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Abstract

Chance theory is a mathematical methodology for dealing with indeterminacy
phenomena involving uncertainty and randomness. In this paper, some properties of
chance space are investigated. Based on this, the subadditivity theorem, null-additivity
theorem, and asymptotic theorem of chance measure are proved.
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Introduction
Uncertainty theory founded by Liu [1] in 2007 is a branch of axiomatic mathematics based
on normality, duality, subadditivity, and product axioms. After that, many researchers
widely studied the uncertainty theory and made significative progress. Liu [1] presented
the concept of uncertain variable and uncertainty distribution. Then, a sufficient and
necessary condition of uncertainty distribution was proved by Peng and Iwamura [2] in
2010. In addition, a measure inversion theorem was proposed by Liu [3] from which the
uncertain measures of some events can be calculated via the uncertainty distribution.
After proposing the concept of independence [4], Liu [3] presented the operational law
of uncertain variables. In order to sort uncertain variables, Liu [3] proposed the concept
of expected value of uncertain variable. A useful formula was presented by Liu and Ha
[5] to calculate the expected values of monotone functions of uncertain variables. Based
on the expected value, Liu [1] presented the concepts of variance, moments, and distance
of uncertain variables. In order to characterize the uncertainty of uncertain variables, Liu
[4] proposed the concept of entropy in 2009. Dai and Chen [6] verified the positive lin-
earity of entropy and presented some formulas for calculating the entropy of monotone
function of uncertain variables. Chen and Dai [7] discussed the maximum entropy princi-
ple for selecting the uncertainty distribution that has maximum entropy and satisfies the
prescribed constraints. In order to make an extension of entropy, Chen et al. [8] proposed
a concept of cross-entropy for comparing an uncertainty distribution against a reference
uncertainty distribution. Liu [9] introduced a paradox of stochastic finance theory based
on uncertainty theory and uncertain differential equation. In addition, an uncertain inte-
gral was proposed by Chen and Ralescu [10] presented with respect to the general Liu
process.
In 2013, Liu [11] proposed chance theory by giving the concepts of uncertain random

variable and chance measure in order to describe the situation that uncertainty and ran-
domness appear in a system. Some related concepts of uncertain random variables such
as chance distribution, expected value, and variance were also presented by Liu [11].
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As an important contribution to chance theory, Liu [12] presented an operational law
of uncertain random variables. After that, uncertain random variables were discussed
widely. Yao and Gao [13] provided a law of large numbers for uncertain random vari-
ables. Gao and Yao [14] gave some concepts and theorems of uncertain random process.
In addition, Yao and Gao [13] proposed an uncertain random process as a generaliza-
tion of both stochastic process and uncertain process. As applications of chance theory,
Liu [12] proposed uncertain random programming. Uncertain random risk analysis was
presented by Liu and Ralescu [15]. Besides, chance theory was applied into many fields,
and many achievements were obtained, such as uncertain random reliability analysis
[16], uncertain random logic [17], uncertain random graph [18], and uncertain random
network [18].
In this paper, some properties of chance space are investigated. Based on this, the sub-

additivity theorem, null-additivity theorem, and asymptotic theorem of chance measure
are proposed.

Preliminary
As a branch of axiomatic mathematics, uncertainty theory aims to deal with human
uncertainty. In this section, we will provide a brief introduction to uncertain variables and
uncertain random variables, which will be used throughout this paper.

Uncertain variables

Definition 1. (Liu [1]) Let � be a non-empty set and L be a σ -algebra on �. Each ele-
ment in L is called an event. A set function M from L to [ 0, 1] is called an uncertain
measure if it satisfies the following axioms:

Axiom 1. (Normality Axiom)M{�} = 1 for the universal set �.
Axiom 2. (Duality Axiom)M{�} + M{�c} = 1 for any event �.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events �1,�2, · · · ,

we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

The triplet (�,L,M) is called an uncertainty space. In 2009, Liu [4] defined
product uncertain measure via the fourth axiom of uncertainty theory.

Axiom 4. (Product Axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · ·
Then, the product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

An uncertain variable is a real-valued function on an uncertainty space, which is defined
as follows.

Definition 2. (Liu [1]) Let (�,L,M) be an uncertainty space. An uncertain variable is
a measurable function from an uncertainty space (�,L,M) to the set of real numbers,
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i.e., for any Borel set B of real numbers, the set ξ−1(B) = {γ ∈ �
∣∣ ξ(γ ) ∈ B} is an

event.

In order to describe uncertain variables, a concept of uncertainty distribution was
introduced by Liu [1].

Definition 3. (Liu [1]) The uncertainty distribution � of an uncertain variable ξ is
defined by

�(x) = M{ξ ≤ x}

for any real number x.

Definition 4. (Liu [4]) The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent
if

M

{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1,B2, · · · ,Bn of real numbers.

Theorem 1. (Liu [1]) Assume that ξ1, ξ2, · · · , ξn are independent uncertain variables
with regular uncertainty distributions �1,�2, · · · ,�n, respectively. If f (x1, x2, · · · , xn)
is strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect
to xm+1, xm+2, · · · , xn, then ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse
uncertainty distribution

�−1(α) = f (�−1
1 (α), · · · ,�−1

m (α),�−1
m+1(1 − α), · · · ,�−1

n (1 − α)).

To represent the average value of an uncertain variable in the sense of uncertain
measure, the expected value is defined as follows.

Definition 5. (Liu [1]) Let ξ be an uncertain variable. Then, the expected value of ξ is
defined by

E[ ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

Definition 6. (Liu [1]) Let ξ be an uncertain variable with uncertainty distribution �.
If the expected value exists, then

E[ ξ ]=
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx. (1)

For calculating the expected value by inverse uncertainty distribution, Liu and Ha [5]
proved the following theorem.
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Theorem 2. (Liu and Ha [5]) Assume that ξ1, ξ2, · · · , ξn are independent uncer-
tain variables with regular uncertainty distributions �1,�2, · · · ,�n, respectively. If
f (x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing
with respect to xm+1, xm+2, · · · , xn, then the uncertain variable ξ = f (ξ1, ξ2, · · · , ξn) has
an expected value

E[ ξ ]=
∫ 1

0
f (�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α))dα. (2)

Uncertain random variables

In 2013, Liu [11] first proposed chance theory, which is a mathematical methodology
for modeling complex systems with both uncertainty and randomness, including chance
measure, uncertain random variable, chance distribution, operational law, expected value,
and so on. The chance space is referred to the product (�,L,M) × (
,A, Pr), in which
(�,L,M) is an uncertainty space and (
,A, Pr) is a probability space.

Definition 7. (Liu [11]) Let (�,L,M)× (
,A, Pr) be a chance space, and let � ∈ L×A

be an event. Then, the chance measure of � is defined as

Ch{�} =
∫ 1

0
Pr{ω ∈ 
 | M{γ ∈ �|(γ ,ω) ∈ �} ≥ r}dr.

Notation: For a real number r, the set �r = {ω ∈ 
 | M{γ ∈ �|(γ ,ω) ∈ �} ≥ r} is a
subset of 
 but not necessarily an event inA. In this case, Pr{�r} is assigned by

Pr{�r} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf
A∈A,A⊃�r

Pr{A}, if inf
A∈A,A⊃�r

Pr{A} < 0.5

sup
A∈A,A⊂�r

Pr{A}, if sup
A∈A,A⊂�r

Pr{A} > 0.5

0.5, otherwise

(3)

Liu [11] proved that a chance measure satisfies normality, duality, and monotonicity
properties, that is

(a) Ch{� × 
} = 1, Ch{∅} = 0;
(b) Ch{�} + Ch{�c} = 1 for any event �;
(c) Ch{�1} ≤ Ch{�2} for any event �1 ⊂ �2.

First, we give an equivalent definition of Pr{·} in (3).

Lemma 1. Let (�,A,M)× (
,A, Pr) be a chance space, and let � ∈ L×A be an event.
Denote that �B = {ω ∈ 
 | M{γ ∈ �|(γ ,ω) ∈ �} ∈ B} for any Borel set B. Then, we have

Pr{�B} = inf
A∈A,A⊃�B

Pr{A} ∧
(

sup
A∈A,A⊂�B

Pr{A} ∨ 0.5

)
(4)

Pr{�B} = sup
A∈A,A⊂�B

Pr{A} ∨
(

inf
A∈A,A⊃�B

Pr{A} ∧ 0.5
)

(5)

Proof. The argument breaks down into three cases.
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Case 1: inf
A∈A,A⊃�B

Pr{A} < 0.5. In this case, note that

(
sup

A∈A,A⊂�B

Pr{A} ∨ 0.5

)
≥ 0.5.

Then, we have

inf
A∈A,A⊃�B

Pr{A} ∧
(

sup
A∈A,A⊂�B

Pr{A} ∨ 0.5

)
= inf

A∈A,A⊃�B
Pr{A}.

Case 2: sup
A∈A,A⊂�B

Pr{A} > 0.5. Then, we have

inf
A∈A,A⊃�B

Pr{A} ∧
(

sup
A∈A,A⊂�B

Pr{A} ∨ 0.5

)

= inf
A∈A,A⊃�B

Pr{A} ∧ sup
A∈A,A⊂�B

Pr{A}

= sup
A∈A,A⊂�B

Pr{A}.

Case 3: Otherwise. It means inf
A∈A,A⊃�B

Pr{A} ≥ 0.5 and sup
A∈A,A⊂�B

Pr{A} ≤ 0.5. Then,

we have

inf
A∈A,A⊃�B

Pr{A} ∧
(

sup
A∈A,A⊂�B

Pr{A} ∨ 0.5

)

= inf
A∈A,A⊃�B

Pr{A} ∧ 0.5 = 0.5.

The equality (4) is proved. Note that

inf
A∈A,A⊃�B

Pr{A} ∧
(

sup
A∈A,A⊂�B

Pr{A} ∨ 0.5

)

=
(

inf
A∈A,A⊃�B

Pr{A} ∧ sup
A∈A,A⊂�B

Pr{A}
)

∨
(

inf
A∈A,A⊃�B

Pr{A} ∧ 0.5
)

= sup
A∈A,A⊂�B

Pr{A} ∨
(

inf
A∈A,A⊃�B

Pr{A} ∧ 0.5
)
.

Hence, the equality (5) holds.

Lemma 2. Let (�,L,M) × (
,A, Pr) be a chance space, and let � ∈ L×A be an event.
Denote that �B = {ω ∈ 
 | M{γ ∈ �|(γ ,ω) ∈ �} ∈ B} for any Borel set B. Then, we have

Pr{�B} + Pr{�Bc} = 1
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Proof. According to the equivalent definition of Pr{·} in Lemma 1, we have

Pr{�Bc } = inf
A∈A,A⊃�Bc

Pr{A} ∧
(

sup
A∈A,A⊂�Bc

Pr{A} ∨ 0.5

)

= inf
A∈A,Ac⊂�B

Pr{A} ∧
(

sup
A∈A,Ac⊂�B

Pr{A} ∨ 0.5

)

= inf
A∈A,A⊂�B

Pr{Ac} ∧
(

sup
A∈A,A⊂�B

Pr{Ac} ∨ 0.5

)

= inf
A∈A,A⊂�B

(1 − Pr{A}) ∧
(

sup
A∈A,A⊂�B

(1 − Pr{A}) ∨ 0.5

)

=
(
1 − sup

A∈A,A⊂�B

Pr{A}
)

∧
((

1 − inf
A∈A,A⊂�B

Pr{A}
)

∨ 0.5
)

=
(
1 − sup

A∈A,A⊂�B

Pr{A}
)

∧
(
1 − inf

A∈A,A⊂�B
Pr{A} ∧ 0.5

)

= 1 − sup
A∈A,A⊂�B

Pr{A} ∨
(

inf
A∈A,A⊃�B

Pr{A} ∧ 0.5
)

= 1 − Pr{�B}
The lemma is proved.

Lemma 3. Let (�,L,M) × (
,A, Pr) be a chance space, and let �1,�2 ∈ L×A be two
events satisfying �1 ⊂ �2. Then, we have

Pr{�1} ≤ Pr{�2}. (6)

Proof. �1 ⊂ �2, we have

inf
A∈A,A⊃�1

Pr{A} ≤ inf
A∈A,A⊃�2

Pr{A},

sup
A∈A,A⊂�1

Pr{A} ≤ sup
A∈A,A⊂�2

Pr{A}.

According to Lemma 1, we have

Pr{�1} = inf
A∈A,A⊃�1

Pr{A} ∧
(

sup
A∈A,A⊂�1

Pr{A} ∨ 0.5

)

≤ inf
A∈A,A⊃�2

Pr{A} ∧
(

sup
A∈A,A⊂�2

Pr{A} ∨ 0.5

)
= Pr{�2}.

The lemma is proved.

Theorem 3. (Subadditivity Theorem) The chance measure is subadditive. That is, for
any countable sequence of events �1,�2, · · · , we have

Ch

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

Ch {�i} .
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Proof. For each ω, it follows from the subadditivity of uncertain measure that

M

{
γ ∈ �|(γ ,ω) ∈

∞⋃
i=1

�i

}
≤

∞∑
i=1

M{γ ∈ �|(γ ,ω) ∈ �i}.

Thus, for any real number r, we have{
ω ∈ 
|M

{
γ ∈ �|(γ ,ω) ∈

∞⋃
i=1

�i

}
≥ r

}
⊂

{
ω ∈ 
|

∞∑
i=1

M {γ ∈ �|(γ ,ω) ∈ �i} ≥ r

}

According to Lemma 3, we have

Pr

{
ω ∈ 
|M

{
γ ∈�|(γ ,ω)∈

∞⋃
i=1

�i

}
≥r

}
≤Pr

{
ω ∈ 
|

∞∑
i=1

M {γ ∈ �|(γ ,ω) ∈ �i} ≥ r

}

By the definition of chance measure, we get

Ch

{ ∞⋃
i=1

�i

}
=

∫ 1

0
Pr

{
ω ∈ 
|M

{
γ ∈ �|(γ ,ω) ∈

∞⋃
i=1

�i

}
≥ r

}
dr

≤
∫ 1

0
Pr

{
ω ∈ 
|

∞∑
i=1

M {γ ∈ �|(γ ,ω) ∈ �i} ≥ r

}
dr

≤
∫ +∞

0
Pr

{
ω ∈ 
|

∞∑
i=1

M {γ ∈ �|(γ ,ω) ∈ �i} ≥ r

}
dr

=
∞∑
i=1

∫ +∞

0
Pr {ω ∈ 
|M {γ ∈ �|(γ ,ω) ∈ �i} ≥ r} dr

=
∞∑
i=1

∫ 1

0
Pr {ω ∈ 
|M {γ ∈ �|(γ ,ω) ∈ �i} ≥ r} dr

=
∞∑
i=1

Ch {�i} .

That is, the chance measure is subadditive.

Null-additivity is a direct deduction from the above theorem. In fact, a more general
theorem can be proved as follows.

Theorem 4. Let (�,L,M) × (
,A, Pr) be a chance space and �1,�2, · · · be a sequence
of events with Ch{�i} → 0 as i → ∞. Then, for any event �, we have

lim
i→∞Ch{� ∪ �i} = lim

i→∞Ch{� \ �i} = Ch{�}.

Proof. By using the monotonicity and subadditivity of chance measure, we have

Ch{�} ≤ Ch{� ∪ �i} ≤ Ch{�} + Ch{�i} (7)

for each i. For Ch{�i} → 0 as i → ∞, we get Ch{� ∪ �i} → Ch{�}. Note that � \ �i ⊂
� ⊂ ((� \ �i) ∪ �i). We have

Ch{� \ �i} ≤ Ch{�} ≤ Ch{� \ �i} + Ch{�i}. (8)

Hence, lim
i→∞Ch{� \ �i} = Ch{�}.
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Remark. From the above theorem, we know that the chance measure is null-additive.
That means Ch{�1 ∪ �2} = Ch{�1} +Ch{�2} if either Ch{�1} = 0 or Ch{�2} = 0.

Theorem 5. (Asymptotic Theorem) Let (�,L,M)×(
,A, Pr) be a chance space. For any
events �1,�2, · · · , we have

lim
i→∞Ch{�i} > 0, if �i ↑ � × 
, (9)

lim
i→∞Ch{�i} < 1, if �i ↓ ∅. (10)

Proof. Assume �i ↑ � × 
. Since � × 
 = ∪i�i, it follows from the subadditivity of
chance measure that

1 = Ch{� × 
} ≤
∞∑
i=1

Ch{�i}.

Note that Ch{�i} is increasing with respect to i. We get lim
i→∞Ch{�i} > 0. If �i ↓ ∅, then

�c
i ↑ � × 
. By using inequality (9) and the duality of chance measure, we have

lim
i→∞Ch{�i} = 1 − lim

i→∞Ch{�c
i } < 1.

The theorem is proved.

Competing interests
This paper proposed several properties of chance space. Besides, the subadditivity theorem, null-additivity theorem, and
asymptotic theorem of chance measure were proved.

Acknowledgements
This work was supported by the National Natural Science Foundation of China Grant No.61273044 and University
Science Research Project of Anhui Province No. KJ2011B105.

Received: 22 April 2014 Accepted: 1 May 2014
Published: 3 June 2014

References
1. Liu, B: Uncertainty Theory, 2nd Edition. Springer, Berlin (2007)
2. Peng, Z, Iwamura, K: A sufficient and necessary condition of uncertainty distribution, J. Interdisciplin. Math. 13(3),

277–285 (2010)
3. Liu, B: Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer, Berlin (2010)
4. Liu, B: Some research problems in uncertainty theory. J. Uncertain Syst. 3(1), 3–10 (2009)
5. Liu, Y, Ha, M: Expected value of function of uncertain variables. J. Uncertain. Syst. 4(3), 181–186 (2010)
6. Dai, W, Chen, X: Entropy of function of uncertain variables. Math. Comput. Modell. 55(3–4), 754–760 (2012)
7. Chen, X, Dai, W: Maximum entropy principle for uncertain variables. Int. J. Fuzzy. Syst. 13(3), 232–236 (2011)
8. Chen, X, Kar, S, Ralescu, D: Cross-entropy measure of uncertain variables. Inf. Sci. 201, 53–60 (2012)
9. Liu, B: Toward uncertain finance theory. J. Uncertain. Anal. Appl. 1(1) (2013). doi:10.1186/2195-5468-1-1
10. Chen, X, Ralescu, D: Liu process and uncertain calculus. J. Uncertain. Anal. Appl. 1(3) (2013).

doi:10.1186/2195-5468-1-3
11. Liu, Y: Uncertain random variables: a mixture of uncertainty and randomness. Soft Comp. 17(4), 625–634 (2013)
12. Liu, Y: Uncertain random programming with applications. Fuzzy Optim. Decis. Ma. 12(2), 153–169 (2013)
13. Yao, K, Gao, J: Law of large numbers for uncertain random variables. http://orsc.edu.cn/online/120401.pdf (2012).

Accessed 1 April 2012
14. Gao, J, Yao, K: Some concepts and theorems of uncertain random process. Int. J. Intell. Syst. (2014, in press)
15. Liu, Y, Ralescu, D: Risk index in uncertain random risk analysis. Int. J. Uncertain. Fuzz. (2014, in press)
16. Wen, M, Kang, R: Reliability analysis in uncertain random system. http://orsc.edu.cn/online/120419.pdf (2012).

Accessed 19 April 2012
17. Liu, Y: Uncertain random logic and uncertain random entailment. Technical Report (2013)
18. Liu, B: Uncertain random graph and uncertain random network. J. Uncertain Syst. 8(1), 3–12 (2014)

doi:10.1186/2195-5468-2-14
Cite this article as: Hou: Subadditivity of chance measure. Journal of Uncertainty Analysis and Applications 2014 2:14.

http://orsc.edu.cn/online/120401.pdf
http://orsc.edu.cn/online/120419.pdf

	Abstract
	Keywords

	Introduction
	Preliminary
	Uncertain variables
	Uncertain random variables

	Competing interests
	Acknowledgements
	References

