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Abstract

This paper explores the study of multi-choice multi-objective transportation problem
(MCMTP) under the environment of utility function approach. MCMTP is converted to
multi-objective transportation problems (MOTP) by transforming the multi-choice
parameters like cost, demand, and supply to real-valued parameters. A general
transformation procedure using binary variables is illustrated to reduce MCMTP into
MOTP. Most of the MOTP are solved by goal programming (GP) approach. Using GP,
the solution of MOTP may not be satisfied all the time by the decision maker (DM)
when the proposed problem contains interval-valued aspiration level. To overcome
this difficulty, here we propose the approaches of revised multi-choice goal
programming (RMCGP) and utility function into the MOTP and then compared the
solution between them. Finally, numerical examples are presented to show the
feasibility and usefulness of our paper.

Keywords: Transportation problem; Multi-choice programming; Multi-objective
decision making; Goal programming; Multi-choice programming; Utility function

Introduction
The transportation problem is the central nerve system to keep the balance in economi-
cal world from ancient day until today. In earlier days, transportation problem developed
with the assumption that the supply, demand, and cost parameters are exactly known.
But in real-life applications, all the parameters of the transportation problem are not
generally defined precisely. Keeping this point of view, in this paper, we have incorpo-
rated with multi-choice multi-objective transportation problem (MCMTP) considering
the parameters of transportation problem as multi-choice type.
Instead of single choice, if there may be several choices involved associated with the

transportation parameters like cost, supply, or demand, then the decision maker is con-
fused to select the proper choice for these parameters. In this circumstances, the study
of transportation problem creates a new direction which is called multi-choice multi-
objective transportation problem. Chang [1] proposed a multi-choice goal program-
ming approach to solve the mathematical programming. Again in the subsequent year,
Chang [2] proposed another multi-choice goal programming approach in revised form.
Though the multi-choice concept discussed in both the papers of Chang [1,2] is totally
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related to the goals of objective functions, recently, Mahapatra et al. [3] and Roy et al. [4]
discussed the multi-choice stochastic transportation problem involving extreme value
distribution and exponential distribution in which themulti-choice concept involved only
in the cost parameters.
In this paper, we have designed a general transformation technique to reduce the multi-

choice parameters like cost, time, and demand to single-valued parameters. Using this
technique, the MCMTP problem can be reduced to MOTP.
Goal programming (GP), an analytical approach, is devised to address the decision-

making problemwhere targets have been assigned to all objective functions. The objective
functions are conflicting and commensurable to each other, and the DM is interested
to minimize the non-achievement of the corresponding goals. In other words, the DM
derived an optimal solution with this strategy of GP which is satisfactory. However, using
GP, the solution procedure for MOTP has some limitation. The main limitation behind
GP is that the priority of goals for the DM is not easily considered. It seems far from reality.
In the recent past, the notion of utility function is introduced by several researchers such
as [5], Yu et al. [6], and Podinovski [7]. Recently, multi-choice goal programming (MCGP)
has been proposed by Chang [1,2] to solve multi-objective decision-making problems
with aspiration level. However, to the best of our knowledge, no works have been done on
utility function to solve MOTP with the DM’s preferences. The main motivation of this
study is to investigate the better solution of MOTP by using utility function approach and
then compare the solution to other methods such as GP and RMCGP.
Charnes et al. [8] introduced the concept of GP further developed by several researchers

such as Charnes and Cooper [9], Lee [10], Ignizio [11], Tamiz et al. [12], and Romero [13].
In long back, the main concept of GP was to minimize the deviation between the achieve-
ment goals and the achievement levels. The mathematical model of multi-objective
decision making (MODM) can be considered in the following form:

GP

min
K∑
i=1

wi|Zi(X) − gi|

subject to x ∈ F (F is the feasible set)

where wi are the weights attached to the deviation of the achievement function. Zi(X)

is the ith objective function of the ith goal, and gi is the aspiration level of the ith goal.
|Zi(X) − gi| represents the deviation of the ith goal. Later on, a modification on GP is
provided and denoted as weighted goal programming (WGP) which can be displayed in
the following form:

WGP

min
K∑
i=1

wi(d+
i + d−

i )

subject to Zi(X) − d+
i + d−

i = gi
d+
i ≥ 0, d−

i ≥ 0, i ∈ {1, 2, . . . ,K}
x ∈ F (F is the feasible set)

where d+
i and d−

i are over and under achievements of the ith goal, respectively.
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However, the conflicts of resources and the incompleteness of available information
make it almost impossible for DMs to set the specific aspiration levels and choose the
better decision. To overcome this situation, MCGP approach has been presented by
Chang [1] with a new direction to solve MODM problem. In the next year, Chang [2] pro-
posed the revised form of MCGP defined as RMCGP to solve MODM. The mathematical
model of MODM using RMCGP is defined as follows:

RMCGP

min
K∑
i=1

wi(d+
i + d−

i ) + αi(e+i + e−i )

subject to Zi(X) − d+
i + d−

i = yi, i = 1, 2, . . . ,K

yi − e+i + e−i = gi,max, or gi,min i = 1, 2, . . . ,K

gi,min ≤ yi ≤i,max, i = 1, 2, . . . ,K

d+
i , d

−
i , e

+
i , e

−
i ≥ 0, i = 1, 2, . . . ,K

x ∈ F (F is the feasible set)

where yi is the continuous variable associated with ith goal which restricted between the
upper (gi,max) and lower (gi,min) bounds, e+i and e−i are positive and negative deviations
attached to the ith goal of |yi − gi,max|, and αi is the weight attached to the sum of the
deviations of |yi − gi,max|; other variables are defined as in WGP.
The main motivation of this paper is to investigate the better solution of MCMTP by

using utility function approach and then compare the solutions to other methods such as
GP and RMCGP.
The remainder of the paper is organized as follows: In Section “Mathematical model”,

mathematical models are formulated for MOTP and MCMTP and solution proce-
dures have been discussed with utility function approach. In the next section “Numerical
examples”, we demonstrate the usefulness of the proposed model with realistic examples.
Finally, conclusion is presented regarding our consideration.

Mathematical model
The mathematical model of multi-objective transportation problem (MOTP) can be
considered as follows:

Model 1

min : Zt =
m∑
i=1

n∑
j=1

Ct
ijxij, t = 1, 2, . . . ,K (1)

subject to
n∑

j=1
xij ≤ ai, i = 1, 2, . . . ,m (2)

m∑
i=1

xij ≥ bj, j = 1, 2, · · · , n (3)

and xij ≥ 0, ∀ i and j (4)

Here Ct
ij, ai, bj are the cost, supply, and demand parameters of tth objective function in

MOTP, respectively, and
∑m

i=1 ai ≥ ∑n
j=1 bj is the feasibility condition. According to the

nature of the problem, the decisionmaker has the right to choose the goals of the objective
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functions. Assuming that these goals are gt (t = 1, 2, . . . ,K) of K objective functions, the
goals are defined as interval valued as gt = [gt,min, gt,max], (t = 1, 2, . . . ,K).
In many real-life situations, the multiple choices in the transportation parameters like

cost, demand, and source create complexities for the DM tomake a decision.Multi-choice
costs may occur due to several routes for transporting the goods. Due to weather con-
dition or different seasons, the demands or the supply become multi-choices in nature.
In the atmosphere of multi-choice transportation parameters, the mathematical model of
MCMTP is defined as follows:

Model M1

min : Zt =
m∑
i=1

n∑
j=1

(
C̃t1
ij or C̃t2

ij or · · · or C̃tr
ij

)
xij, t = 1, 2, . . . ,K (5)

subject to
n∑

j=1
xij ≤ ã1i or ã2i or · · · or ãpi , i = 1, 2, . . . ,m (6)

m∑
i=1

xij ≥ b̃1j or b̃2j or · · · or b̃qj , j = 1, 2, . . . , n (7)

xij ≥ 0, ∀ i and j. (8)

Here
(
C̃t1
ij or C̃t2

ij or · · · or C̃tr
ij

)
,
(
ã1i or ã2i or · · · or ãpi

)
, and

(
b̃1j or b̃2j or · · · or b̃qj

)
are

the multi-choice cost, supply, and demand parameters for the tth objective function,
respectively. In a objective function, respectively. In a transportation problem, the total
demand should be less or equal to the total capacity of supply to get a feasible solution. In
the present case for multi-choice of supply and demands, the information of total capac-
ity of supply in the origins and demands in the destinations is not precisely calculated.
So we have selected here the maximum possible supply in the origins and consequently
the minimum demand in the destinations and then formulated the feasibility condition
as

∑m
i=1 max

{
ã1i , ã2i , . . . , ã

p
i
} ≥ ∑n

j=1 min
{
b̃1j , b̃2j , . . . , b̃

q
j

}
. This feasibility condition is

the best possible wide range of feasible region of the MCMTP. However, the feasibility
condition can be remodeled as per as decision maker’s choice.

Transformation technique for multi-choice parameters like cost, supply, and demand to

the equivalent form

When there are multiple choice of parameters such as cost, supply, and demand, we
should select a single choice satisfying supply and demand restrictions. The selection of
choices should be done in such a way that the whole problem is optimized. Introduction
of binary variables is an important concept to select a choice in the problem.
If we have to choose one among t number of possibilities, then we use p number of

binary variables where 2p−1 < t ≤ 2p. Let t =p C0+p C1+pC2+· · ·+pCd+k, for some d
satisfying 1 ≤ d ≤ p, 0 ≤ k <p Cd+1. Let us take p binary variables z1j , z2j , . . . , z

p
j to deduce

a formula which will select one among the t values c1j , c2j , . . . , ctj . Let us form a function

with p binary variables, f0 (z) =
(
z1j z

2
j . . . zpj

)
c1j where z =

(
z1j , z2j , . . . , z

p
j

)
. When each

zij = 1 for i = 1, 2, . . . p, f0 (z) = c1j . Thus, f0 (z) = c1j , when z1j + z2j + · · · + zpj = p. Again,
let us assume a function

f1 (z) =
(
1 − z1j

)
z2j . . . zpj c

2
j +

(
1 − z2j

)
z1j z

3
j . . . zpj c

3
j + · · · +

(
1 − zpj

)
z1j . . . zp−1

j c1+
pC1

j
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When z1j + z2j + · · · + zpj = p − 1, f1 (z) gives output one of the following ctj s:
c2j , c3j , . . . , c

1+pC1
j . Similarly, we consider

f2 (z) =
(
1 − z1j

) (
1 − z2j

)
z3j . . . zpj c

1+pC1+1
j +

(
1 − z1j

) (
1 − z3j

)
z2j z

4
j . . . zpj c

1+pC1+2
j + · · · +(

1 − z1j
) (

1 − zpj
)
z2j . . . zp−1

j c1+
pC1+(p−2)

j +
(
1 − z2j

) (
1 − z3j

)
z1j z

4
j . . . zpj c

1+pC1+(p−2)+1
j +

...
+

(
1 − zp−1

j

) (
1 − zpj

)
z1j . . . zp−2

j c1+
pC1+pC2

j

When z1j + z2j + · · · + zpj = p− 2, the above function f2 (z) gives one among the following
ctj s: c

1+pC1+1
j , c1+

pC1+2
j , . . . , c1+

pC1+pC2
j .

Proceeding in the same manner, we find

fd (z) =
(
1 − z1j

) (
1 − z2j

)
· · ·

(
1 − zdj

)
zd+1
j · · · zpj c1+

pC1+pC2+···+pCd−1+1
j

+
(
1 − z1j

) (
1 − z2j

)
· · ·

(
1 − zd−1

j

) (
1 − zd+1

j

)
zdj z

d+2
j · · · zpj c1+

pC1+pC2+···+pCd−1+2
j +

...
+

(
1 − zp−d+1

j

) (
1 − zp−d+2

j

) (
1 − zpj

)
z1j . . . zp−d

j c1+
pC1+pC2+···+pCd

j

When z1j + z2j + · · · + zpj = p − d, the above function gives one among the following
ctj s: c

1+pC1+pC2+···pCd−1+1
j , c1+

pC1+pC2+···pCd−1+2
j , . . . , c1+

pC1+pC2+···pCd−1+pCd
j .

When k = 0, the function f (z) = f0 (z) + f1 (z) + · · · + fd (z) gives one of the value ctj
for all z satisfying p − d ≤ z1j + z2j + · · · + zpj ≤ p.

If k �= 0, then k <p Cd+1 and we formulate the function

fd+1 (z) =
(
1 − zi1j

) (
1 − zi2j

)
. . .

(
1 − zidj

) (
1 − zid+1

j

)
zd+2
j . . . znj c

t−k+1
j

+
(
1 − zi1j

) (
1 − zi2j

)
. . .

(
1 − zidj

) (
1 − zid+2

j

)
zd+1
j zd+3

j . . . zpj c
t−k+2
j

+ · · · +
(
terms up to ctj

)
When z1j + z2j +· · ·+ zpj = p− (d + 1), fd+1 (z) can give one output among pCd+1 number
of choices. Here we have used pCd+1 − k restrictions to restrict its possible outputs in k
numbers. Let the kth term occur at i1 = i′1, i2 = i′2, . . . , id+1 = i′d+1, then the restrictions
are
p − (d + 1) ≤ zi1j + zi2j + · · · + zipj ≤ p
zi1j + zi2j + · · · + zid+1

j ≥ 1, for all i1 = i′1, i2 = i′2, . . . id = i′d , ip ≥ id+1 > i′d+1;
zi1j + zi2j + · · · + zid+1

j ≥ 1, for all i1 = i′1, i2 = i′2, . . . , id−1 = i′d−1, ip−1 ≥ id > i′d;
...
zi1j + zi2j + · · · + zid+1

j ≥ 1, for all ip−d−1 ≥ i1 > i′1.

Thus, f (z) = f0 (z) + f1 (z) + · · · + fd (z) + fd+1 (z) gives the generalized selection function of
the multi-choice ctj s.
Without loss of any generality in treating the value of ctj = 1 and using the product and

summation notation, we have formulated the following formulae to select the crisp value
of multi-choice parameters:

p∏
i=1

zij +
p∑

i1=1

⎡
⎣(

1 − zi1j
) p∏
i=1,i�=i1

zij

⎤
⎦ +

p∑
i2=2i2>i1

p∑
i1=1

⎡
⎣(

1 − zi1j
) (

1 − zi2j
) p∏
i=1(i�=i1,i2)

zij

⎤
⎦

+ · · · +
p∑

id=d
id>i(d−1)

p∑
id−1=d−1
id−1>id−2

. . .

p∑
i1=1

⎡
⎣(

1 − zi1j
) (

1 − zi2j
)

. . .
(
1 − zidj

) p∏
i=1,i�=(i1,..,id)

zij

⎤
⎦
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where p − d ≤ zi1j + zi2j + · · · + zipj ≤ p for all i1 < i2 < · · · < ip.
When k �= 0, we add first k terms with the above function from the following formula:

(
1 − zi1j

) (
1 − zi2j

)
. . .

(
1 − zidj

) (
1 − zid+1

j

) p∏
i=1,i�=(i1,..,id ,id+1)

zij

+
(
1 − zi1j

) (
1 − zi2j

)
. . .

(
1 − zidj

) (
1 − zid+2

j

) p∏
i=1,i�=(i1,..,id ,id+2)

zij

+ · · · · · +
(
1 − zi1j

) (
1 − zi2j

)
. . .

(
1 − zidj

) (
1 − zipj

) p∏
i=1,i�=(i1,..,id ,ip)

zij

+
(
1 − zi1j

) (
1 − zi2j

)
. . .

(
1 − zid+1

j

) (
1 − zid+2

j

) p∏
i=1,i�=(i1,..,id+1,id+2)

zij

+
(
1 − zi1j

) (
1 − zi2j

)
. . .

(
1 − zid+1

j

) (
1 − zid+3

j

) p∏
i=1,i�=(i1,..,id+1)

zij+

...

+
(
1 − zip−(d+1)

j

) (
1 − zip−(d−1)

j

)
. . .

(
1 − zip−1

j

) (
1 − zipj

) p∏
i=1

i�=(ip−d−1,ip−d+1...,ip)

zij

Assuming that i1 < i2 < · · · · < ip and let kth term occurred at i′1, i′2, . . . , i′d+1, then the
restrictions are

p − (d + 1) ≤ zi1j + zi2j + · · · + zipj ≤ p
zi1j + zi2j + · · · + zid+1

j ≥ 1, for all i1 = i′1, i2 = i′2, . . . id = i′d, ip ≥ id+1 > i′d+1;
zi1j + zi2j + · · · + zid+1

j ≥ 1, for all i1 = i′1, i2 = i′2, . . . , id−1 = i′d−1, ip−1 ≥ id > i′d;
...
zi1j + zi2j + · · · + zid+1

j ≥ 1, for all ip−d−1 ≥ i1 > i′1.

Let C̃t
ij =

T∑
g=1

(term)g Ctg
ij i = 1, 2, . . . ,m; j = 1, 2, . . . , n (9)

where (term)g (for g = 1, 2, . . . ,T) are the T number of terms in the functions of the
binary variables mentioned in above. Similarly,

ãi =
P∑

g=1
(term)g agi i = 1, 2, . . . ,m (10)

and b̃j =
Q∑

g=1
(term)g bgj j = 1, 2, . . . , n (11)

where (term)g (for g = 1, 2, . . . ,P) is the P number of terms in the functions of the binary
variables mentioned above to reduce the P number of choices agi to single choice a′

i, and
(term)g (for g = 1, 2, . . . ,Q) is the Q number of terms in functions of binary variables
mentioned above to reduce the Q number of choices bgj to single choice b′

j.
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Reduction of MCMTP to MOTP

The MCMTP as given in the Model M1 transformed to a MOTP by transforming the
multi-choice parameters in the objective functions (5) and the multi-choice supplies and
demands in constraints (6) and (7) to single-valued ones, using the technique described in
subsection “Transformation technique for multi-choice parameters like cost, supply, and
demand to the equivalent form”. Thus, the equivalent MOTP of Model M1 is given in the
following model:
Model M2

min : Zt =
m∑
i=1

n∑
j=1

C′t
ij xij, t = 1, 2, . . . ,K (12)

subject to
n∑

j=1
xij ≤ a′

i, i = 1, 2, . . . ,m (13)

n∑
i=1

xij ≥ b′
j, j = 1, 2, . . . , n (14)

and xij ≥ 0, ∀ i and j (15)

Here C′t
ij , a′

i, b′
j are the reduced cost, supply, and demand parameters of tth

objective function in MOTP, respectively, and
∑m

i=1 max
{
ã1i , ã2i , . . . , ã

p
i
} ≥ ∑n

j=1

min
{
b̃1j , b̃2j , . . . , b̃

q
j

}
is the feasibility condition.

The transportation problem Model M2 is same as the problem described in Model 1.
We can solve the Model M2 as the procedure described using the different techniques to
solve Model 1.

Solution procedure

The approaches such as goal programming and revised multi-choice goal programming
are used to solve the MOTP, which are defined as follows:

A. Goal programming approach
Let us briefly discuss the goal programming approach for solving MOTP (see Model

1A). If d+
t and d−

t be positive and negative deviations corresponding to the tth goal of the
objective function, then the mathematical model is defined as follows:

Model 1A

min
K∑
t=1

wt
(
d+
t + d−

t
)

(16)

subject to Zt (X) − d+
t + d−

t = yt , t = 1, 2, . . . ,K (17)

gt,min ≤ yt ≤ gt,max, t = 1, 2, . . . ,K (18)

d+
t , d

−
t ≥ 0, t = 1, 2, . . . ,K (19)

and (2) to (4)

B. Revised multi-choice goal programming approach
In the similar way, the RMCGP is introduced to solve the MOTP. Let us assume that

the multiple goals are considered to the objective functions and this can be achieved by
considering the following model (seeModel 1B) as
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Model 1B

min
K∑
t=1

wt
(
d+
t + d−

t
) + αt

(
e+t + e−t

)
(20)

subject to Zt (X) − d+
t + d−

t = yt , t = 1, 2, . . . ,K (21)

yt − e+t + e−t = gt,max, or gt,min t = 1, 2, . . . ,K (22)

gt,min ≤ yt ≤ gt,max, t = 1, 2, . . . ,K (23)

d+
t , d

−
t , e

+
t , e

−
t ≥ 0, t = 1, 2, . . . ,K (24)

and (2) to (4)

where tth aspiration level is defined as yt which is the continuous variable that lies
between the upper

(
gt,max

)
and lower

(
gt,min

)
bounds. Again, e+t and e−t are positive and

negative deviations attached to tth goal of |yt − gt,max|, and αt is the weight attached to
the sum of the deviations of |yt − gt,max|.

Utility function approach to solveMOTP

Here, the concept of utility function has been addressed to solve MOTP. A short intro-
duction is presented here and then we discuss the methodology for solving MOTP using
utility function.

Utility function

In this paper, introduction of utility is taken to be correlative to ‘Desire’ or ‘Want’. It has
been already argued that desire cannot be measured directly, but only indirectly, by the
outward phenomena in which the context is presented.

Definition 1. The utility function describes a function U : X −→ 	 which assigns a real
number to every outcome in such a way that it captures DM’s preferences over the desired
goals of the objectives, where X is the set of feasible points and 	 is the set of real numbers.

The purpose of this study is to derive the achievement function of MOTP under the
light of utility function for the DM according to the priority of goals. In our proposed
approach, the DM wants to maximize his/her expected utility. For the sake of simplicity,
two popular utility functions (linear and S-shaped) are considered as follows.
Linear utility function ui (yi) for decision-making (management) problems can be found

in Lai and Hwang [14] and S-shaped utility function (for the same purpose) has been
proposed by Chang [15]. The utility function is generally considered in three cases as
follows:

Case 1: Left linear utility function (LLUF)

ui (yi) =

⎧⎪⎨
⎪⎩
1, if yi ≤ gi,min
gi,max−yi

gi,max−gi,min
, if gi,min ≤ yi ≤ gi,max,

0, if if yi ≥ gi,max

i = 1, 2, . . . ,K

Case 2: Right linear utility function (RLUF)

ui (yi) =

⎧⎪⎨
⎪⎩
1, if yi ≥ gi,max
yi−gi,min

gi,max−gi,min
, if gi,min ≤ yi ≤ gi,max,

0, if if yi ≤ gi,min

i = 1, 2, . . . ,K
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Case 3: S-shaped utility function

ui (yi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if yi ≤ gi2
yi−gi2
gi8−gi2 , if gi2 ≤ yi ≤ gi4
yi−gi3
gi6−gi3 , if gi4 ≤ yi ≤ gi5
yi−gi1
gi7−gi1 , if gi5 ≤ yi ≤ gi7

, i = 1, 2, . . . ,K

where gi,min and gi,max are lower and upper bounds corresponding to the ith goal respec-
tively. The graphs of above utility functions are drawn in the following figures (see
Figures 1,2 and 3).

Model formulation for case 1

The DM would like to increase the utility value ut (yt) as much as possible in the case of
LLUF (Figure 1). In order to achieve this goal, the value of yt should be as close to the
target value gt,min as possible. The MOTP from Model 1A can be reformulated using the
proposed LLUF as follows:
Model 2A

min
K∑
t=1

wt
(
d+
t + d−

t
) + βt f −

t (25)

subject to Zt (X) − d+
t + d−

t = yt , t = 1, 2, . . . ,K (26)

gt,min ≤ yt ≤ gt,max, t = 1, 2, . . . ,K (27)

ut ≤ gt,max − yt
gt,max − gt,min

, t = 1, 2, . . . ,K (28)

ut + f −
t = 1, t = 1, 2, . . . ,K (29)

ut , f −
t ≥ 0, t = 1, 2, . . . ,K (30)

and (2) to (4)

Figure 1 LLUF.
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Figure 2 RLUF.

where βt is the weight attached to deviation f −
t . The role of weight βt can be seen as the

preferential component for the utility value ut .

Proposition 1. Achievement of optimal utility in the LLUF (Figure 1) is equivalent to the
optimal solution of Model 2A.

Proof. When ut approaches to the highest value 1, then the deviation f −
t → 0 of the

utility function (from Equation 29), because f −
t should be minimized in the objective

function to obtain the optimal solution of Model 2A. This represents yt approach to gt,min
(from Equation 28), and Zt(X) is also closer to gt,min (from Equation 26) because d+

t and

Figure 3 S-shaped utility function.
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d−
t should also be minimized in the objective function. It is obvious that the behavior of

Model 2A and the level of utility are achieved. This completes the proof.

Model formulation for case 2

The DM would like to increase the utility value ut (yt) as much as possible in the case of
RLUF (Figure 2). In order to achieve this goal, the value of yt should be as close to the
target value gt,max as possible. The MOTP from Model 1A can be reformulated using the
proposed RLUF as follows:

Model 2B min
K∑
t=1

wt
(
d+
t + d−

t
) + βt f −

t

subject to Zt (X) − d+
t + d−

t = yt , t = 1, 2, . . . ,K

gt,min ≤ yt ≤ gt,max, t = 1, 2, . . . ,K

ut ≤ yt − gt,min
gt,max − gt,min

ut + f −
t = 1

ut , f −
t ≥ 0

and (2) to (4)

where βt is the weight attached to the deviation f −
t . The role of weight βt can be seen as a

preferential component for the utility value ut .

Proposition 2. Achievement of optimal utility in the RLUF (Figure 2) is equivalent to the
optimal solution of Model 2B.

Proof. Similar way can be followed as we have done in Proposition 1.

The advantages of the use of LLUF and RLUF in the decision-making problems are as
follows:

(1) The DM can easily formulate their MOTP by taking into account their preference
mappings with utility functions in real situation.

(2) The two linear utility models represented as linear form which can be easily solved
using software.

Due to variation of deviation variables d+
t , d

−
t , and f − in different ranges, biasness may

occur towards the objective functions with larger magnitude. Normalization technique
may help to remove this biasness. Several normalization approaches such as percentage,
Euclidean, summation, and zero-one notarizations (Tamiz et al. [12]; Kettani et al. [16])
are available to execute this. According to the normalization technique proposed by
Tamiz et al. [12], Model 2A can be redesigned as follows:

Model 2AN min
K∑
t=1

[
wt

(
d+
t + d−

t
) + βt f −

t
φt

]

subject to (26) to (30) and (2) to (4)

where φt is the normalization constant for tth goal.
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In order to solve this problem, utility normalization concept is introduced as follows:
Let d+

t , d
−
t ∈ [0, ūt] and f −

t ∈ [0, 1] where ūt is the upper bound of d+
t and d−

t . The
normalized weights wt and βt can be easily obtained as wt = 1

1+ūt and βt = ūt
1+ūt . This

technique of normalization ensures that deviation variables d+
t , d

−
t , and f

−
t approximated

the same magnitude. Similarly, the same methodology can be applied to the Model 2B.
The utility value for S-shaped utility function can be expressed as a sum of linear utility

functions (RLUF or LLUF) by introducing binary variables [17]. But Chang [15] proposed
in his paper that the utility value for S-shaped utility function can be considered without
using the binary variables and this is shown in the following model (seeModel 2C):

Model 2C

min
K∑
t=1

wt
[
pt1 + pt2 + pt3

] + βt f −
t

subject to Zt (X) − d+
t + d−

t = yt , t = 1, 2, . . . ,K
gt,min ≤ yt ≤ gt,max, t = 1, 2, . . . ,K ,

ut =[ut
(
gt4

) − ut
(
gt2

)
]
pt1 − pt2
gt4 − gt2

+[ut
(
gt5

) − ut
(
gt4

)
]
pt2 − pt3
gt5 − gt4

+[ut
(
gt7

) − ut
(
gt5

)
]

pt3
gt7 − gt5

, t = 1, 2, . . . ,K

yt − pt1 + nt1 = gt2, t = 1, 2, . . . ,K
yt − pt2 + nt2 = gt4, t = 1, 2, . . . ,K
yt − pt3 + nt3 = gt5, t = 1, 2, . . . ,K

ut + f −
t = 1, t = 1, 2, . . . ,K

ut , ptl , ntl ≥ 0, t = 1, 2, . . . ,K , l = 1, 2, 3
and (2) to (4)

MCMTP which occurred in many real-life situations can be reduced to MOTP and then
the problem can be reduced to the models such as 2A, 2B, and 2C, with interval goals
under the consideration of utility functions related to these goals. Solving the formulated
problem, the DM obtained the satisfactory solution.

Numerical examples
Here we have presented two numerical examples; the first one explores the applicability
of MOTP and the second one represents the applicability of MCMTP.

Case 1

Let us consider the following MOTP (seeModel 3) with three objectives:

Model 3

Goal 1: Z1 = 7x11 + 8x12 + 7.5x13 + 8x21 + 7.2x22 + 8.4x23 + 9x31 + 8x32 + 7.7x33
with goal as [170, 220], more is better, follows RLUF.

Goal 2: Z2 = 50x11 + 65x12 + 62x13 + 60x21 + 55x22 + 58x23 + 65x31 + 60x32 + 58x33
with goal as [1,550; 1,800], less is better, follows LLUF.

Goal 3: Z3 = 10x11 + 8x12 + 9x13 + 8.5x21 + 9.5x22 + 8.5x23 + 9.5x31 + 8.8x32 + 9x33
with goal as [200, 290], more is better, follows S-shaped utility function as given in
Figure 4.
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Figure 4 S-shaped utility function for the goal 3 of the proposed example.

subject to x11 + x12 + x13 ≤ 10 (31)

x21 + x22 + x23 ≤ 9 (32)

x31 + x32 + x33 ≤ 11 (33)

x11 + x21 + x31 ≥ 9 (34)

x12 + x22 + x32 ≥ 8 (35)

x13 + x23 + x33 ≥ 10 (36)

xij ≥ 0, ∀ i, j = 1, 2, 3 (37)

To achieve the goals in the proposed problem (see Model 3), we may formulate the
following models.
In the proposed problem, the deviations of goals 1, 2, 3 are 50, 250, 90, respectively. By

considering the weights w1 = 1
50 ,w2 = 1

250 ,w3 = 1
90 for the Model 1A, the above Model

3 reduces to the following model (seeModel 3A) as

Model 3A

min
1
50

(
d+
1 + d−

1
) + 1

250
(
d+
2 + d−

2
) + 1

90
(
d+
3 + d−

3
)

subject to Z1 = 7x11 + 8x12 + 7.5x13 + 8x21 + 7.2x22 + 8.4x23
+ 9x31 + 8x32 + 7.7x33 − d+

1 + d−
1 = y1

170 ≤ y1 ≤ 220

Z2 = 50x11 + 65x12 + 62x13 + 60x21 + 55x22 + 58x23
+ 65x31 + 60x32 + 58x33 − d+

2 + d−
2 = y2

1550 ≤ y2 ≤ 1800

Z3 = 10x11 + 8x12 + 9x13 + 8.5x21 + 9.5x22 + 8.5x23
+ 9.5x31 + 8.8x32 + 9x33 − d+

3 + d−
3 = y3

200 ≤ y3 ≤ 290
d+
t , d

−
t ≥ 0, t = 1, 2, 3
and (31) to (37)



Maity and Roy Journal of Uncertainty Analysis and Applications 2014, 2:11 Page 14 of 20
http://www.juaa-journal.com/content/2/1/11

Again, considering the same weights wt as used in Model 3A for all t = 1, 2, 3 and
setting αt = wt for t = 1, 2, 3 for deviation of goals and using Model 1B, Model 3 reduces
to the following model (seeModel 3B) as

Model 3B

min
1
50

(
d+
1 + d−

1
) + 1

250
(
d+
2 + d−

2
) + 1

90
(
d+
3 + d−

3
)

+ 1
50

(
e+1 + e−1

) + 1
250

(
e+2 + e−2

) + 1
90

(
e+3 + e−3

)
subject to 7x11 + 8x12 + 7.5x13 + 8x21 + 7.2x22 + 8.4x23

+ 9x31 + 8x32 + 7.7x33 − d+
1 + d−

1 = y1
y1 − e+1 + e−1 = 220

170 ≤ y1 ≤ 220

50x11 + 65x12 + 62x13 + 60x21 + 55x22 + 58x23
+ 65x31 + 60x32 + 58x33 − d+

2 + d−
2 = y2

y2 − e+2 + e−2 = 1550

1550 ≤ y2 ≤ 1800

10x11 + 8x12 + 9x13 + 8.5x21 + 9.5x22 + 8.5x23
+ 9.5x31 + 8.8x32 + 9x33 − d+

3 + d−
3 = y3

y3 − e+3 + e−3 = 290

200 ≤ y3 ≤ 290

d+
t , d

−
t , e

+
t , e

−
t ≥ 0, t = 1, 2, 3

and (31) to (37)

Using the concept of utility function described in section “Transformation technique for
multi-choice parameters like cost, supply, and demand to the equivalent form”, Model 3
can be reformulated as follows.
The consideration of utility function depends on the DM. Here, we assume that goals

1, 2, and 3 follow the utility functions LLUF (Figure 1), RLUF (Figure 2), and S-shaped
utility function as given in Figure 4, respectively. In the given example, the upper bound of
variations d+

1 , d
−
1 , d

+
2 , d

−
2 , d

+
3 , d

−
3 are 50, 50, 250, 250, 90, 90, respectively, and the upper

bounds of f −
1 , f −

2 , f −
3 are 1. We find the weights as described in Section “Mathematical

model” as follows: w1 = 1
50 , w2 = 1

250 , w3 = 1
90 ,β1 = 50

51 , β2 = 250
251 , β3 = 90

91 .
With these supplied data, Model 3 can be reformulated as follows (seeModel 3C):

Model 3C

min w1
(
d+
1 + d−

1
) + β1f −

1 + w2
(
d+
2 + d−

2
) + β2f −

2 + w3
(
d+
31 + d+

32 + d+
32

) + β3f −
3

subject to 7x11 + 8x12 + 7.5x13 + 8x21 + 7.2x22 + 8.4x23
+ 9x31 + 8x32 + 7.7x33 − d+

1 + d−
1 = y1

u1 ≤ 220 − y1
50

f −
1 + u1 = 1

170 ≤ y1 ≤ 220
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50x11 + 65x12 + 62x13 + 60x21 + 55x22 + 58x23
+ 65x31 + 60x32 + 58x33 − d+

2 + d−
2 = y2

u2 ≤ y2 − 1550
250

f −
2 + u2 = 1

1550 ≤ y2 ≤ 1800

10x11 + 8x12 + 9x13 + 8.5x21 + 9.5x22 + 8.5x23

+ 9.5x31 + 8.8x32 + 9x33 − d+
3 + d−

3 = y3

u3 = (.4 − 0) (d31 − d32) /30 + (1 − .4) (d32 − d33) /40 + (.85 − 1) d33/20

y3 − d31 + dn31 = 230, y3 − d32 + dn32 = 270, y3 − d33 + dn33 = 290

d31dn31 = 0, d32dn32 = 0, d33dn33 = 0, f −
3 + u3 = 1

ut ≥ 0, f −
t ≥ 0 ∀ t = 1, 2, 3

and (31) to (37)

Results and discussion for problem given in case 1

Using LINGO software, we solved Models 3A, 3B, and 3C and reported the solution as
follows:

The optimal solution of Model 3A is reported as
x11 = 0, x12 = 9, x13 = 1, x21 = 0, x22 = 0, x23 = 9, x31 = 6, x32 = 0, x33 = 0;
Z1 = 209.1,Z2 = 1559,Z3 = 214.5.

The optimal solution of Model 3B is as follows:
x11 = 10, x12 = 0, x13 = 0, x21 = 0, x22 = 9, x23 = 0, x31 = 0, x32 = 0, x33 = 11;
Z1 = 219.50,Z2 = 1633,Z3 = 284.5.

The optimal solution of Model 3C is also as follows:
x11 = 10, x12 = 0, x13 = 0, x21 = 0, x22 = 5, x23 = 4, x31 = 0, x32 = 3, x33 = 7;
Z1 = 217.5,Z2 = 1593,Z3 = 270.9.

Here, the solution obtained in Model 3B is better compared with the solution of Model
3A, but the DM is not satisfied because in the proposed problem, satisfying the goal is
not only the important notion but is also a utility factor to the DM which is important for
the decision-making (management) problem. When the utility value is more important
rather than the benefit, then the solutions obtained in Model 3A or in Model 3B are not
satisfactory to the DM to make an appropriate decision. The marketing survey indicates
that the higher utility value of goal 3 will increase the number of customers to the network
service provider company. The solution obtained in Model 3C demonstrated the high
utility value of goal 3, whenever the other two models failed to give satisfactory results
(Table 1). In this context, we may suggest that the utility function approach provided
better result compared with other results obtained in classical techniques like GP and
RMCGP.
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Table 1 Comparison of achieved goals obtained from the different methods

Method Achievement of Achievement of Achievement of
goal 1 (%) goal 2 (%) goal 3 (%)

GP 75 95 40

RMCGP 99 60 90

Utility approach 98 80 99

Case 2

Let us consider the following MCMTP (see Model 3) with two objectives:

Model 4

Goal 1: z1 = {5 or 7} x11 + 8x12 + {7 or 6 or 10} x13 + {6 or 8} x21 + 8x22 + 10x23
with goal as [150,200], more is better, but follows S-shape utility function (Figure 5).

Goal 2: z2 = 15x11 + {18 or 16} x12 + 17x13 + 16x21 + {18 or 20} x22 + 20x23
with goal as [400,500], less is better, follows LLUF:

subject to x11 + x12 + x13 ≤ {11 or 13 or 12 or 16} (38)

x21 + x22 + x23 ≤ {14 or 13} (39)

x11 + x21 ≥ {8 or 7} (40)

x12 + x22 ≥ {7 or 8 or 6} (41)

x13 + x23 ≥ 9 (42)

xij ≥ 0∀ i = 1, 2 and j = 1, 2, 3. (43)

Model 4 is equivalent to the following model (seeModel 5).

Model 5

Goal 1: Z1 = {
5z1111 + 7

(
1 − z1111

)}
x11 + 8x12 + {

7z1211z1311 + 6z1211
(
1 − z1311

)
+ 10z1311

(
1 − z1211

)}
x13 + {

6z2111 + 8
(
1 − z2111

)}
x21 + 8x22 + 10x23

with goal as [150,200], more is better, but follows S-shape utility function (Figure 5).

Figure 5 S-shaped utility function for goal 2 in case 2.
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Goal 2: Z2 = 15x11 + {
18z1112 + 16

(
1 − z1112

)}
x12 + 17x13 + 16x21

+ {
18z1212 + 20

(
1 − z1212

)}
x22 + 20x23

with goal as [400,500], less is better, follows LLUF:

subject to x11 + x12 + x13

≤ {
11z111 z121 + 13z111

(
1 − z121

) + 12z121
(
1 − z111

) + 16
(
1 − z111

) (
1 − z121

)}
(44)

x21 + x22 + x23 ≤ {
14z112 + 16

(
1 − z112

)}
(45)

x11 + x21 ≥ {
8z11 + 7

(
1 − z11

)}
(46)

x12 + x22 ≥ {
7z21z22 + 8z21

(
1 − z22

) + 6z22
(
1 − z21

)}
(47)

x13 + x23 ≥ 9 (48)

xij ≥ 0∀ i = 1, 2 and j = 1, 2, 3. (49)

z1211 + z1311 ≥ 1 (50)

z21 + z22 ≥ 1 (51)

z1111, z1211, z1311, z1112, z1212 = 0 or 1 (52)

z111 , z121 , z112 = 0 or 1 (53)

z11, z21, z22 = 0 or 1 (54)

In the given problem in Model 5, the deviations of goal 1, goal 2 are 50, 100 respectively.
By considering the weights w1 = 1

50 ,w2 = 1
100 for the Model 1A, Model 5 reduces to

Model 5A as

Model 5A

min
1
50

(
d+
1 + d−

1
) + 1

100
(
d+
2 + d−

2
)

subject to
{
5z1111 + 7

(
1 − z1111

)}
x11 + 8x12 + {

7z1211z
13
11 + 6z1211

(
1 − z1311

)
+ 10z1311

(
1 − z1211

)}
x13 + {

6z2111 + 8
(
1 − z2111

)}
x21 + 8x22 + 10x23 − d+

1 + d−
1 = y1,

150 ≤ y1 ≤ 200,

15x11 + {
18z1112 + 16

(
1 − z1112

)}
x12 + 17x13 + 16x21

+ {
18z1212 + 20

(
1 − z1212

)}
x22 + 20x23 − d+

2 + d−
2 = y2,

400 ≤ y2 ≤ 500,

d+
t , d

−
t ≥ 0, t = 1, 2

and (44) to (54)

Again, considering the same weights wt as used in Model 3A for all t = 1, 2 and the
weights αt = wt for t = 1, 2 for deviation of goals and using the Model 1B, Model 5
reduces toModel 5B as
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Model Ex. 5B

min
1
50

(
d+
1 + d−

1
) + 1

100
(
d+
2 + d−

2
) +

+ 1
50

(
e+1 + e−1

) + 1
100

(
e+2 + e−2

)
subject to

{
5z1111 + 7

(
1 − z1111

)}
x11 + 8x12 + {

7z1211z
13
11 + 6z1211

(
1 − z1311

)
+ 10z1311

(
1 − z1211

)}
x13 + {

6z2111 + 8
(
1 − z2111

)}
x21 + 8x22 + 10x23 − d+

1 + d−
1 = y1,

y1 − e+1 + e−1 = 200,

150 ≤ y1 ≤ 200,

15x11 + {
18z1112 + 16

(
1 − z1112

)}
x12 + 17x13 + 16x21

+ {
18z1212 + 20

(
1 − z1212

)}
x22 + 20x23 − d+

2 + d−
2 = y2,

y2 − e+2 + e−2 = 400,

400 ≤ y2 ≤ 500,

d+
t , d

−
t , e

+
t , e

−
t ≥ 0, t = 1, 2

and (44) to (54)

Let us solve the proposed problem (see Model 3) using the concept of utility function.
The consideration of utility function depends on the DM. Here we assume that goal 1
and goal 2 follow the S-shaped utility function given in Figure 5 and the utility func-
tions LLUF (Figure 1) , respectively. In the given example, the upper bound of variations
d+
1 , d

−
1 ; d

+
2 , d

−
2 are 50, 100 respectively, and the upper bounds of f −

1 , f −
2 are 1. We find

the weights as suggested in Section “Mathematical model” as follows: w1 = 1
50 , β1 = 50

51 ,
w2 = 1

100 , β2 = 100
101 .

With these supplied data , Model 5 can be formulated as follows:
Model 5C

min w1
(
d+
11 + d+

12 + d+
13

) + β1f −
1 + w2

(
d+
2 + d−

2
) + β2f −

2

subject to
{
5z1111 + 7

(
1 − z1111

)}
x11 + 8x12 + {

7z1211z
13
11 + 6z1211

(
1 − z1311

)
+ 10z1311

(
1 − z1211

)}
x13 + {

6z2111 + 8
(
1 − z2111

)}
x21 + 8x22 + 10x23 − d+

1 + d−
1 = y1,

u1 = (.2 − 0) (d11 − d12) /10 + (1 − .2) (d12 − d13) /30 + (.85 − 1) d13/10

f3 − d11 + dn11 = 160, f3 − d12 + dn12 = 190, f3 − d13 + dn13 = 200

d11dn11 = 0, d12dn12 = 0, d13dn13 = 0,

f1 + u1 = 1,

15x11 + {
18z1112 + 16

(
1 − z1112

)}
x12 + 17x13 + 16x21

+ {
18z1212 + 20

(
1 − z1212

)}
x22 + 20x23 − d+

2 + d−
2 = y2,

u2 ≤ 200 − y2
100

,

f2 + u2 = 1,

400 ≤ y2 ≤ 500,

ut ≥ 0, ft ≥ 0 ∀ t = 1, 2

and (44) to (54)
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Results and discussion for problem given in case 2

Solving the model presented in Model 5A, the optimal solution of the Model 5A is
reported as x11 = 7, x12 = 5, x13 = 0, x21 = 0, x22 = 1, x23 = 10, and the values of the
objective functions are Z1 = 197,Z2 = 405.
The selection of the choices corresponding to the optimal solution is as follows:

c111 = 7, c112 = 8, c113 = 10, c121 = 8, c122 = 8, c123 = 10
c211 = 15, c212 = 16, c213 = 17, c221 = 16, c222 = 18, c223 = 20
a1 = 16, a2 = 14, b1 = 7, b2 = 6, b3 = 9

Solving the model presented in Model 5B, we have listed the following solution:

x11 = 7, x12 = 6, x13 = 0, x21 = 0, x22 = 0, x23 = 10, and the values of the objective
functions are Z1 = 197,Z2 = 401.

The selection of the choices corresponding to the optimal solution is as follows:

c111 = 7, c112 = 8, c113 = 10, c121 = 6, c122 = 8, c123 = 10
c211 = 15, c212 = 16, c213 = 17, c221 = 16, c222 = 18, c223 = 20
a1 = 16, a2 = 14, b1 = 7, b2 = 8, b3 = 9

Solving the model presented in Model 5C, we obtained the solution listed below:

x11 = 6, x12 = 3, x13 = 0, x21 = 0, x22 = 3, x23 = 10, and the values of the objective
functions are Z1 = 190,Z2 = 404.

The selection of the choices corresponding the optimal solution is as follows:

c111 = 7, c112 = 8, c113 = 10, c121 = 6, c122 = 8, c123 = 10
c211 = 15, c212 = 18, c213 = 17, c221 = 16, c222 = 20, c223 = 20
a1 = 12, a2 = 14, b1 = 7, b2 = 6, b3 = 9

Table 2 helps us to conclude that the solution of the MCMTP obtained in Model 5B is
better compared with the solution of Model 5A, but the DM is not satisfied because in
the proposed problem satisfying the goal is not only the important notion, but is also a
utility factor to the DM which is important for the decision-making (management) prob-
lem. When the utility value is more important rather than the benefit, then the solutions
obtained inModel 5A or inModel 5B are not satisfactory to the DM tomake the appropri-
ate decision. The solution obtained in the Model 5C demonstrated the high utility value
of goal 2, whenever the other two models failed to give satisfactory results. In this con-
text, we may suggest that the utility function approach provided better result compared
with other results.

Conclusions
In this paper, we have considered MCMTP where the cost, demand, and supply coef-
ficients are multi-choice type. Another important notion of this study is to give an
impression of goal preferences of the DM. The approach of utility function is the most
useful skill for representing the DM’s preferences. The concept of utility in this paper

Table 2 Comparison of achieved goals obtained from different methods

Method Achievement of Achievement of
goal 1 (%) goal 2 (%)

GP 85 96
RMCGP 85 98
Utility approach 100 95
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proposes a new approach for extending the utilization of real-life MCMTP. The MCMTP
gives a new direction to handle the real-life transportation problems when the trans-
portation parameters are multi-choice in nature. The numerical examples presented in
this paper explored the applicability and suitability for solving MOTP and MCMTP and
also for representing the DM’s preferences. In addition, the proposed method can be used
as a decision-making aid for multi-choice multi-objective decision-making problem that
occurred in the real-life purposes, like economical, agricultural, industrial management,
and military. In particular, in case of incomplete information, the DM can use the pro-
posedmethod to set the goals according to their own utility functions, while the proposed
method can easily find the better solution than the previous methods (GP, RMCGP) used
to solve MCMTP which is shown by the proposed examples in this paper.

Received: 31 December 2013 Accepted: 6 April 2014
Published: 30 April 2014

References
1. Chang, C-T: Multi-choice goal programming. Omega. 35, 389–396 (2007)
2. Chang, C-T: Revised multi-choice goal programming. Appl. Math. Model. 32, 2587–2595 (2008)
3. Mahapatra, DR, Roy, SK, Biswal, MP: Multi-choice stochastic transportation problem involving extreme value

distribution. Appl. Math. Modell. 37, 2230–2240 (2013)
4. Roy, SK, Mahapatra, DR, Biswal, MP: Multi-choice stochastic transportation problem with exponential distribution. J.

Uncert. Syst. 6(3), 200–213 (2013)
5. Al-nowaihi, A, Bradley, I, Dhami, S: The utility function under prospect theory. Econ. Lett. 99, 337–339 (2008)
6. Yu, BW-T, Pang, WK, Troutt, MD, Hou, SH: Objective comparisons of the optimal portfolios corresponding to different

utility functions. Eur. J. Oper. Res. 199, 604–610 (2009)
7. Podinovski, VV: Set choice problems with incomplete information about the preferences of the decision maker. Eur.

J. Oper. Res. 207, 371–379 (2010)
8. Charnes, A, Cooper, WW, Ferguson, RO: Optimal estimation of executive compensation by linear programming.

Manage. Sci. 1, 138–151 (1955)
9. Charnes, A, Cooper, WW: Management Model and Industrial Application of Linear Programming, Vol. 1. Wiley, New

York (1961)
10. Lee, SM: Goal Programming for Decision Analysis. Auerbach, Philadelphia (1972)
11. Ignizio, JP: Introduction to Linear Goal Programming. Sage, Beverly Hills (1985)
12. Tamiz, M, Jones, D, Romero, C: Goal programming for decision making: an overview of the current state-of-the-art.

Eur. J. Oper. Res. 111, 567–581 (1998)
13. Romero, C: Extended lexicographic goal programming: a unifying approach. Omega. 29, 63–71 (2001)
14. Lai, Y-J, Hwang, C-L: Fuzzy Multiple Objective Decision Making: Methods and Applications. Springer, Berlin (1994)
15. Chang, C-T: An approximation approach for representing S-shaped membership functions. IEEE Trans. Fuzzy Syst.

18, 412–424 (2010)
16. Kettani, O, Aouni, B, Martel, JM: The double role of the weight factor in the goal programming model. Comput. Oper.

Res. 31, 1833–1845 (2004)
17. Chang, C-T: Mixed binary interval goal programming. J. Oper. Res. Soc. 57, 469–473 (2006)

doi:10.1186/2195-5468-2-11
Cite this article as: Maity and Roy: Solving multi-choice multi-objective transportation problem: a utility function
approach. Journal of Uncertainty Analysis and Applications 2014 2:11.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Mathematical model
	Transformation technique for multi-choice parameters like cost, supply, and demand to the equivalent form
	Reduction of MCMTP to MOTP
	Solution procedure
	Utility function approach to solve MOTP
	Utility function
	Model formulation for case 1
	Model formulation for case 2


	Numerical examples
	Case 1
	Results and discussion for problem given in case 1
	Case 2
	Results and discussion for problem given in case 2

	Conclusions
	References

