chance constraints. In this
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method, the uncertain constraints are allowed to be violated such that constraints must

be satisfied at some chance (or confidence) level. Applying this idea, we reformulate

the above problem as follows:

Min �z , subject to constraints,

Cr
Xm

i¼1

Xn

j¼1

XK

k¼1
~Cijk xijk ≤�z

n o
≥ η ð28Þ

Cr
Xm

i¼1

Xn

j¼1

XK

k¼1
~Sijk yijk ≥ ~B

n o
≥ δ; ð29Þ

Cr
Xn

j¼1

Xk

k¼1
xijk ≤ ~ai

n o
≥ αi ð30Þ

Cr
Xm

i¼1

Xk

k¼1
xijk ≥ ~bj

n o
≥ βj ð31Þ

Cr
Xn

j¼1

Xk

k¼1
xijk ≤~ek

n o
≥ γk ð32Þ

xijk ≥ 0; ∀i; j; k:

where η indicates that we are going to optimize the η − critical value of the objective z,

and δ indicates the credibility level of satisfaction of the safety constraint.

Crisp equivalence

~Cijk ¼ C1
ijk ;C

2
ijk ;C

3
ijk ;C

4
ijk


 �
; ~ai ¼ a1i ; a

2
i ; a

3
i ; a

4
i

� �
; ~bj ¼ b1j ; b

2
j ; b

3
j ; b

4
j


 �
; ~ek ¼ e1k ; e

2
k ; e

3
k ; e

4
k

� �
;

~B ¼ B1;B2;B3;B4ð Þ are trapezoidal fuzzy numbers for all i, j, and k.

Now, since ~Cijk are trapezoidal fuzzy numbers and xijk is 0 for all i; j; k; so Z xð Þ ¼Xm

i¼1

Xn

j¼1

XK

k¼1
~Cijk xijk are also trapezoidal fuzzy numbers for any feasible solution

x and given by Z(x) = (r1(x), r2(x), r3(x), r4(x)). Then, the objective in the above model

(18), i.e., Min �Z s.t. Cr Z xð Þ ≤ �Zf g≥η can be equivalently computed as �Z ¼ inf

r: Cr Z xð Þ≤ �Zf g ≥ ηf g which is nothing but η − pessimistic value of Z(Zinf(η)) and so is

equal to z'(x), z where

Z
0
xð Þ ¼ 1−2ηð Þr1 xð Þ þ 2η r2 xð Þ if α ≤ 0:5;

2 1−ηð Þr3 xð Þ þ 2η−1ð Þ4 xð Þ if α > 0:5

�
r1 xð Þ ¼

Xm

i¼1

Xn

j¼1

XK

k¼1
C1

ijk xijk ; r2 xð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
C2

ijk xijk ; r3 xð Þ

¼
Xm

i¼1

Xn

j¼1

XK

k¼1
C3

ijk xijk ; r4 xð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
C4

ijk xijk :

Now, the safety constraint in model 4 is in the form

Cr
Xm

i¼1

Xn

j¼1

XK

k¼1
S1ijk ; S

2
ijk ; S

3
ijk ; S

4
ijk


 �
xijk þ −1ð Þ B1;B2;B3;B4ð Þ≥ 0

n o
≥ δ

Since xijk ≥ 0 x from Corollary 3 (‘Nearest interval approximation’ section), it is obvi-
ous that this constraint will be active if and only if g ≥ 0, where

g ¼
1−2δð Þ

Xm

i¼1

Xn

j¼1

XK

k¼1
S1ijk xijk−B4


 �
þ 2δ

Xm

i¼1

Xn

j¼1

XK

k¼1
S2ijk xijk−B3


 �
if α ≤ 0:5;

2 1−δð Þ
Xm

i¼1

Xn

j¼1

XK

k¼1
S3ijk xijk−B2


 �
þ 2δ−1ð Þ

Xm

i¼1

Xn

j¼1

XK

k¼1
S4ijk xijk−B1


 �
α > 0:5

8<:
Thus, finally an equivalent crisp form of the above model (17) can be written as
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Min Z
0
xð Þ

h i
s:t: g ≥ 0; ð33Þ

with the constraints 13, 14, and 15,

xijk ≥ 0; ∀i; j; k:

Model 5: solid transportation problem with hybrid penalties, fuzzy resources, demands,

conveyance capacities, and DSM as hybrid

The respective model is formulated by assuming the unit transportation cost, desired

total safety factor, and safety factor as hybrid variables:

Min Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1

~̂Cijk xijk

subject to the constraintXm

i¼1

Xn

j¼1

XK

k¼1
~̂Sijk yijk ≥

~̂B ð34Þ

with constraints (2), (3), and (4),

xijk ≥ 0; ∀i; j; k;

where ~̂C is the hybrid unit transportation cost from the ith origin to the jth destination

by the kth conveyance and ~̂B is the desired total hybrid risk factor for the whole trans-

portation system.

Solution methodology (expected value model)

Min E Zð Þ ¼
Xm

i¼1

Xn

j¼1

XK

k¼1
E ~̂Cijk


 �
xijk

Subject to the constraintXn

j¼1

Xk

k¼1
xijk ≤E ~aið Þ; i ¼ 1; 2;…;m; ð35Þ

Xm

i¼1

Xk

k¼1
xijk ≥ E ~bj

� �
; j ¼ 1; 2;…; n; ð36ÞXn

j¼1

Xk

k¼1
xijk ≤E ~ekð Þ; k ¼ 1; 2;…;K ; ð37Þ

Xm

i¼1

Xn

j¼1

XK

k¼1
E ~̂Sijk


 �
yijk ≥ E

~̂B

 �

ð38Þ

xijk ≥ 0; ∀i; j; k:

Numerical experiments
Identical products are produced in three factories and sent to three warehouses for de-

livery through the two different types of conveyances, i.e., we considered the following

(3 × 3 × 2) solid transportation problem.
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Input data

For model 1, see Table 1 for the hybrid unit transport cost.

For model 2, see Table 2 for the crisp unit transportation cost and safety factor.

~a1 ¼ 10; 15; 16; 17ð Þ; ~a2 ¼ 14; 15; 18; 19ð Þ; ~a3 ¼ 22; 23; 24; 26ð Þ; ~b1 ¼ 9; 10; 11; 12ð Þ;
~b2 ¼ 12; 13; 14; 16ð Þ;
~b3 ¼ 5; 7; 8; 9ð Þ;~e1 ¼ 17; 19; 20; 21ð Þ; ~e2 ¼ 13; 14; 16; 17ð Þ; αi ¼ βj ¼ γk ¼ 0:7;

Fα1 ¼ 13; Fα2 ¼ 14:6;

Fα3 ¼ 22:6; Fβ1 ¼ 9:6; Fβ2 ¼ 12:6; Fβ3 ¼ 6:2; Fγ1 ¼ 18:2; Fγ2 ¼ 13:6: B ¼ 2:1:

For model 3, see Table 3 for the assumed mean and variance for random unit trans-
portation cost and safety

αi ¼ βj ¼ γk ¼ 0:7; and equal priority to mean and variance; i:e:; λ1 ¼ λ2 ¼ 1;

a1c ¼ 14:35; a2c ¼ 13:7;

a3c ¼ 21:7; b1c ¼ 13:3; b2c ¼ 11:27; b3c ¼ 4:7; e1c ¼ 17:8; e2c ¼ 12:55; E ~B
� � ¼ 2;

Var ~B
� � ¼ 2; λ ¼ 0:5:

For model 4, see Tables 4 and 5 for fuzzy unit transport cost and fuzzy safety factor,

respectively.

η ¼ 0:7; δ ¼ 0:6; ~B ¼ 2; 3; 5; 6ð Þ

For model 5, see Table 6 for the hybrid safety factor.

~̂B ¼ 1; 1:5; 1:6ð Þ þ 1; 0:7ð Þ
Table 1 Hybrid unit transportation cost

Unit transportation cost Hybrid value
~̂C 111 (7, 8, 9) + (2, 0.2)
~̂C 211 (5, 8, 10) + (12, 0.3)
~̂C 311 (6, 9, 10) + (13, 0.7)
~̂C 121 (10, 12, 13) + (14, 1.6)
~̂C 221 (15, 16, 17) + (11, 2.3)
~̂C 321 (1, 2, 3) + (1, 0.1)
~̂C 131 (10, 12, 14) + (5, 1.5)
~̂C 231 (15, 17, 19) + (8, 0.7)
~̂C 331 (7, 10, 12) + (12, 1.3)
~̂C 112 (8, 12, 14) + (14, 2.33)
~̂C 212 (5, 7, 10) + (7, 1)
~̂C 312 (7, 8, 9) + (14, 0.7)
~̂C 122 (11, 12, 14) + (9, 1.2)
~̂C 222 (17, 19, 21) + (19, 0.9)
~̂C 322 (19, 20, 21) + (11, 1.4)
~̂C 132 (17, 18, 22) + (12, 1.7)
~̂C 232 (9, 13, 15) + (15, 0.75)
~̂C 332 (6, 10, 11) + (8, 1.35)



Table 2 Crisp unit transportation cost and safety factor

Unit transportation cost Crisp value Safety factor Crisp value

C111 20 S111 0.25

C211 19 S211 0.30

C311 21 S311 0.82

C121 25 S121 0.35

C221 26 S221 0.30

C321 11 S321 0.50

C131 24 S131 0.80

C231 33 S231 1

C331 21 S331 0.35

C112 25 S112 0.42

C212 14 S212 0.20

C312 26 S312 0.20

C122 26 S122 0.98

C222 37 S222 0.82

C322 30 S322 0.70

C132 30 S132 0.50

C232 27 S232 0.50

C332 17 S332 0.20
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Optimal results
The optimum results of the different models using various methods are shown in Table 7.
Overview of the results of the five models

It may be noted that model 1 was solved without having to take the safety constraint,

but the remaining models were solved by taking the safety constraint where safety fac-

tors were crisp, random, fuzzy, and hybrid for the respective models. After solving

these five models, we have seen that the total transportation cost of model 1 is mini-

mum compared with the other models. This is as per expectation as the nature of the

four variables in safety factors for different models are different (crisp, random, fuzzy, and

hybrid). Moreover, as the impreciseness for the source, demand, and conveyance capacity

constraints in both models 2 and 4 are removed using credibility measure, the total satis-

fied demands (i.e., total transported amount) are the same, but the objective and safety

values are different because of the different types of unit transportation costs (i.e., hybrid

in models 1 and 5, crisp in model 2, random in model 3, and fuzzy in model 4) and safety

factor (i.e., crisp in model 2, random in model 3, fuzzy in model 4, hybrid in model 5).

If we think practically the meaning of safety factor in the transportation problem, it is

very large because the total transportation cost varies if the safety factor increases or de-

creases in some transportation problem. In this manuscript, we formulated five models with

numerical example and solved these models using three methods, namely expected value

modeling, chance-constrained programming, and an approach using interval approxima-

tion of fuzzy number. We have seen that if we introduce a safety factor in a transportation

problem, the transportation cost for the whole transportation system increases, which was

found in these five models. The transportation cost for the second, third, fourth, and fifth

models were more than the transportation cost of the first model due to the safety factor.



Table 3 Assumed mean and variance for random unit transportation cost and safety
factor

Mean Variance

Random safety factor Ŝ111 0.22 0.11

Ŝ211 0.19 0.1

Ŝ311 0.4 0.2

Ŝ121 0.5 0.14

Ŝ221 0.6 0.2

Ŝ321 0.24 0.3

S131 0.7 0.23

Ŝ231 0.8 0.15

Ŝ331 0.2 0.27

Ŝ112 0.3 0.37

Ŝ212 0.6 0.19

Ŝ312 0.5 0.16

Ŝ121 0.8 0.25

Ŝ222 0.6 0.2

Ŝ322 0.55 0.3

Ŝ132 0.61 0.32

Ŝ232 0.45 0.26

Ŝ332 0.4 0.27

Random unit transportation cost Ĉ 111 19 2

Ĉ 211 19 1

Ĉ 311 17 0.4

Ĉ 121 22 0.75

Ĉ 221 22 0.9

Ĉ 321 11 0.5

C131 21 0.23

Ĉ 231 27 1.56

Ĉ 331 2 2.7

Ĉ 112 22 1.56

Ĉ 212 15 0.65

Ĉ 312 11 1

Ĉ 121 22 2.25

Ĉ 222 30 1.2

Ĉ 322 26 1.3

Ĉ 132 25 3.5

Ĉ 232 22 2.5

Ĉ 332 17 1.25
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Conclusions
To deliver the goods through different routes with different modes of conveyances is

not equally safe due to insurgency and bad road. For this reason, safety constraints are

introduced, and in using this concept, we have seen that the transportation cost in-

creased when we introduced safety constraint in transportation modeling. The main

objective of this paper is to present a solution procedure of a solid transportation prob-

lem under various precise and imprecise environments. In this paper, we formulated



Table 4 Fuzzy unit transportation cost

Unit transportation cost TrFN
~C 111 (4, 5, 6, 11)

~C 211 (7, 10, 11, 17)

~C 311 (6, 8, 9, 10)

~C 121 (5, 6, 8, 12)

~C 221 (10, 11, 12, 14)

~C 321 (12, 14, 17, 18)

~C 131 (13, 14, 15, 20)

~C 231 (15, 17, 19, 21)

~C 331 (15, 17, 19, 21)

~C 112 (3, 5, 7, 9)

~C 212 (13, 15, 19, 20)

~C 312 (11, 13, 14, 22)

~C 122 (9, 10, 13, 14)

~C 222 (12, 17, 18, 20)

~C 322 (7, 8, 11, 12)

~C 132 (6, 9, 13, 18)

~C 232 (17, 18, 19, 21)

~C 332 (18, 20, 21, 22)

Table 5 Fuzzy safety factor

Safety factor TrFN
~S111 (0.18, 0.22, 0.25, 0.3)

~S211 (0.25, 0.3, 0.35, 0.4)

~S311 (0.39, 0.44, 0.49, 0.55)

~S121 (0.5, 0.55, 0.6, 0.65)

~S221 (0.65, 0.7, 0.75, 0.8)

~S321 (0.1, 0.15, 0.2, 0.25)

~S131 (0.73, 0.78, 0.83, 0.88)

~S231 (0.83, 0.88, 0.93, 0.98)

~S331 (0.25, 0.3, 0.35, 0.4)

~S112 (0.3, 0.35, 0.4, 0.45)

~S212 (0.72, 0.77, 0.82, 0.87)

~S312 (0.62, 0.67, 0.73, 0.77)

~S122 (0.84, 0.89, 0.94, 0.99)

~S222 (0.75, 0.8, 0.85, 0.9)

~S322 (0.65, 0.7, 0.75, 0.8)

~S132 (0.6, 0.65, 0.7, 0.75)

~S232 (0.50, 0.55, 0.6, 0.65)

~S332 (0.45, 0.5, 0.55, 0.6)
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Table 6 Hybrid safety factor

Safety factor Hybrid value
~̂S111 (0.17, 0.18, 0.19) + (0.1, 0.3)
~̂S211 (0.15, 0.16, 0.17) + (0.19, 0.11)
~̂S311 (0.4, 0.42, 0.43) + (0.35, 0.12)
~̂S121 (0.20, 0.21, 0.22) + (0.25, 0.14)
~̂S221 (0.34, 0.35, 0.36) + (0.35, 0.2)
~̂S321 (0.05, 0.06, 0.07) + (0.11, 0.1)
~̂S131 (0.6, 0.61, 0.62) + (0.15, 0.11)
~̂S231 (0.7, 0.71, 0.73) + (0.2, 0.13)
~̂S331 (0.14, 0.15, 0.17) + (0.17, 0.16)
~̂S112 (0.16, 0.17, 0.18) + (0.19, 0.18)
~̂S212 (0.55, 0.56, 0.57) + (0.21, 0.15)
~̂S312 (0.2, 0.21, 0.22) + (0.5, 0.19)
~̂S122 (0.45, 0.46, 0.47) + (0.41, 0.7)
~̂S222 (0.35, 0.36, 0.37) + (0.44, 0.17)
~̂S322 (0.31, 0.32, 0.33) + (0.37, 0.3)
~̂S132 (0.39, 0.4, 0.41) + (0.2, 0.13)
~̂S232 (0.3, 0.31, 0.32) + (0.15, 0.14)
~̂S332 (0.15, 0.17, 0.18) + (0.31, 0.2)

Table 7 Optimum results of different models using various methods

Optimal
solution

Expected value model Chance-constrained
programming

Approach using interval approximation
of fuzzy number

Model 1 Model 5 Model 2 Model 4 Model 3

Min (Z) 267.75 443.06 456.80 278.50 326.61

x111 6.25 0 5.60 0 0.25

x211 0 0 0 0 0.50

x311 0 0 0 4.30 0

x121 0 0 0 7.70 0

x221 0 0 0

x321 11 11 12.6 0 11.27

x131 0 0 0 0 0

x231 0 0 0 0 0

x331 0 2.50 0 6.20 4.7

x112 0 0 0 5.30 0

x212 3.25 9.5 4 0 6.82

x312 0 0 0 0 5.73

x122 0 0 0 0 0

x222 0 0 0 0 0

x322 0 0 0 4.90 0

x132 0 0 0 0 0

x232 0 0 0 0 0

x332 4.75 2.25 6.20 0 0
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five models where penalties are crisp, random, fuzzy, and hybrid variables. Also, sup-

plies, demands, and conveyance capacities are all fuzzy in nature, but the safety factor

for models 2, 3, 4, and 5 were crisp, random, fuzzy, and hybrid variables, respectively.

The present investigation is one of the few transportation models with hybrid penalties

available in the literature, and for the first time, safety factors have been introduced in

solid transportation problem. In this paper, we solved all mathematical problems using

LINGO 12.0 software. The models could be extended to include breakable/deteriorating

items, space constraints, price discount, etc. The methods, used for solutions here are quite

general in nature, and these can be applied to other similar uncertain/imprecise models in

other areas such as inventory control, ecology, and sustainable farm management.
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