Skip to main content

Table 1 Project information

From: Uncertain Resource-Constrained Project Scheduling Problem with Net Present Value Criterion

Activity Duration R 1 R 2 R 3 R 4 Successors Cash flows
1 0 0 0 0 0 2, 3, 4 0
2 \(\mathcal {Z}(5,7,8)\) 4 0 0 0 8, 10, 13 105
3 \(\mathcal {Z}(7,9,10)\) 10 0 0 0 5, 9, 19 54
4 \(\mathcal {L}(1,3)\) 0 0 0 3 6, 16, 17 149
5 \(\mathcal {Z}(1,3,4)\) 3 0 0 0 10, 18, 31 112
6 \(\mathcal {L}(8,10)\) 0 0 0 8 7, 22 128
7 \(\mathcal {Z}(7,8,10)\) 4 0 0 0 28 87
8 \(\mathcal {Z}(1,3,4)\) 0 1 0 0 11, 12 85
9 \(\mathcal {L}(1,3)\) 6 0 0 0 14, 27 115
10 \(\mathcal {Z}(8,10,11)\) 0 0 0 1 30 125
11 \(\mathcal {L}(7,10)\) 0 5 0 0 24 143
12 \(\mathcal {Z}(8,10,11)\) 0 7 0 0 15, 21 52
13 \(\mathcal {Z}(1,3,4)\) 4 0 0 0 17 80
14 \(\mathcal {L}(1,3)\) 0 8 0 0 20 76
15 \(\mathcal {Z}(3,5,6)\) 3 0 0 0 30 86
16 \(\mathcal {L}(2,4)\) 0 0 0 5 25 126
17 \(\mathcal {L}(7,11)\) 0 0 0 8 21 146
18 \(\mathcal {Z}(6,8,9)\) 0 0 0 7 29 121
19 \(\mathcal {Z}(2,4,5)\) 0 1 0 0 20, 23, 24 93
20 \(\mathcal {Z}(7,10,11)\) 0 10 0 0 21 140
21 \(\mathcal {L}(4,6)\) 0 0 0 6 28 68
22 \(\mathcal {Z}(2,4,5)\) 2 0 0 0 26 69
23 \(\mathcal {L}(3,5)\) 3 0 0 0 26 52
24 \(\mathcal {Z}(3,5,6)\) 0 9 0 0 25, 29 123
25 \(\mathcal {L}(6,8)\) 4 0 0 0 30 78
26 \(\mathcal {Z}(4,5,7)\) 0 0 4 0 28 129
27 \(\mathcal {L}(1,3)\) 0 0 0 7 31 137
28 \(\mathcal {Z}(2,3,5)\) 0 8 0 0 31 77
29 \(\mathcal {Z}(1,2,4)\) 0 7 0 0 32 125
30 \(\mathcal {Z}(5,6,8)\) 0 7 0 0 32 146
31 \(\mathcal {Z}(4,6,7)\) 0 0 2 0 32 58
32 0 0 0 0 0   0
  1. Note: Activities 1 and 32 don’t consume time and resource, limits of the four resources are (12, 13, 4, 12) and the deadline is 90