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Abstract

The present paper introduces a parametric generalized exponential measure of fuzzy
divergence of order α with the proof of its validity. A particular case of proposed
fuzzy divergence measure is studied. Some properties of the new divergence
measure between different fuzzy sets are proved. We establish a relation between
exponential fuzzy entropy of order α and our fuzzy divergence measure. Further, a
numerical example is given for the comparative study of the new divergence
measure with some of existing measures. Finally, application of the measure to
strategic decision-making is discussed and a comparative study of the method of
strategic decision-making with the existing methods is presented. It is noted that
the new measure of fuzzy divergence and the method of strategic decision-making
comprise greater simplicity, consistency and flexibility in applications due to the
presence of the parameter.
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Introduction
Entropy is one of the key measures of information first used by Shannon [1]. Entropy

as a measure of fuzziness was introduced by Zadeh [2]. Fuzzy entropy is an impor-

tant concept for measuring fuzzy information. A measure of the fuzzy entropy of a

fuzzy set is a measure of the fuzziness of the set. Kapur [3] argues that fuzzy entropy

measures uncertainty due to fuzziness of information, while probabilistic entropy

measures uncertainty due to the information being available in terms of a probability

distribution only. The concept of fuzzy sets proposed by Zadeh [2] has proven useful

in the context of pattern recognition, image processing, speech recognition, bioinfor-

matics, fuzzy aircraft control, feature selection, decision-making, etc.

During the last six decades, entropy, as a very important notion for measuring fuzziness

degree or uncertain information in fuzzy set theory, has received a great attention. Fuzzy

sets gained a vital attention from researchers for their application in various fields. For

example, De Luca and Termini [4] introduced the measure of fuzzy entropy corres-

ponding to Shannon [1] entropy. Later on, Bhandari and Pal [5] defined the exponential

fuzzy entropy corresponding to Pal and Pal [6] exponential entropy. Verma and Sharma

[7] generalized the Pal and Pal [6] exponential fuzzy entropy of order α > 0. Kullback and

Leibler [8] obtained the measure of directed divergence between two probability distribu-

tions. Bhandari and Pal [5] presented some axioms to describe the measure of directed
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divergence between fuzzy sets, which is proposed corresponding to Kullback and Leibler

[8] measure of directed divergence.

Thereafter, many other researchers have studied the fuzzy divergence measures in

different ways and provide their application in different areas. For example, Fan and Xie

[9] introduced the divergence measure based on exponential operation and corresponding

to the fuzzy exponential entropy of Bhandari and Pal [5] and studied its relation with

divergence measure introduced in [5]. Ghosh et al. [10] gave application of fuzzy diver-

gence measure in the area of automated leukocyte recognition. In 2002, Montes et al. [11]

studied the special classes of divergence measures and used the link between fuzzy and

probabilistic uncertainty. Prakash et al. [12] proposed two fuzzy divergence measures

corresponding to Ferreri [13] probabilistic measure of directed divergence. Corresponding

to Renyi [14] generalized measure of directed divergence and Sharma and Mittal [15]

generalized measure of directed divergence, Bajaj and Hooda [16] proposed the measure

of fuzzy-directed divergence respectively. Bhatia and Singh [17] proposed four fuzzy

divergence measures; one of them was corresponding to Taneja [18] arithmetic-geometric

divergence measure.

Inspired by the abovementioned work, we introduce a generalized methodology for

measuring the degree of difference between two fuzzy sets. We present a new parametric

generalized exponential measure of fuzzy divergence and study the essential properties of

this measure in order to check its authenticity.

The paper consists of eight sections. The introductory section is followed by a discus-

sion on some well-known concepts and the notation related to fuzzy set theory. In the

‘New parametric generalized exponential measure of fuzzy divergence’ section, we intro-

duce a parametric generalized fuzzy exponential measure of divergence corresponding to

generalized fuzzy entropy given by Verma and Sharma [7]. In the ‘Properties of general-

ized exponential fuzzy divergence measure’ section, we first provide some interesting

properties of the proposed measure of fuzzy divergence and then a relation between

generalized exponential fuzzy entropy and the proposed fuzzy divergence measure is

established. In the ‘A comparative study’ section, the comparison of the proposed

divergence with some of existing generalized measures of fuzzy divergence is presented

with the help of table and graph. The application of the proposed parametric generalized

exponential measure of fuzzy divergence to strategic decision-making is illustrated with

the help of a numerical example in the ‘Application of parametric generalized exponential

measure of fuzzy divergence in strategic decision-making’ section. The ‘Application of

fuzzy TOPSIS and MOORA methods for strategic decision-making: a comparative

analysis’ section presents the application of the proposed measure of fuzzy divergence in

the existing methods of strategic decision-making and a comparative analysis between the

proposed method of strategic decision-making and the existing methods. Finally, the

paper is concluded in the ‘Concluding remarks’ section.
Preliminaries

This section is devoted to introduce some well-known concepts and the notations

related to fuzzy divergence measures. First of all, we will focus on the theory of fuzzy

sets. Then, we will recall the axiomatic definition of a divergence measure for fuzzy

sets.
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Fuzzy sets

Fuzzy sets are used to solve a lot of real-world problems. Fuzziness, a feature of uncer-

tainty, results from the lack of sharp difference of being or not being a member of the set,

i.e., the boundaries of the set under consideration are not sharply defined.

A fuzzy set A defined on a universe of discourse X is given as Zadeh [2]:

A ¼ x; μA xð Þh i=x∈Xf g

where μA : X → [0, 1] is the membership function of A. The membership value μA(x) de-

scribes the degree of the belongingness of x ∈ X in A. When μA(x) is valued in {0, 1}, it is

the characteristic function of a crisp (i.e., non-fuzzy) set. Zadeh [19] gave some notions re-

lated to fuzzy sets, some of them which we shall need in our discussion are as follows:

(1) Compliment: Ā = Compliment of A ⇔ μĀ(x) = 1 − μA (x) for all x ∈ X.

(2) Union: A ∪ B = Union of A and B ⇔ μA ∪ B(x) = max {μA(x), μB(x)} for all x ∈ X.

(3) Intersection: A ∩ B = Intersection of A and B ⇔ μA ∩ B (x) = min {μA(x), μB(x)} for

all x ∈ X

Fuzzy divergence measure

In fuzzy context, several measures have been proposed in order to measure the degree

of difference between two fuzzy sets. A general study of the axiomatic definition of a

divergence measure for fuzzy sets was presented in Bouchon-Meunier et al. [20] and as

a particular case was widely studied in Montes et al. [11].

Bhandari et al. [21] introduced the measure of fuzzy directed divergence correspond-

ing to Kullback and Leibler [8] measure of directed divergence, as

I A : Bð Þ ¼
Xn
i¼1

μA xið Þ log μA xið Þ
μB xið Þ þ 1−μA xið Þð Þ log 1−μA xið Þ

1−μB xið Þ
� �

ð1Þ

and also provides the essential conditions for a measure of divergence.

The measure of fuzzy divergence between two fuzzy sets gives the difference between

two fuzzy sets, and this measure of distance/difference between two fuzzy sets is called

the fuzzy divergence measure.

Fan and Xie [9] proposed the fuzzy information of discrimination of A against B

corresponding to the exponential fuzzy entropy of Pal and Pal [6] and is defined by

I A;Bð Þ ¼
Xn
i¼1

1− 1−μA xið Þð ÞeμA xið Þ−μB xið Þ−μA xið Þe μB xið Þ−μA xið Þð Þ
h i

ð2Þ

Finally, we may mention some other generalized measures of fuzzy divergence with
which we compare our study.

Kapur [3] presented a fuzzy divergence measure corresponding to Havada-Charvat

[22] measure of directed divergence which is given by

Iα A;Bð Þ ¼ 1
α−1

Xn
i¼1

μαAμ
1−α
B þ 1−μAð Þα 1−μBð Þ1−α−1� �

; α≠1; α > 0: ð3Þ

Prakash et al. [12] proposed a fuzzy divergence measure corresponding to Ferreri’s
[13] probabilistic measure of directed divergence given by
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Ia A : Bð Þ ¼
Xn
i¼1

μA xið Þ log μA xið Þ
μB xið Þ þ 1−μA xið Þð Þ log 1−μA xið Þ

1−μB xið Þ
� �

−
1
a

Xn
i¼1

1þ aμA xið Þð Þ log 1þ aμA xið Þ
1þ aμB xið Þ þ 1þ a 1−μA xið Þð Þf g log 1þ a 1−μA xið Þð Þ

1þ a 1−μB xið Þð Þ
� �

ð4Þ

Corresponding to Renyi [14] generalized measure of directed divergence Bajaj and

Hooda [16] provided the generalized fuzzy divergence measure which is given by

Dα A;Bð Þ ¼ 1
α−1

Xn
i¼1

log μαAμ
1−α
B þ 1−μAð Þα 1−μBð Þ1−α� �

; α≠1; α > 0: ð5Þ

New parametric generalized exponential measure of fuzzy divergence

We now propose a new parametric generalized exponential measure of divergence

between fuzzy sets A and B corresponding to generalized exponential fuzzy entropy of

order α > 0 given by Verma and Sharma [7] as

IEα A;Bð Þ ¼
Xn
i¼1

1− 1−μA xið Þð Þe 1−μB xið Þð Þα− 1−μA xið Þð Þαð Þ−μA xið Þe μαB xið Þ−μαA xið Þð Þh i
ð6Þ

Theorem 1 IEα A;Bð Þ is a valid measure of fuzzy directed divergence.
Proof: It is clear from (6) that

(i) IEα A;Bð Þ≥0
(ii)IEα A;Bð Þ ¼ 0 if μA xið Þ ¼ μB xið Þ
(iii)IEα A;Bð Þ≠IEα B;Að Þ

But JEα
A;Bð Þ ¼ IEα A;Bð Þ þ IEα B;Að Þ is symmetric:

ivð Þ We now check the convexity of IEα A;Bð Þ :
∂IEα

∂μA xið Þ ¼ 1−α 1−μA xið Þð Þαð Þe 1−μB xið Þð Þα− 1−μA xið Þð Þαð Þ þ α−1ð Þe μαB xið Þ−μαA xið Þð Þ

∂2IEα

∂μ2A xið Þ ¼ α αþ 1ð Þ 1−μA xið Þð Þα−1e 1−μB xið Þð Þα− 1−μA xið Þð Þα þ μα−1A xið ÞeμαB xið Þ−μαA xið Þ
h i

−α2 1−μA xið Þð Þ2α−1e 1−μB xið Þð Þα− 1−μA xið Þð Þα þ μ2α−1A xið ÞeμαB xið Þ−μαA xið Þ
i
> 0 forα > 0:

h

Similarly;
∂2IEα

∂μ2B xið Þ > 0 for α > 0:

Thus, IEα A;Bð Þ is a convex function of fuzzy sets A and B and therefore IEα A;Bð Þ is a
valid measure of fuzzy-directed divergence.

Particular case: For α ¼ 1; IEα A;Bð Þ reduces to I(A, B) given in (2).

Properties of generalized exponential fuzzy divergence measure

The generalized exponential fuzzy divergence measure IEα A;Bð Þ defined above has the

following properties:

Theorem 2 (a) IEα A∪B;Að Þ þ IEα A∩B;Að Þ ¼ IEα B;Að Þ
(b) IEα A∪B;Cð Þ þ IEα A∩B;Cð Þ ¼ IEα A;Cð Þ þ IEα B;Cð Þ
(c) IEα A∪B

�
;A∩B
�� � ¼ IEα

�A∩�B; �A∪�B;ð Þ
Proof: 2(a) Let us consider the sets
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X1 ¼ x=x∈X; μA xið Þ≥μB xið Þf g ð7Þ

and X2 ¼ x=x∈X; μA xið Þ < μB xið Þf g ð8Þ

Using the notions explained above in the ‘Preliminaries’ section:

In set X1; A∪B ¼ Union of AandB⇔μA∪B xð Þ ¼ max μA xð Þ; μB xð Þ� 	 ¼ μA xð Þ
A∩B ¼ Intersection of AandB⇔μA∩B xð Þ ¼ min μA xð Þ; μB xð Þ� 	 ¼ μB xð Þ
In set X2; A∪B ¼ Union of AandB⇔μA∪B xð Þ ¼ max μA xð Þ; μB xð Þ� 	 ¼ μB xð Þ
A∩B ¼ Intersection of AandB⇔μA∩B xð Þ ¼ min μA xð Þ; μB xð Þ� 	 ¼ μA xð Þ

We have

IEα A∪B;Að Þ þ IEα A∩B;Að Þ ¼
Xn
i¼1

1− 1−μA∪B xið Þð Þe 1−μA xið Þð Þα− 1−μA∪B xið Þð Þαð Þ
h
−μA∪B xið Þe μαA xið Þ−μαA∪B xið Þð Þi

þ
Xn
i¼1

1− 1−μA∩B xið Þð Þe 1−μA xið Þð Þα− 1−μA∩B xið Þð Þαð Þ
h

−μA∩B xið Þe μαA xið Þ−μαA∩B xið Þð Þi
¼

X
X1

1− 1−μA xið Þð Þe 1−μA xið Þð Þα− 1−μA xið Þð Þαð Þ
h(

−μA xið Þe μαA xið Þ−μαA xið Þð Þi
þ
X
X2

1− 1−μB xið Þð Þe 1−μA xið Þð Þα− 1−μB xið Þð Þαð Þ
h
−μB xið Þe μαA xið Þ−μαB xið Þð Þi)

þ
X
X1

1− 1−μB xið Þð Þe 1−μA xið Þð Þα− 1−μB xið Þð Þαð Þ
h(

−μB xið Þe μαA xið Þ−μαB xið Þð Þi
þ
X
X2

1− 1−μA xið Þð Þe 1−μA xið Þð Þα− 1−μA xið Þð Þαð Þ
h
−μA xið Þe μαA xið Þ−μαA xið Þð Þi)

¼
X
X1

1− 1−μB xið Þð Þe 1−μA xið Þð Þα− 1−μB xið Þð Þαð Þ
h

−μB xið Þe μαA xið Þ−μαB xið Þð Þi
þ
X
X2

1− 1−μB xið Þð Þe 1−μA xið Þð Þα− 1−μB xið Þð Þαð Þ
h

−μB xið Þe μαA xið Þ−μαB xið Þð Þi
¼

Xn
i¼1

1− 1−μB xið Þð Þe 1−μA xið Þð Þα− 1−μB xið Þð Þαð Þ
h

−μB xið Þe μαA xið Þ−μαB xið Þð Þi ¼ IEα B;Að Þ

Thus, IE A∪B;Að Þ þ IE A∩B;Að Þ ¼ IE B;Að Þ
α α α

Hence, the proof of 2(a) holds.
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2 bð Þ IEα A∪B;Cð Þ þ IEα A∩B;Cð Þ

¼
Xn
i¼1

1− 1−μA∪B xið Þð Þe 1−μC xið Þð Þα− 1−μA∪B xið Þð Þαð Þ−μA∪B xið Þe μαC xið Þ−μαA∪B xið Þð Þh i

þ
Xn
i¼1

1− 1−μA∩B xið Þð Þe 1−μC xið Þð Þα− 1−μA∩B xið Þð Þαð Þ−μA∩B xið Þe μαC xið Þ−μαA∩B xið Þð Þh i
¼

X
X1

1− 1−μA xið Þð Þe 1−μC xið Þð Þα− 1−μA xið Þð Þαð Þ−μA xið Þe μαC xið Þ−μαA xið Þð Þh i
þ
X
X2

1− 1−μB xið Þð Þe 1−μC xið Þð Þα− 1−μB xið Þð Þαð Þ−μB xið Þe μαC xið Þ−μαB xið Þð Þh i
þ
X
X1

1− 1−μB xið Þð Þe 1−μC xið Þð Þα− 1−μB xið Þð Þαð Þ
h

−μB xið Þe μαC xið Þ−μαB xið Þð Þi
þ
X
X2

1− 1−μA xið Þð Þe 1−μC xið Þð Þα− 1−μA xið Þð Þαð Þ
h

−μA xið Þe μαC xið Þ−μαA xið Þð Þi

¼
Xn
i¼1

1− 1−μA xið Þð Þe 1−μC xið Þð Þα− 1−μA xið Þð Þαð Þ−μA xið Þe μαC xið Þ−μαA xið Þð Þh i

þ
Xn
i¼1

1− 1−μB xið Þð Þe 1−μC xið Þð Þα− 1−μB xið Þð Þαð Þ−μB xið Þe μαC xið Þ−μαB xið Þð Þh i
¼ IEα A;Cð Þ þ IEα B;Cð Þ

Hence, the proof of 2(b) holds.

2 cð Þ IEα A∪B
�

;A∩B
�� � ¼ Xn

i¼1

1− 1−μA∪B� xið Þð Þe 1−μA∩B� xið Þð Þα− 1−μA∪B� xið Þð Þαð Þh
−μA∪B� xið Þe μαA∩B� xið Þ−μαA∪B� xið Þð Þi

¼
Xn
i¼1

1−μA∪B xið Þe μαA∩B xið Þ−μαA∪B xið Þð Þ− 1−μA∪B xið Þð Þe 1−μA∩B xið Þð Þα− 1−μA∪B xið Þð Þαð Þ
ih

¼
X
X1

1−μA xið Þe μαB xið Þ−μαA xið Þð Þh
− 1−μA xið Þð Þe 1−μB xið Þð Þα− 1−μA xið Þð Þαð Þ

i
þ
X
X2

1−μB xið Þe μαA xið Þ−μαB xið Þð Þh
− 1−μB xið Þð Þe 1−μA xið Þð Þα− 1−μB xið Þð Þαð Þ

i

and

IEα
�A∩�B; �A∪�Bð Þ ¼

Xn
i¼1

1− 1−μ�A∩�B xið Þð Þe 1−μ�A∪�B xið Þð Þα− 1−μ�A∩�B xið Þð Þαð Þ−μ�A∩�B xið Þe μα�A∪�B
xið Þ−μα�A∩�B

xið Þð Þih
¼

X
X1

1− 1−μ�A xið Þð Þe 1−μ�B xið Þð Þα− 1−μ�A xið Þð Þαð Þ−μ�A xið Þe μα�B xið Þ−μ�Aα xið Þð Þih
þ
X
X2

1− 1−μ�B xið Þð Þe 1−μ�A xið Þð Þα− 1−μ�B xið Þð Þαð Þ−μ�B xið Þe μα�A xið Þ−μ�Bα xið Þð Þih
¼

X
X1

1−μA xið Þe μαB xið Þ−μαA xið Þð Þ− 1−μA xið Þð Þe 1−μB xið Þð Þα− 1−μA xið Þð Þαð Þ
h i

þ
X
X2

1−μB xið Þe μαA xið Þ−μαB xið Þð Þ− 1−μB xið Þð Þe 1−μA xið Þð Þα− 1−μB xið Þð Þαð Þ
h i

¼ IEα A∪B
�

;A∩B
�� �

Thus, I A∪B
�

;A∩B
�� � ¼ I �A∩�B; �A∪�Bð Þ
Eα Eα

Hence, the proof of 2(c) holds.

Theorem 3 (a) IEα A; �Að Þ ¼ IEα
�A;Að Þ

(b) IEα
�A; �Bð Þ ¼ IEα A;Bð Þ

(c) IEα A; �Bð Þ ¼ IEα
�A;Bð Þ

(d) IEα A;Bð Þ þ IEα
�A;Bð Þ ¼ IEα

�A; �Bð Þ þ IEα A; �Bð Þ
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Proof 3 að Þ IEα A; �Að Þ ¼
Xn
i¼1

1− 1−μA xið Þð Þe 1−μ�A xið Þð Þα− 1−μA xið Þð Þαð Þ−μA xið Þe μ�Aα xið Þ−μαA xið Þð Þih

¼
Xn
i¼1

1− 1−μA xið Þð ÞeμαA xið Þ− 1−μA xið Þð ÞαÞ−μA xið Þe 1−μA xið Þð Þα−μαA xið Þð Þh i

and
IEα
�A;Að Þ ¼

Xn
i¼1

1− 1−μ�A xið Þð Þe 1−μA xið Þð Þα− 1−μ�A xið Þð Þαð Þ−μ�A xið Þe μαA xið Þ−μ�Aα xið Þð Þih

¼
Xn
i¼1

1−μA xið Þe 1−μA xið Þð Þα−μαA xið Þð Þ− 1−μA xið Þð ÞeμαA xið Þ− 1−μA xið ÞÞαð Þ
h i

¼ IEα A; �Að Þ

Thus, IE A; �Að Þ ¼ IE �A;Að Þ
α α

Hence, the proof of 3(a) holds.

3 bð Þ IEα
�A; �Bð Þ ¼

Xn
i¼1

1− 1−μ�A xið Þð Þe 1−μ�B xið Þð Þα− 1−μ�A xið Þð Þαð Þ−μ�A xið Þe μ�Bα xið Þ−μ�Aα xið Þð Þh i

¼
Xn
i¼1

1−μA xið Þe μαB xið Þ−μαA xið Þð Þ− 1−μA xið Þð Þe 1−μB xið Þð Þα− 1−μA xið Þð Þαð Þ
h i

¼ IEα A;Bð Þ

Thus, IEα
�A; �Bð Þ ¼ IEα A;Bð Þ

Hence, the proof of 3(b) holds.

3 cð Þ IEα A; �Bð Þ ¼
Xn
i¼1

1− 1−μA xið Þð Þe 1−μ�B xið Þð Þα− 1−μA xið Þð Þαð Þ−μA xið Þe μ�Bα xið Þ−μαA xið Þð Þh i

¼
Xn
i¼1

1− 1−μA xið Þð ÞeμαB xið Þ− 1−μA xið Þð ÞαÞ−μA xið Þe 1−μB xið Þð Þα−μαA xið Þð Þh i

Now; IEα
�A;Bð Þ ¼

Xn
i¼1

1− 1−μ�A xið Þð Þe 1−μB xið Þð Þα− 1−μ�A xið Þð Þαð Þ−μ�A xið Þe μαB xið Þ−μ�Aα xið Þð Þh i

¼
Xn
i¼1

1−μA xið Þe 1−μB xið Þð Þα−μαA xið Þð Þ− 1−μA xið Þð ÞeμαB xið Þ− 1−μA xið ÞÞαð Þ
h i

¼ IEα A; �Bð Þ

Thus, IEα A; �Bð Þ ¼ IEα
�A;Bð Þ

Hence, the proof of 3(c) holds.

3(d) It obviously follows from 3(b) and 3(c).

Theorem 4 Relation between Eα(A) and IEα A;Bð Þ is given by

Eα Að Þ ¼ 1−
e1−0:5

α

n e1−0:5α−1ð Þ IEα A;
1
2

� �
 �
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Proof IEα A;
1
2

� �
 �
¼

Xn
i¼1

1− 1−μA xið Þð Þe 0:5α− 1−μA xið Þð Þαð Þ−μA xið Þe 0:5α−μαA xið Þð Þh i

¼
Xn
i¼1

1− 1−μA xið Þð Þ e
− 1−μA xið Þð Þα

e−0:5α
−μA xið Þ e

−μαA xið Þ

e−0:5α

� �

¼
Xn
i¼1

1− 1−μA xið Þð Þ e
1− 1−μA xið Þð Þα

e1−0:5α
−μA xið Þ e

1−μαA xið Þ

e1−0:5α

� �

¼ n−
1

e 1−0:5αð Þ
Xn
i¼1

1−μA xið Þð Þe 1− 1−μA xið Þð Þαð Þ þ μA xið Þe 1−μαA xið Þð Þ þ 1−1
h i

¼ n−
1

e 1−0:5αð Þ
Xn
i¼1

μA xið Þe 1−μαA xið Þð Þ þ 1−μA xið Þð Þe1− 1−μA xið Þð Þα−1
h i

−
n

e 1−0:5αð Þ

¼ n−
1

e 1−0:5αð Þ n e 1−0:5αð Þ−1
� 


Eα Að Þ− n
e 1−0:5αð Þ

¼ n 1−
1

e 1−0:5αð Þ


 �
−

1
e 1−0:5αð Þ n e 1−0:5αð Þ−1

� 

Eα Að Þ

¼ n e 1−0:5αð Þ−1
� �
e 1−0:5αð Þ −

n e 1−0:5αð Þ−1
� �
e 1−0:5αð Þ Eα Að Þ ¼ 1−Eα Að Þð Þ n e 1−0:5αð Þ−1

� �
e 1−0:5αð Þ

⇒
e 1−0:5αð Þ

n e 1−0:5αð Þ−1ð Þ IEα A;
1
2

� �
 �
¼ 1−Eα Að Þð Þ

Thus; Eα Að Þ ¼ 1−
e 1−0:5αð Þ

n e 1−0:5αð Þ−1ð Þ IEα A;
1
2

� �
 �

Hence, the proof of theorem 4 holds.

A comparative study

In this section, we demonstrate the efficiency of proposed fuzzy divergence measure by

comparing it with some of existing fuzzy divergence measures. To do so, we present

the comparative study of the proposed divergence measure with the existing fuzzy

divergence measures given by Kapur [3], Prakash et al. [12], and Bajaj and Hooda [16].

Let A and B be any two fuzzy sets given A = {0.1, 0.9, 0.5}, B = {0.6, 0.7, 0.1}.

The computed values of fuzzy divergence measures �Iα A : Bð Þ; Ia A : Bð Þ; Dα A;Bð Þ; IEα

A;Bð Þ are presented in Table 1.

Table 1 and Figure 1 depict the minimization of degree of difference of the proposed

fuzzy measure. It is clear that the proposed fuzzy divergence measure is efficient than

the existing fuzzy divergence measures.

Application of parametric generalized exponential measure of fuzzy divergence in

strategic decision making

As we have already discussed in the introductory section, in recent years, the applica-

tions of the fuzzy divergence measure have been given in different areas: Poletti et al.

[23] in bio-informatics; Bhandari et al. [21], Fan et al. [24], and Bhatia and Singh [25]

in image thresholding; and Ghosh et al. [10] in automated leukocyte recognition. We
Table 1 Computed values of fuzzy divergence measures: Iα A; Bð Þ;Dα A; Bð Þ; Ia A : Bð Þ; IEα A; Bð Þ
Fuzzy divergence measure a, α = 0.1 a, α = 0.4 a, α = 0.5 a, α = 0.6 a, α = 0.9

Iα(A, B) 0.1243 0.4743 0.5875 0.7006 1.4809

Dα(A, B) 0.1276 0.5058 0.6273 0.7456 1.0766

Ia(A: B) 1.1734 1.0272 0.9966 0.9681 0.8933

IEα A; Bð Þ 0.0977 0.2406 0.2805 0.3017 0.3416



Figure 1 Comparison of numerical values of fuzzy divergence measures Iα A; Bð Þ;Dα A; Bð Þ; Ia A : Bð Þ;
IEα A;Bð Þ:
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provide an application of the proposed divergence measure in strategic decision-

making.

Decision-making problem is the process of finding the best option from all of the feasible

alternatives. It is assumed that a firm X desire to apply m strategies S1, S2, S3, …, Sm to meet

its goal. Let each strategy have different degree of effectiveness if the input associated with

it is varied and let {I1, I2, I3, …, In} be the input set or set of alternatives. Let the fuzzy set Y

denotes the effectiveness of a particular strategy with uniform input. Therefore,

Y ¼ Y ; μY Sið Þð Þ=i ¼ 1; 2;…;mf g

Further, let Ij be a fuzzy set denotes the degree of effectiveness of a strategy when it
is implemented with input Ij.

Ij ¼ I j; μIj Sið Þ
� 


=i ¼ 1; 2;…;m
n o

where j ¼ 1; 2;…; n:

Taking A = Y and B = Ij in the fuzzy divergence measure IE Y ; Ij
� �

defined in new
α

parametric generalized exponential measure of fuzzy divergence section, and we calcu-

late IEα Y ; I j
� �

.

Then, most effective Ij is determined by Min IEα Y ; Ij
� �� 	

1≤j≤n
0<α≤0:5

. It is assumed that

It (1 ≤ t ≤ n) determines the minimum value of IEα Y ; I j
� �� 	

0<α≤0:5 . With this It find

Max: μIj Sið Þ
n o

1≤i≤m
, let it correspond to Sp, 1 ≤ p ≤ m.

Hence, if the strategy Sp is implemented with input budget of It, the firm will meet its

goal in the most input-effective manner.

An illustrative example

Let m = n = 5 in the above model. Table 2 shows the efficiency of different strategies at

uniform inputs.

Table 3 illustrates the efficiency of different strategies at particular inputs.
Table 2 Efficiency of different strategies at uniform inputs

μY(S1) μY(S2) μY(S3) μY(S4) μY(S5)

0.5 0.3 0.6 0.4 0.7



Table 3 Efficiency of strategies at particular inputs

Ij μIjðS1Þ μIjðS2Þ μIjðS3Þ μIjðS4Þ μIjðS5Þ
I1 0.3 0.4 0.5 0.8 0.6

I2 0.6 0.3 0.9 0.2 0.4

I3 0.7 0.5 0.8 0.9 0.6

I4 0.8 0.7 0.6 0.5 0.3

I5 0.5 0.8 0.4 0.7 0.5
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The numerical values of divergence measure IEα Y ; Ij
� �g 1≤j≤n

0<α≤0:5
are presented in

Table 4.

The calculated numerical values of the proposed fuzzy divergence measure indicate

that alternative input I2 is more appropriate for different values of α (0 < α ≤ 0.5). An

examination of the results presented in Tables 3 and 4 makes it clear that strategy S4 is

most effective. Thus, a firm will achieve its goal most effectively if the strategy S4 is

applied with an input alternative I2.

Application of fuzzy TOPSIS and MOORA methods for strategic decision making: a

comparative analysisa

We now present the application of TOPSIS [26] and MOORA [27] methods for stra-

tegic decision-making using the proposed fuzzy divergence measure (6).

Fuzzy TOPSIS method

Let us assume that there exists a set I = {I1, I2, I3,…, In} of n alternative inputs and a set

of m attributes (strategies) given by S = {S1, S2, S3, …, Sm}. The decision maker has to

find the best alternative from the set I corresponding to set S of n attributes

(strategies).

The computational procedure of solving the fuzzy strategic decision-making problem

involves the following steps:

1. Construct a fuzzy decision matrix.

S1 S2 … Sn
I1 x11 x12 … x1n
I2 x21 x22 … x2n
Im xm1 xm2 … xmn

W ¼ w1;w2;…;wn½ �
Table 4 Numerical values of divergence measure IEα Y ; Ij
� �� 	

1≤j≤n
0<α≤0:5

Ij α = 0.1 α = 0.3 α = 0.4 α = 0.5

I1 0.0456 0.0831 0.0900 0.0916

I2 0.0449 0.0662 0.0568 0.0396

I3 0.0779 0.1308 0.1289 0.1164

I4 0.0748 0.1500 0.1646 0.1700

I5 0.0764 0.1568 0.1748 0.1843



Table 5 Normalized/weighted normalized fuzzy decision-matrix

μIjðS1Þ μμIjðS2Þ μIjðS3Þ μIjðS4Þ μIjðS5Þ
I1 0.2218 0.3133 0.3356 0.5010 0.5432

I2 0.4435 0.2350 0.6040 0.1252 0.3622

I3 0.5174 0.3916 0.5369 0.5636 0.5432

I4 0.5914 0.5483 0.4027 0.3131 0.2716

I5 0.3696 0.6266 0.2685 0.4383 0.4527
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2. Construct the normalized fuzzy decision matrix. The normalized value nij is

calculated as

as nij ¼ xij=

ffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

x2ij

vuut ; j ¼ 1;…;m; i ¼ 1;…; n ð9Þ

3. Construct the weighted normalized fuzzy decision matrix, the weighted normalized
value

vij ¼ winij; j ¼ 1;…;m; i ¼ 1;…; n ð10Þ

where weighted matrix for each strategy is as follows: W = [1,1,1,1,1] and wi is the
weight of ith attribute.

4. Determine the fuzzy positive ideal and fuzzy negative ideal solution A+ and A−,

using the formulas

Aþ ¼ vþ1 ; v
þ
2 ; : ::; v

þ
n

� 	 ¼ max
j

vij=i∈I
� �

ð11Þ

and A− ¼ v−1 ; v
−
2 ; : ::; v

−
n

� 	
¼ min

j
vij=i∈I

� �
respectively; where I is associated with input set: ð12Þ

5. Calculate the separation of each alternative input from positive ideal solution and

negative ideal solution, respectively, using the proposed measure (6).

6. Calculate the relative closeness of each alternative to positive ideal solution using

the formula

Rj ¼ I−Eα
= IþEα

þ I−Eα

� 

; j ¼ 1;…;m: ð13Þ

7. Rank the preference order of all alternatives according to the closeness coefficient.

Now the application of proposed measure IEα A;Bð Þ with TOPSIS technique is dem-

onstrated using the fuzzy decision matrix considered in Table 3.

Table 5 presents the normalized/weighted normalized fuzzy decision matrix corre-

sponding to the fuzzy decision matrix given in Table 3 using the formulas (9) and (10).
Table 6 Fuzzy positive and negative ideal solution

μIjðS1Þ μIjðS2Þ μIjðS3Þ μIjðS4Þ μIjðS5Þ
A+ 0.5432 0.6040 0.5636 0.5914 0.6266

A− 0.2218 0.1252 0.3916 0.2716 0.2685



Table 7 Distance of each alternative from positive and negative ideal solution

IþEα I−Eα
α = 0.1 α = 0.5 α = 0.1 α = 0.5

I1 0.0463 0.1568 0.0296 0.0113

I2 0.0819 0.2835 0.0263 0.0366

I3 0.0090 0.0173 0.0611 0.0511

I4 0.0418 0.1338 0.0616 0.0732

I5 0.0306 0.0986 0.0682 0.0847
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Table 6 shows the fuzzy positive and negative ideal solutions A+ and A− using formu-

las (11) and (12).

The calculated numerical values of divergence/distance values of each alternative in-

put from positive ideal solution and negative ideal solution using formula (6) are given

in Table 7.

The best alternative is the one with the shortest distance to the fuzzy positive ideal

solution and with the longest distance to the fuzzy negative ideal solution. The calcu-

lated values of relative closeness of each alternative to positive ideal solution using for-

mula (13) and their corresponding ranks are shown in Table 8.

According to the closeness coefficient, the ranking of the preference order of these al-

ternatives Ij(j = 1, 2, 3, 4, 5):

Forα ¼ 0:1; I3 > I5 > I4 > I1 > I2:

Forα ¼ 0:5; I3 > I5 > I4 > I2 > I1:

Thus, here, we find that variation in values of α brings about change in ranking, but
leaves the best choice unchanged. So I3 is the most preferable alternative.

Fuzzy MOORA method

Fuzzy MOORA method for solving strategic decision-making problems is as follows.

The computational procedure in fuzzy MOORA method up to step 4 is the same as

discussed in fuzzy TOPSIS method above.

Step 5. Calculate the overall performance index IEα Aþ;A−ð Þ for each alternative using

the formula (6) and the computed values in Table 6.

Step 6. Ranking alternatives and/or selecting the most efficient one are based on the

values of IEα Aþ;A−ð Þ:
The overall performance index IEα Aþ;A−ð Þ for each alternative is calculated using

formula (6) and values given in Table 6. Finally, the ranking results have been obtained

using MOORA method and are presented in Table 9.
Table 8 Closeness coefficient and ranking

Alternatives (inputs) α = 0.1 Rank α = 0.5 Rank

I1 0.3900 4 0.0672 5

I2 0.2431 5 0.1143 4

I3 0.8716 1 0.7471 1

I4 0.5957 3 0.3536 3

I5 0.6903 2 0.4621 2



Table 9 The ranking results obtained using MOORA method

IEα Aþ;A−ð Þ
α = 0.1 Rank α = 0.5 Rank

I1 0.9816 3 0.9778 2

I2 0.9528 5 0.9333 5

I3 0.9951 1 0.9891 1

I4 0.9823 2 0.9678 3

I5 0.9775 4 0.9534 4
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According to the calculation results, ranking order of alternatives is as follows:

Forα ¼ 0:1; I3 > I4 > I1 > I5 > I2:

Forα ¼ 0:5; I3 > I1 > I4 > I5 > I2:

Thus, here, we find that variation in values of α brings about change in ranking, but

leaves the best choice unchanged. So I3 is the most preferable alternative.
A comparative analysis of the proposed method and the existing methods of strategic

decision-making

We now compare the proposed method of strategic decision-making with the existing

method of strategic decision-making using the proposed measure (6). From the pro-

posed method in the ‘Application of parametric generalized exponential measure of

fuzzy divergence in strategic decision making’ section, it is clear that a firm will achieve

its goal most effectively if the strategy S4 is applied with an input alternative I2. Thus, I2
is best input alternative for a firm to achieve its goal. However, we above examine from

the existing methods that I3 is the most preferable input alternative. It is also noticed

that the proposed method is a very short, simple, and consistent method than the exist-

ing methods of strategic decision-making having a computational procedure involving

a number of steps. Thus, the proposed method of strategic decision-making is better

than the existing methods.
Concluding remarks

In this paper, we have proposed and validated the generalized exponential measure of

fuzzy divergence. We have established the relation between generalized exponential

fuzzy entropy and the proposed fuzzy divergence measure. Particular case and some of

the properties of this divergence measure are proved. The efficiency of the new diver-

gence measure has been presented. In addition, application of the proposed divergence

measure is discussed in strategic decision-making and a numerical example is given for

illustration. The application of the new measure of fuzzy divergence in two existing

methods of strategic decision-making is presented. A comparative analysis between the

proposed method of strategic decision-making and the existing methods of strategic

decision-making has also been provided. We note that our measure of fuzzy divergence

comprises greater consistency and flexibility in applications because of the presence of

the parameter.
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Endnote
aThe authors are thankful to an anonymous referee of this journal for bringing this

point to their attention.
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