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Abstract

This paper proposes to study the concept of similarity and its use in the design of fuzzy
system. The concept of similarity relation is effectively used in fuzzification of crisp
values. Similarity index is used in measuring approximate (graded) equality of fuzzy sets
over a given universe of discourse. It is proposed to use such an index in modifying a
fuzzy relation. Different similarity measures in the literature are elucidated, and a
comparative study between different pairs of fuzzy sets is presented. One of these
similarity measures has been used successfully in rule selection and modification of a
fuzzy relation. In the process, a number of modification schemes based on different
logic have been extensively studied for different reasoning mechanisms based on the
same data and results are tabulated. A specificity-based approach to defuzzification is
also presented, which is found to be suitable for similarity-based fuzzy systems. The
results are illustrated with the behaviour of a direct current (DC) shunt motor.

Keywords: Approximate reasoning; Similarity; Similarity-based reasoning

Introduction
A system is defined as an integrated set of interacting elements/objects/components that
accomplish a defined objective. Usually, the description of a system can be made at dif-
ferent levels of details. Any subsystem may, itself, be considered as a system consisting
of subsystems at a lower level of detail. Human beings reason consistently from incom-
plete/imprecise knowledge of a system with reasonably good results. For instance, control
is often exercise by a human operator who has the requisite skill to control the system
successfully but cannot explain sufficiently well how he does it. Often, it becomes difficult
to find even a mathematical model for the same. The tentative nature of human thinking
involves frequently imprecise concepts (qualitative statements made on the input-output
behaviour of such a system) which may not even have an underlying metric. There-
fore, reasoning mechanisms should be modified to include provisions for handling such
imprecisions in the system.
One may represent human expertise in the form of ‘if statement1, then statement2’.

This deductive form is commonly referred to as a rule - with statement1 as antecedent
and statement2 as its consequence. A system, whose behaviour is described with a number
of such rules, is referred to as a rule-based system. It expresses typically an inference in
such a way that, with a known fact and a given rule, one can infer/derive a piece of infor-
mation on the behaviour of the system which is referred to as the conclusion. This form
of knowledge representation (processing) is found to be quite appropriate in expressing
human understanding in a natural language of communication.
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A collection of imprecise information given by human experts often forms the basis of
a fuzzy system. The task of a fuzzy system is to exploit experts’ knowledge and model the
world with it. A fuzzy system reasons with its knowledge. A fuzzy rule-based system is one
of the most important areas of research. It is a dominating platform for the development
of a precise mathematical model for an imprecisely known system. Many believe that
human beings take a similar approach to perceive the world around them in a robust way.
In the real world, almost everything is incompletely defined. A fuzzy rule-based system
is, therefore, expected to achieve a performance better than any crisp model in dealing
with ambiguity, incompleteness and imprecision. A fuzzy rule-based system consists of a
set of fuzzy If-THEN rules together with an inference engine, a fuzzifier and a defuzzifier.
Different patterns of reasoning in human beings indicate a need for similarity matching

in situations where there are no directly applicable knowledge to come up with a plausi-
ble conclusion. In such cases, the confidence in a conclusion may be determined, based
on a degree of similarity between the fact(s) and the antecedent of a rule. In order to cap-
ture this, our model should have the required flexibility. Specifically, we need means to
handle graded information on the one hand and the concept of similarity on the other
hand. Conventional approximate reasoning does not consider the concept of similarity
measure in deriving a consequence. Existing similarity-based reasoning methods modify
the consequence of a rule based on a measure of similarity, thereby making the conse-
quence independent of the conditionals. To satisfy both requirements simultaneously, we
need to integrate conventional approximate reasoning and similarity-based reasoning for
an adequate theory of similarity-based approximate reasoning.
The objectives of the paper are to study the different modules of a fuzzy system and to

observe the role of similarity and subsequently the possibility of a step-by-step introduc-
tion of the concept of similarity into approximate reasoning methodology which forms its
core.
A formal method of fuzzification is presented in this paper. A thorough exposition on

the use of different translating rules is considered. The modification mechanism will be
such that every change in the conditional (general) statement and in the fact is incorpo-
rated in the fuzzy relation between the variables defining the condition. This procedure
ensures the deduction/inference as a function of the concerned change. The more the
change, the less specific will be the conclusion. A proposal to formulate different schema
for the modification of the conditional fuzzy relation is presented. This paper proposes
to demonstrate how one can avoid the use of certainty factor concept for rule misfir-
ing. We thus have to modify the inference mechanism in a way such that a significant
change will make the conclusion less specific. This can be done if an expansion type
of inference scheme is chosen. Explicitly, when the similarity value becomes low, i.e.
when the change is significant, the reasoning process is such that the inference becomes
unknown. At the same time, when there is no change, i.e. a perfectly matching case, it is
possible to derive the expected consequence (the consequence of the condition in a rule-
based system). In other cases, the consequence will be no better than what the condition
allows. Different interesting results in this direction are discussed extensively. It seeks to
show that the concept of specificity measure of fuzzy sets is inherent in such similarity-
based approximate reasoning methodology. Examples are considered to demonstrate
the computations under the procedure. A comparison of the result with other existing
approaches to similarity-based reasoning and Zadeh’s compositional rule of inference is
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also presented. Defuzzification, a basic operation, used in the development of fuzzy sys-
tem is discussed in the light of new similarity-based approximate reasoning mechanism.
A new scheme for defuzzification, suitable for similarity-based approximate reasoning,
is defined. This defuzzification method will then be used in problems of classification,
diagnosis and control. Simulation is performed with some real data and results are
tabulated.
The paper consists of seven sections. The introductory section is followed by a discus-

sion on the similarity relation which again is followed by a proposal for constructing such
an equivalence relation induced by fuzzy sets and its subsequent use in fuzzification in the
section ‘Similarity relation - fuzzification’. Similarity measure of two fuzzy sets is consid-
ered in the section ‘Similarity measure - inference’. Approximate reasoning is discussed
in the context of similarity. Different schemes are presented and examples considered to
illustrate the problem. The section ‘Specificity measure - defuzzification’ is devoted to
defuzzification of fuzzy outputs. Specificity measure of fuzzy sets can be used to deter-
mine the anxiety in decision making. A new defuzzification scheme is defined that works
on specificity measures of fuzzy sets. Application of the same in different models are pre-
sented in the section ‘Application in different models’ followed by result of a case study on
a direct current (DC) shunt motor. The paper is concluded in the section ‘Conclusions’.
A list of references is provided in the last section.

Similarity relation - fuzzification
Similarity is an important concept for which a crisp model is often found to be inade-
quate. In [1], the authors showed that the notion of membership is a gradual property of
fuzzy sets. They have considered a fuzzy equivalence relation to describe the similarity
between elements of a fuzzy set. There, they showed how a crisp set induced a fuzzy set
as its extensional hull with respect to a fuzzy equivalence relation. Assigning similarity
modelled by a fuzzy equivalence relation as the basis, fuzzy sets were viewed as induced
concept. Two elements cannot be distinguished by a fuzzy set if they are both either ele-
ments of the same set or its complement [2]. They have shown howmembership functions
of fuzzy sets can be calculated from the fuzzy equivalence relation as in the following:

Definition 1. A fuzzy equivalence relation (with respect to the conjunction operation ∗,
here, a t-norm) on the set U is a mapping E : U × U −→ [0, 1] satisfying

(E1) E(u,u) = 1,u ∈ U (reflexivity)
(E2) E (u1,u2) = E (u2,u1) ,u1,u2 ∈ U (symmetry)
(E3) E (u1,u2) ∗E (u2,u3) ≤ E (u1,u3) ,u1,u2,u3 ∈ U (transitivity).

where [0, 1] is the unit interval with the usual ordering. Sometimes, E is also called a
similarity relation [1]. Contextually, some definitions and theorems cited in [1] are hereby
recalled.

Definition 2. A fuzzy set A ∈ [0, 1]U is called extensional with respect to (w.r.t.) the
fuzzy equivalence relation E on U if and only if μA (u1) ∗ E (u1,u2) ≤ μA (u2) holds for
all u1, u2 ∈ U .
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Definition 3. Let E be a fuzzy equivalence relation on U and let A ∈ [0, 1]U .
The fuzzy set Â = ⋂{B|A ⊆ B and B is extensional w.r.t. E} is called the extensional

hull of A w.r.t. E.

Theorem 1. Â = ⋃ {μA (u1) ∗ E (u1,u2) | u1,u2 ∈ U} .

Theorem 2. Let F ⊆ [0, 1]U be a collection of fuzzy sets and ↔: [0, 1] × [0, 1] → [0, 1]
be a biimplication. Then,

EF (u1,u2) =
∧
A∈F

(μA (u1) ↔ μA(u2)) (1)

is the coarsest fuzzy equivalence relation on U such that all fuzzy sets in F are extensional
w.r.t. EF .

EF is reflexive, symmetric and satisfy transitivity relation. The fuzzy equivalence rela-
tion (1) can be interpreted in the following way - two elements ‘cannot be distinguished
by a (fuzzy) set’ if they are both elements of the same set or its complement, but not one
in the set and the other one in its complement. Thus, μA (u1) ↔ μA (u2) represents the
degree to which the elements u1 and u2 cannot be distinguished by the fuzzy setA. There-
fore, EF (u1,u2) is the degree to which u1 and u2 cannot be distinguished by the set F of
fuzzy sets.
We develop a new fuzzy equivalence relation on a universe of discourse U , which is

generated by a family F of fuzzy subsets of U . Accordingly, we define a fuzzy relation E
as given below:

E (u1,u2) = 1 −
√

�A(μA (u1) − μA (u2))2

n
, (2)

where n is the number of fuzzy sets.

Theorem 3. The fuzzy relation defined in (2) is a fuzzy equivalence relation.

From this fuzzy equivalence relation E (u1,u2), we can fuzzify any point ‘a’ on the
universe of discourse U by setting

μa (u1) = E (u1, a) , in an interval a − δ ≤ u1 ≤ a + δ, δ > 0,
= 0, otherwise.

(3)

Observation: μa (u1) is extensional with respect to the fuzzy equivalence relation E as

μa (u1) ∗ E (u1,u2)

= E (u1, a) ∗ E (u1,u2)

= E (a,u1) ∗ E (u1,u2) ≤ E (a,u2)

= E (u2, a) = μa (u2) .

Thus, given a fuzzy equivalence relation and a crisp point ‘a’, we can define (generate)
a fuzzy set about the point ‘a’. This is called fuzzification and plays an important role in
the design of fuzzy systems. We illustrates this fuzzification with the following algorithm.
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Algorithm FUZZ: fuzzification
Step 1. Given n fuzzy sets A1,A2, . . . ,An defined over some universe of discourse U

and a ∈ U .
Step 2. Construct a fuzzy equivalence relation E(u1,u2) from A1,A2, . . . ,An using (2).
Step 3. Set δ > 0. Define a fuzzy set about the point a ∈ U from the fuzzy equivalence

relation E (u1,u2) by

μa (u1) = E (u1, a) , in the interval a − δ ≤ u1 ≤ a + δ, δ > 0
= 0, otherwise.

Example 1. Let the domain set be U = {0.0, 0.1, 0.2, 0.3, 0.4, . . . , 9.9, 10.0}.
Let Ar be the fuzzy sets corresponding the points r = 0.0, 0.5, 1.0, 1.5, . . . , 10.0, i.e. the

set of fuzzy sets
{
μAi |i ∈ R, a finite index set

}
where

μAi(u) = 1 − min{|u − i|, 1} [1] .

Now, a fuzzy equivalence relation induced by the fuzzy sets as given in Figure 1 and
using the algorithm FUZZ is given in Figure 2.
Choosing δ = 5.0, we find the extensional hulls of the crisp values 5.0 and 7.5 with

respect to this fuzzy equivalence relation are the fuzzy sets

μ5.0(u) = E(u, 5.0) if 5.0 − 5 ≤ u ≤ 5.0 + 5, otherwise μ5.0 = 0 and

μ7.5(u) = E(u, 7.5) if 7.5 − 5 ≤ u ≤ 7.5 + 5, otherwise μ7.5 = 0.

Similarity measure - inference
The similarity between two objects suggests the degree to which the properties of onemay
be inferred from those of the other. In this section, we present some similarity measures
that exist in the literature and their performances are studied. At the end, we investigate
similarity-based fuzzy reasoning techniques with the best of these measures.
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Figure 1 A typical fuzzy partition. A number of fuzzy sets on a domain draw a fuzzy partition.
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Figure 2 An equivalence relation. An equivalence relation from the fuzzy partition.

Similarity measure

A similarity matching degree can be defined from the distance functions according to
the following: S(•, •) = 1 − d(•, •). The most important class of distance function is
the Minkowski’s r-metric. Another important class of distance functions is given by the
Hausdorff metric. It is a generalisation of the distance between two points in a metric
space to two compact non-empty subsets of the space [3]. A set theoretic approach to a
family of similarity functions can be given by S(A,B) = θ f (A∩B)−αf (A−B)−βf (B−A)

for some function f and parameters θ ,α,β ≥ 0 [4].
Let us assume the universe of discourse U to be a finite set and A =

∑
u∈U

{μA(u)/u},
B = ∑

u∈U{μB(u)/u} be two fuzzy sets defined over U . A similarity index between
the pair {A,B} is denoted as S(A,B;U) or simply S(A,B). In the following, a number of
existing similarity measures are listed from the literature.

1. sim1 = 1 −
(

�u| μA(u) − μB(u) |q
n

) 1
q
[5,6], where n is the cardinality of the

universe of discourse and q is the family parameter.
2. sim2 = 1 − maxu∈U (|μA(u) − μB(u)|) [7].
3. sim3 = 1 − �u∈U |(μA(u)−μB(u))|

�u∈U (μA(u)+μB(u))
[7].

4. sim4 = 1 − 1
n�u∈U |μA(u) − μB(u)| [7].

5. sim5 = maxu∈U {μA(u)∧μB(u)}
maxu∈U {max(μA(u)),max(μB(u))} [6].

6. sim6 = max{μA(u)·μB(u)}
max

{
�u∈Uμ2

A(u),�u∈Uμ2
B(u)

} [7].

7. sim7 = min(μA(u),μB(u))
max(μA(u),μB(u))

[7].
8. sim8 = 1

n�u∈U min(μA(u),μB(u))
max(μA(u),μB(u))

[8].
9. sim9 = maxu∈U {min (μA(u),μB(u))} [9].
10. sim10 = C(A,B)√

T(A),T(B)
[8], where T(A) = �n

i=1
(
μA (ui)2 . (1 − μA (ui))2

)
,

C(A,B) = �n
i=1 {μA (ui) .μB (ui) + (1 − μA (ui)) . (1 − μB (ui))} .

11. sim11 = min {α(A,B),α (Ac,Bc)} [6],
where α(A,B) =

√
�u∈UμA(u).μB(u)

�u∈U (max(μA(u),μB(u)))2
.

12. sim12 = 1
2

[
(A ↔ B) + (A′ ↔ B′)

]
[10], where

A ↔ B = (A → B) ∧ (B → A), A′ = 1 − A. ∧ being a conjunction operator and
→ an implication operator. The above formula is equivalent to
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S(A,B) = 1
n�u∈U 1

2 [(μA(u) ↔ μB(u)) + (μA′(u) ↔ μB′(u))], where
(μA(u) ↔ μB(u)) = (μA(u) → μB(u)) ∧ (μB(u) → μA(u)), n being the
cardinality of the universal set U , and ∧ and → are defined logically. Now, if we
interpret the ↔ implication operator as α ↔ β = 1 − |α − β|, then
S(A,B) = 1 − 1

n�n
i=1|μA(u) − μB(u)|.

13. sim13 = card(μA(u)∧μB(u))
max(card(A),card(B)))

14. sim14 = card(μA(u)∧μB(u))
card(A))

15. sim15 = card(μA(u)∧μB(u))
card(B))

16. sim16 = min
{card(A ∩ B)

card(A)
, card(A ∩ B)

card(B)

}
A good working measure of similarity between two countable infinite fuzzy sets can be

given as in the following:

S(A,B) = 1 − sup
u∈U

| μA(u) − μB(u) | . (4)

It is easy to see that this can be an effective measure if we consider an infinite fuzzy set.
But the problem in working with such a measure is that it gives importance to the sup
operation only. The work in this regard can be found in [11].
Now, once a similarity index is defined - How can we compare this with other existing

indices? How should we judge the goodness of such an index?
In this regard, the authors in [12,13] have reviewed different similarity measures, as

suggested in the literature in the general case and as adapted to fuzzy sets. They have also
presented an experimental design for linguistic approximation and discussed at length
the suitability of application of different measures of similarity [14].
In [8], the authors presented a comparative study on the basis of a set of axioms. They

have also investigated some similarities and dissimilarities in performance.
All the similarity measures listed above satisfy the reflexivity, symmetry and bounded-

ness property. These three properties are indispensable for any similarity measures [9].
In this regard, all measures are equally useful. Besides these three properties, similarity
measures should also satisfy properties like computational simplicity, monotonicity and
non-dissimilarity. These are some desirable properties. Similarity measures based on the
computation of overall sup as well as max between elements are such that they give more
importance to a particular value and ignore the presence of others. Thus, two fuzzy sets
are often found to be similar when they have the same sup and/or max. Of course, one
can define two fuzzy sets to be similar as and when they have the same cardinality or
they have the same support. This may work for mathematical theory construction. But in
order to assist the decision maker in a real-life situation, the practical meaning of similar-
ity concept is of vital importance. We are considering those indices that play a crucial role
in the theory of fuzzy reasoning. This demands similarity measures based on separate
membership degrees of each concept.
Next, let us consider the similarity measure defined in (4). In order to illustrate the

drawback underlying it, let us consider a simple case as in the following:

μA(u) = 1 ∀u ∈ U and

μB(u) = 0 for a particular u0 ∈ U and

= 1 otherwise.
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Even in such an almost similar pair of fuzzy sets, it is found that the similarity index is 0,
showing thereby that they are completely dissimilar. Now, it can safely be concluded that
it is practically impossible to single out one possible similarity measure that works well
for all purpose.
In the following, we present an axiomatic definition of similarity between fuzzy sets,

defined over the same universe of discourse. Some important deductions are also pro-
vided to illustrate the proposed measure’s soundness. In order to provide a definition for
similarity index, a number of factors must be considered. A primary consideration is that
whatever way we choose to define such an index, it must satisfy the properties as already
mentioned. Similarity measures are, in general, found to be non-transitive.
Under these circumstances, a similarity measure S(A,B) should satisfy the following

properties:
For all fuzzy sets A , B:

P1. S(B,A) = S(A,B).
P2. S(Ac,Bc) = S(A,B), Ac being some negation of A.
P3. 0 ≤ S(A,B) ≤ 1.
P4. A = B if and only if S(A,B) = 1.
P5. If S(A,B) = 0, then either A ∩ B = � (null) or Ac ∩ Bc = � , or B = 1 − A.

For 0 ≤ ε ≤ 1, if S(A,B) ≥ ε, we say that the two fuzzy sets A and B are ε-similar. Thus,
the case for ε = 1 correspond to equality of fuzzy sets. There could be many functions
satisfying properties P1 through P5. One such measure of similarity satisfying properties
P1 through P5 is given next.

Definition 4. Let A = ∑
u∈U

μA(u)/u and B = ∑
u∈U

μB(u)/u be two fuzzy sets defined

over the same universe of discourse U . The similarity index of the pair {A,B} is denoted
by S(A,B) and is defined by

S(A,B) = 1 −
⎛
⎝

∑
u

| μA(u) − μB(u) |q

n

⎞
⎠

1
q

(5)

where n is the cardinality of the universe of discourse and q ≥ 1 is the family parameter.

Theorem 4. If S(A,B) = 1 and S(B,C) = 1, then S(A,C) = 1.

Theorem 5. For all fuzzy sets A, B, C, if either A ⊆ B ⊆ C or A ⊇ B ⊇ C, then
S(A,C) ≤ min{S(A,B), S(B,C)}.

Theorem 5 motivates us to consider the property of monotonicity of similarity between
fuzzy sets to satisfy another axiom for some kind of monotonicity. So, we are now in a
position to rewrite the axioms for similarity measure as in the following.
For all fuzzy sets A , B and C defined over the universe of discourse U , we have:

A1. S(B,A) = S(A,B).
A2. S (Ac,Bc) = S(A,B), Ac being some negation of A.
A3. 0 ≤ S(A,B) ≤ 1.
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A4. A = B if and only if S(A,B) = 1.
A5. S(A,B) = 0 if and only if A ∩ B = �.
A6. If A ⊇ B ⊇ C, then S(A,B) ≥ S(A,C).

Here, we note that Ac, the complement of a fuzzy set A, is to be defined first. We used
the idea of ‘1-’ as the complementation. On the basis of the above axioms, it is easy to
see that the family of similarity measures defined in Definition 4 is a valid choice. All the
measures satisfy axioms A1, A3, A4 and A5 for either identical or non-overlapping fuzzy
sets.
Thus, we find that the similarity between fuzzy sets can be captured by aggregating

the distinguishability between membership values of each element in the correspond-
ing fuzzy sets. The similarity index between two fuzzy sets is a pure number and does
not give any information about the inclusion. This explains why these measures are
not transitive, in general. Let us tabulate the performance of different measures in the
following.

Performance of different similarity measures

In this sub-section, we observe six cases (Figures 3, 4, 5, 6, 7 and 8), where each case
compares two fuzzy sets in consideration. Also, for each case, 16 similarity measures
mentioned earlier are calculated. A performance chart of various similarity measures are
given in Table 1.

Approximate reasoning

Approximate reasoning is defined as the process or processes by which an approxi-
mate conclusion can be deduced from a set of possibly imprecise information using
some inexact rule for the derivation. Since its inception in 1973, significant theoretical
advances have established approximate reasoning as an important field of research. Dif-
ferent techniques of approximate reasoning have been proposed and discussed in the
literature.

0

 0.2

 0.4

 0.6

 0.8

1

0 1 2 3 4 5 6 7 8 9  10

m
em

be
rs

hi
p 

va
lu

e

Domain

Figure 3 Case 1: two identical fuzzy sets. Fuzzy sets for measuring similarity.
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Figure 4 Case 2: two fuzzy sets almost close to each other. Fuzzy sets for measuring similarity.

Zadeh’s [15] concept of approximate reasoning is based on fuzzy logic and the theory
of fuzzy sets. In order to have an adequate understanding of the theory of approx-
imate reasoning in this paper, some basic concepts are considered. The concept of
linguistic variable plays an essential role in the theory of approximate reasoning. It
is a tool for approximate characterisation of the values of the variables and their
interrelations. For example, the height of a person may be short, the volume of a con-
tainer may be huge, the code section of some programme may be tiny, two numbers
may be approximately equal and so on. Zadeh [16] called such variables - linguistic
variables.
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Figure 5 Case 3: two fairly close fuzzy sets. Fuzzy sets for measuring similarity.
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Figure 6 Case 4: two overlapping fuzzy sets. Fuzzy sets for measuring similarity.

The two basic inference rules considered for approximate reasoning based on fuzzy sets
and fuzzy relations are the compositional rule of inference and the generalised modus
ponens.

1. max-min composition. From ‘X is A’ and ‘(X,Y ) is R’ infer ‘Y is B’, where
μB(y) = max

x
min (μA(x),μR(x, y)).

2. Generalised modus ponens. From ‘X is A∗’ and ‘if X is A, then Y is B’ infer ‘Y is B∗’,
where μB∗(y) = sup

x
(μA∗(x)◦ (μA(x) → μB(y))), ◦ and → may have different

interpretation.
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Figure 7 Case 5: two complementary fuzzy sets. Fuzzy sets for measuring similarity.
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Figure 8 Case 6: two non-overlapping fuzzy sets. Fuzzy sets for measuring similarity.

Many fuzzy systems are based on Zadeh’s compositional rule of inference [17]. Despite
their success in various systems, researchers have indicated certain drawbacks [18] in the
technique.
As for example, let U = {u1,u2,u3,u4} and V = {v1, v2, v3, v4} be the universes of

discourse, A = 1.0/u1 + 0.75/u2 + 0.5/u3 + 0.25/u4 and

R =

u1 u2 u3 u4
v1 1.00 0.75 0.50 0.25
v2 0.75 1.00 0.75 0.50
v3 0.50 0.75 1.00 0.75
v4 0.25 0.50 0.75 1.00

.

Then, taking T = min and using compositional rule of inference (CRI), we find
B = 1.00/v1, 0.75/v2, 0.75/v3 + 0.50/v4. This shows that the linguistic variables X

Table 1 Performance chart of various similarity measures

Similarity measures

sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8

Case 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case 2 0.82 0.75 0.80 0.83 1.00 0.75 0.67 0.51

Case 3 0.82 0.75 0.86 0.83 1.00 0.80 0.75 0.68

Case 4 0.78 0.75 0.76 0.79 0.85 0.92 0.62 0.46

Case 5 0.14 0.00 0.20 0.20 0.50 0.09 0.11 0.15

Case 6 0.41 0.00 0.00 0.48 0.00 0.00 0.00 0.00

sim9 sim10 sim11 sim12 sim13 sim14 sim15 sim16

Case 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case 2 1.00 0.79 0.87 0.87 0.67 0.67 1.00 0.67

Case 3 1.00 0.93 0.89 0.89 0.75 1.00 0.75 0.75

Case 4 0.46 0.85 0.79 0.83 0.76 0.76 0.76 0.76

Case 5 0.15 0.50 1.00 0.28 0.12 0.50 0.12 0.12

Case 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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and Y are approximately equal. A careful scrutiny of the relation also says so. The
conclusion B will remain the same if we choose A = 1.0/u1 + 0.75/u3 + 0.50/u4,
which is highly dissimilar to A. Next, if we take A = 1.0/u1, then from R we have
B = 1.00/v1 + 0.75/v2 + 0.50/v3 + 0.25/v4; again, if we take A = 1.0/u4, then B =
0.25/u1 + 0.50/u2 + 0.75/u3 + 1.00/u4. This shows that even if the input values are
strongly complementary to each other, significant conclusions can be drawn using Zadeh’s
CRI.
This motivates the introduction of similarity-based reasoning techniques as proposed

in [18-23].

Similarity-based approximate reasoning

To begin with, in this section, we will look at the different methods of inference
based on a similarity measure. In [18,24-26], the authors proposed a similarity-
based method called ‘approximate analogical reasoning schema’. The method is
applicable to both point-valued and interval-valued fuzzy sets. In [19], the author
proposed two similar methods for medical diagnosis problems. Two other meth-
ods based on different modification procedures have been proposed in [27]. In
the framework of existing approaches to similarity-based inference methodology,
recently, in [21], the authors proposed two other similarity-based methods for rea-
soning and made a comparative study of the above similarity-based fuzzy reasoning
methods.
In all these studies, it is proposed that similarity-based fuzzy reasoning methods do

not require the construction of a fuzzy relation. Accordingly, they are based on the com-
putation of the degree of similarity between the fact and the antecedent of a rule in a
rule-based system. Then, based on the similarity value between the membership values
of the elements of the fuzzy set representation of the fact and the corresponding fuzzy set
in the antecedent of the rule, the membership value of each element of the consequent
fuzzy set of the rule is modified to obtain a conclusion. This is the same for all existing
similarity-based reasoning schemes. The modification procedure is different for different
schemes.
We proposed two similarity-based approximate reasoning methods. One such method

is a modification of the method presented in [18] and the other is a modification of
Zadeh’s compositional rule of inference. In the proposed methods, for inference in a
rule-based system, the conditional rule is first expressed as a fuzzy binary relation. In
translation, we prefer to use triangular norms for a better understanding. New facts are
then used to compute the similarity between the fact and the antecedent of the rule to
modify the above fuzzy binary relation and not the consequence of the rule as applied in
the existing similarity-based reasoning techniques. The modification is based on a mea-
sure of similarity following some scheme to be presented. The result can be interpreted
as the induced fuzzy binary relation. The inference is computed from the induced fuzzy
binary relation using the well-known sup operation.
The above scheme is used in formulating different models (rule-based and resolution-

based). We will provide simple numerical examples for a better understanding of the
proposed schemes.
In similarity-based approximate reasoning scheme, we see that from a given fact, the

desired conclusion is derived using only a measure of similarity between the fact and
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the antecedent in a rule-based system. In some cases, a threshold value τ is associated
with a rule. If the degree of similarity, between the antecedent of the rule and the given
fact, exceeds the real value of τ , associated with the rule under consideration, only then
is that rule assumed to be fired. The conclusion is derived using some modification
procedure.
As an illustration, let us consider the two premises as in Table 2.
Here, A and A′ are fuzzy sets defined over the same universe of discourse U =

{u1,u2, . . . ,um} and B,B′ are defined over the universe of discourse V = {v1, v2, . . . , vn}.
Let S(A,A′) denote some measure of similarity between two fuzzy sets A and A′. In
the existing techniques, if S(A,A′) > τ , then the rule will be fired and the con-
sequent of the rule is modified to produce the desired conclusion. Based on the
change of membership grade of the consequent, two types of modification proce-
dures can be proposed as in [18,28] - expansion-type inference and reduction-type
inference.
Let B′ =

n∑
i=1

{μB′(vi)/vi} and s = s(S(A,B), τ).

Expansion form: μB′(vi) = min(1,μB(vi)/s). Reduction form: μB′(vi) = (μB(vi).s).
The methods proposed in [19,29] use the threshold value, a confidence factor and the

reduction form of inference without providing any argument as to the choice of modifica-
tion procedure. In one of them [19], each fuzzy set is first conceived as anm-component
vector, and then the concept of vector dot product is used for finding the similarity. If
S(A,A′) ≥ τ , the predefined threshold value, then the rule will be fired and strength of
confirmation is calculated by S(A,A′).μ, whereμ is themembership value associated with
the rule. In the other method [29], the author used weights with each propositions for the
calculation of similarity. The procedure for the computation of the conclusion remains
the same.
In [27], the authors used the value of certainty factor associated with the rules

in the modification procedure. The inference is based on the number of propo-
sitions in the antecedent of the rule(s) as also the operator(s) connecting them.
In each case, the inference is one of expansion type. In [21], they have also pre-
sented two more modification procedures and claimed for two new fuzzy reasoning
methods. One modification is based on Zadeh’s inclusion and cardinality measure
and the other on equality and cardinality measure. Other operations remain almost
identical.

Proposedmethod

In this section, we show how conclusions can be obtained from the given premises with
the help of such a similarity measure. Let X, Y be two linguistic variables and let U , V
respectively denote the universes of discourse. Two typical propositions p and q are given,
and we like to derive a conclusion according to similarity-based inference. The scheme
can be best described in Table 2.

Table 2 Ordinary approximate reasoning

p : X is A then Y is B

q : X is A′

r : Y is B′ .
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Let U = {u1,u2, . . . ,ul}, V = {v1, v2, . . . , vm} denote the respective universe of dis-
course of the linguistic variables X and Y . Let fuzzy sets A, A′ and B in Table 2 be defined
as

A =
l∑

i=1
{μA(ui)/ui}; A′ =

l∑
i=1

{μA′(ui)/ui};

B =
m∑
i=1

{μB(vi)/vi}; B′ =
m∑
i=1

{μB′(vi)/vi}.

All the existing methods [18,20,21,27] use the similarity measure for a direct computa-
tion of inference without considering the induced relation, i.e. how the underlying relation
(a condition) is modified in the presence of the given fact. This is important in deriving
a consequence of the fact from the rule. Consequently, those methods provide the same
conclusion, if A and A′ are interchanged in the propositions concerned. Thus, if p, q and
p′, q′ be defined as in the following:

(i) p : if X is A, then Y is B, τ and q : X is A′;
(ii) p : if X is A′, then Y is B, τ and q : X is A,

then both (i) and (ii) will produce the same conclusion which is not appealing. This hap-
pens because the conclusion is derived by a modification of the consequent of the rule.
It should be noted here that this is not the case with Zadeh’s compositional rule of infer-
ence. Another notable fact is that we need to consider the threshold or certainty factor in
order to tackle the problem of rule misfiring.
The first drawback can be eliminated if we consider the interpretation of the relational

operator present in the conditional premise, as is done in executing compositional rule of
inference. It is easy to verify that for a class of nested fuzzy sets, each different from the
other, the consequence of a rule using CRI becomes the same.We seek a reasoning system
which should be such that every change in the concept(s) as appears in the antecedent of
the rule and that in the fact should be incorporated in the induced relation between the
variables defining a rule, in this case, X and Y . Only then the inference will be influenced
by the change concerned.
In order to avoid the use of certainty factor for rule misfiring, we modify the inference

scheme in such a way that a significant change will make the conclusion less specific. This
is done if an expansion type of inference scheme be chosen. Here, the ‘UNKNOWN’ case,
i.e. the fuzzy set B′ = V , can be taken as the limit. Explicitly, when the similarity value
becomes low, i.e when A and A′ differ significantly, the reasoning process should be such
that the only inference be B′ = V . As A′ = A, we expect that B′ = B. This, in turn, implies
that nothing better than what the rule says should be allowed as a valid conclusion.

Schema

In view of the above observations, we propose a similarity-based inference method for
deriving the consequence r. We first generate the fuzzy relation between the antecedent
variable(s) and the consequent variable as done in executing CRI. We then compute the
absolute change in linguistic labels, represented as fuzzy sets, and systematically prop-
agate the same into the conditional relation in order to obtain the induced modified
conditional relation. From this induced modified relation, a possible conclusion can be
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drawn using the sup operation. The scheme for computation can be presented in the
following algorithm.

Algorithm SAR: similarity-based ordinary approximate reasoning
Step 1. Translate premise p into a relation R(A,B) and compute it using any suitable

translating rule possibly, a t-norm operator.
Step 2. Compute similarity S(A,A′) by Definition 4.
Step 3. Modify R(A,B) with S(A,A′) to obtain the modified conditional relation

R(A′ | A,B) according to some scheme C.
Step 4. Use sup-projection operation on R(A′ | A,B) to obtain B′ as

μB′(v) = sup
u

μR(A′|A,B)(u, v). (6)

Now, for a given fact q : X is A′ and from the condition p : if X is A, then Y is B,
we propose two schemes C1 and C2 for computation of the modified
conditional relation R(A′ | A,B) as given in Step 3.

Scheme C1. The first scheme C1 is based on a concept similar (but NOT identical) to
the method proposed in [18]. We may recall here that the authors computed the conclu-
sion B′ = min(1,B/s), where s is the measure of similarity between fuzzy sets A and A′

without considering the information suggested by the conditional rule. Here, we propose
to modify the conditional relation according to (7).

R(A′ | A,B) = [
r′u,v

]
l×m =

[
r′u,v = min(1, ru,v/s) if s > 0

= 1 otherwise

]
. (7)

The difference between the proposed scheme from the one presented in [18] can be noted
easily. It is clear that the proposed scheme, unlike the schemes in [18,20], does not pro-
duce the same conclusion when A and A′ are interchanged. It is not difficult to see that in
(7), if s ≤ ru,v for some v ∈ V , then r′u,v becomes equal to 1. This makes the membership
of that v in the resultant fuzzy set equal to one. This scheme, although a heuristic one,
is intuitively a plausible scheme. Our next scheme C2 for computation of R(A′ | A,B) is
based on a set of axioms.
Scheme C2. We believe that in a similarity-based reasoning methodology, a scheme for

computation of the induced relation, when a fact and a conditional statement is given,
should satisfy the following axioms:

A1. If S
(
A,A′) = 1, i.e. if A′ = A, then μR(A′|A,B)(u, v) = μR(A,B)(u, v),∀(u, v) ∈ U × V .

A2. If S(A,A′) = 0, i.e. if A′ ∩ A = �, then μR(A′|A,B) = 1 ∀(u, v) ∈ U × V .
A3. As S(A,A′) increase from 0 to 1, μR(A′|A,B)(u, v) decreases uniformly from 1 to

μR(A,B)(u, v);∀(u, v) ∈ U × V .

AxiomA1 asserts that we should notmodify the conditional relation as andwhenA′ and
A remain equal. Axiom A2 asserts that when A′ is completely dissimilar to A, i.e. A′ and
A have disjoint support, we should not conclude specifically. In such a situation, anything
is possible. A3 says that as the fact A′ changes from the most dissimilar case (similarity
value 0) to themost similar one (similarity value 1), the inferred conclusion should change
from the most non-specific case, i.e. the UNKNOWN case (B′ = V ) to the most specific
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case, i.e. B′ = B. This, in turn, means that whatever A′ be, R(A′ | A,B) ⊇ R(A,B), i.e. the
induced relation should not be more specific than what is given as a condition.
For notational simplicity, let us denote S(A,A′) by s and RA′|A,B by r′. Now, axiom A3

uniquely suggest a function of the form

dr′

ds
= k (a constant) ⇒ r′ = k s + c, c is a constant.

These two constants can be determined from the conditions already prescribed in
axiom A1 and axiom A2. More explicitly, when s = 1, we know that r′ = r (from axiom
A1), and when s = 0, we know that r′ = 1 (from axiom A2). This gives, r′ = 1 − (1 − r).s
as our new scheme for the modification of the conditional relational.
Therefore, axiom A1 through axiom A3 uniquely suggest the scheme C2 as

μR(A′|A,B)(u, v) = 1 − (
1 − μR(A,B)(u, v)

)
.S

(
A,A′) . (8)

From (7) and (8), we observe that when S(A,A′) = 0 we have B′ = V . In other words,
it is impossible to conclude anything when {A,A′} are completely dissimilar. Again, when
S(A,A′) is close to unity, then R(A′ | A,B) is close to R(A,B) and the inferred fuzzy set B′

will be close to B, i.e. S(B,B′) is close to unity. Axiom A3 also suggests that a small change
in the input produces a small change in the output. In this sense, the above mechanism
of inference is stable. As in the previous case, in (8), if either S(A,A′) = 0 or μR(A,B) = 1,
then r′u,v becomes equal to 1.
Let us see how the above scheme can be modified to handle the concept of threshold

associated with a rule in a natural manner. Let τ be the threshold associated with the rule.
For that, we are to modify axiom A2 according to the following:

A4. If S(A,A′) ≤ τ , then μR(A′|A,B) = 1 ∀(u, v) ∈ U × V . Accordingly, simple
calculations as before resulted in the following

μR(A′|A,B) = min
[
1,

(
1 − (

1 − μR(A,B)

)
.
s − τ

1 − τ

)]
as the general scheme for

relation membership modification. The case τ = 0 corresponds to the scheme
presented in (8). This scheme ensures that with all fuzzy sets A′ having similarity
value S(A,A′) less or equal to the threshold value τ , the inference B′ using (7) will
be ‘UNKNOWN’.

Let A be a normal fuzzy set. If we assume that the translating rule used in generating
the conditional relation is one of the t-norm types, then, as is already proposed, a basic
and desirable result of the inferred proposition nothing better than what the rule says can
be concluded can be established as in the following. For that, let us consider the model as
in Table 2. For all A,A′, the following proposition is valid.

Theorem 6. B′ ⊇ B. [5,30]

A few translation rules are presented in Table 3, and the corresponding rules for mod-
ification of relations are presented in Table 4, based on the interpretation of the →
operators in the formula (s → μR), where s is the similarity measure between A and
A′, i.e. s = S(A,A′). They can be categorised into groups - expansion-type modifier and
reduction-type modifier. For the first class, μR′ ≥ μR ∀(u, v) ∈ U × V , and that for the
second class, μR′ ≤ μR ∀(u, v) ∈ U × V .
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Table 3 For translation of relations

R Conditional relations Translation (μR(u, v))

R1 Reichenbach s-implication 1 − μA(u) + μA(u) ∗ μB(v)

R2 Kleen-Dienes s-implication max(1 − μA(u),μB(v))

R3 Lukasiewicz r- and s-implications min(1 − μA(u) + μB(v), 1)

R4 Rescher-Gaines r-implication

{
1, if μA(u) ≤ μB(v))

0, otherwise

R5 Godel r-implication

{
1, if μA(u) ≤ μB(v))

μB(v), otherwise

R6 Goguen r-implication

{
min(μB(v)/μA(u), 1), if μA(u) > 0

1, otherwise

R7 Standard t-norm min(μA(u),μB(v))

R8 Bounded sum t-norm max(μA(u) + μB(v) − 1, 0)

R9 Product t-norm μA(u) ∗ μB(v)

A few examples of translating rules for a simple conditional statement is presented in
Table 3. Each rule actually identifies a fuzzy relation. With input, these relations are mod-
ified using schemes presented in Table 4. The effects of different translating rules and
modification procedures are presented in Table 5, which shows that for identical matching
as in Figure 9, the output of rule firing is consistent if we choose t-norm and r-implication
for translation.
For distinct A, A′ as in Figure 10, the result of rule firing is shown in Table 6. In this

case, also, the performance of translating rules is satisfactory for t-norm (R7, R8, R9) as
well as r-implication (R4, R5, R6), and modification rules mr1, mr2 and mr3, respectively.
Simulation study reveals the modification procedure mr2 is consistent. An output fuzzy
set B′ is shown in Figure 11, using the modification scheme mr1 in Table 6.
With the above understanding of similarity-based reasoning methodology, let us now

propose another module of a fuzzy system - defuzzification.

Specificity measure - defuzzification
The result of rule firing, using any of the above-mentioned approaches to inference, is a
fuzzy set. This is interpreted at the semantic level as the desired output. Often, we need
to determine a precise action as output. The purpose of defuzzification is to obtain a
scalar value u ∈ U , from the said output fuzzy set, as the action. Then, if necessary, de-
normalisation is performed on the output so as to obtain the corresponding action on its
physical domain.

Table 4 For modification of relations

Scheme Modified relations μR′ (u, v) Type

mr1

{
min(μR(u, v)/s, 1), if s > 0

1, otherwise
Expansion

mr2 min((1 − s) + s.μR(u, v), 1) Reduction

mr3 min(1 − s + μR(u, v), 1) Expansion

mr4 max(1 − s.μA(u),μB(v)) Reduction

mr5 max(1 − s.μA(u), min(μA(u),μB(v)))

mr6 max(1 − s, min(s, max(1 − μA(u), min(μA(u),μB(v)))))

mr7 min(1 − μA(u).s + s.μA(u).μB(v), 1)
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Table 5 Results for different reasoning schemes for A′ = A

Modified relation Relation data (A′) Input S(A,A′) Output (B′) S(B, B′)
mr1, mr2, mr3 R1 A 1.0 B′ ⊃ B 0.524941

R2 A 1.0 B′ ⊃ B 0.526477

R3 A 1.0 B′ ⊃ B 0.522559

R4 A 1.0 B′ = B 1.0

R5 A 1.0 B′ = B 1.0

R6 A 1.0 B′ ⊃ B 0.945352

R7 A 1.0 B′ = B 1.0

R8 A 1.0 B′ = B 1.0

R9 A 1.0 B′ = B 1.0

mr4 A 1.0 B′ ⊃ B 0.526477

mr5 A 1.0 B′ ⊃ B 0.526477

mr6 A 1.0 B′ ⊃ B 0.526477

mr7 A 1.0 B′ ⊃ B 0.524941

Specificity measure of fuzzy set estimates the precision of an information represented
by the fuzzy set rather than an estimate of its fuzziness which is measured by the entropy
of the fuzzy set. In order to provide a definition for any specificity index, a number of
factors must be considered. A fuzzy set with maximum specificity value corresponds
to a precise assessment of the values of a variable. In trying to capture the form of the
specificity index, a number of properties are required or desirable.
According to Dubois and Prade, a specificity measure Sp(A) [31] should satisfy the fol-

lowing properties. Let X be a linguistic variable defined on a universe of discourse U . A
and B are normalised fuzzy subsets of U .

P1. ∀A ⊆ U , Sp(A) ∈ [ 0, 1] .
P2. Sp(A) = 1 if and only if A is a singleton of S.
P3. If A ⊆ B, then Sp(A) ≥ Sp(B).
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Figure 9 The output when A = A′.
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Figure 10 The ouput when A and A′ are different.

Yager [32] introduced one suchmeasure of specificity that satisfies the above properties.
WhenU is finite, Yager proposed an expression for defining the specificity. Let us assume
that A be a fuzzy set defined over the universal set U and Aα be the α-level set of A. The
specificity associated with A is denoted as Sp(A) and is defined as

Sp(A) =
∫ αmax

0

1
cardAα

dα (9)

Let us now list some properties [32] associated with the above definition.
For all A, Sp(A) assumes its maximum value 1, when A = {1/u} for some particular

u ∈ U .
For all A, Sp(A) ∈[ 0, 1] and it assumes its minimum value 0, when A = �.
If, for all A, μA(u) = k for all u ∈ U , then Sp(A) = k

n where n is the cardinality of the
ordinary set U .
Defuzzification is a procedure applied to reduce the anxiety in a decision. Accordingly,

we propose a new technique for defuzzification based on ameasure of precision. Let there
be m clipped fuzzy sets

{
A(k); k = 1, 2, . . . ,m

}
and let

{
s(k), p(k); k = 1, 2, . . . ,m

}
be the

specificity associated with A(k) as well as the peak of the consequent fuzzy set of the kth
rule. Then, the defuzzified value u∗ will be given by

u∗ =
∑m

k=1 p(k).s(k)∑m
k=1 s(k)

(10)

The heightmethod of defuzzification demands strictly convex fuzzy sets. The individual
peak values of consequent fuzzy sets of the fired rules are used to generate the weighted
average of these peak values. It is a simple method and works faster than the centre of
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Table 6 Results for different reasoning schemes for A′ �= A

Modified relation Relation Input data (A′) S(A,A′) Output (B′) S(B, B′)
mr1 R1 A′ 0.683772 B′ ⊃ B 0.438764

R2 A′ 0.683772 B′ ⊃ B 0.441981

R3 A′ 0.683772 B′ ⊃ B 0.437005

R4 A′ 0.683772 B′ = B 1.0

R5 A′ 0.683772 B′ ⊃ B 0.935526

R6 A′ 0.683772 B′ ⊃ B 0.906437

R7 A′ 0.683772 B′ ⊃ B 0.935526

R8 A′ 0.683772 B′ ⊃ B 0.935526

R9 A′ 0.683772 B′ ⊃ B 0.935526

mr2 R1 A′ 0.683772 B′ ⊃ B 0.437789

R2 A′ 0.683772 B′ ⊃ B 0.439834

R3 A′ 0.683772 B′ ⊃ B 0.436249

R4 A′ 0.683772 B′ ⊃ B 0.707154

R5 A′ 0.683772 B′ ⊃ B 0.697115

R6 A′ 0.683772 B′ ⊃ B 0.691508

R7 A′ 0.683772 B′ ⊃ B 0.697115

R8 A′ 0.683772 B′ ⊃ B 0.697115

R9 A′ 0.683772 B′ ⊃ B 0.697115

mr3 R1 A′ 0.683772 B′ ⊃ B 0.407110

R2 A′ 0.683772 B′ ⊃ B 0.410883

R3 A′ 0.683772 B′ ⊃ B 0.405919

R4 A′ 0.683772 B′ ⊃ B 0.701754

R5 A′ 0.683772 B′ ⊃ B 0.687924

R6 A′ 0.683772 B′ ⊃ B 0.682404

R7 A′ 0.683772 B′ ⊃ B 0.687924

R8 A′ 0.683772 B′ ⊃ B 0.687924

R9 A′ 0.683772 B′ ⊃ B 0.687924

mr4 A′ 0.683772 B′ ⊃ B 0.440355

mr5 A′ 0.683772 B′ ⊃ B 0.440355

mr6 A′ 0.683772 B′ ⊃ B 0.525030

mr7 A′ 0.683772 B′ ⊃ B 0.437789

sums method. Let p(k) be the peak value of A(k) and h(k) be the corresponding height of
the clipped version of A(k). Then, the defuzzified value will be given by

u∗ =

m∑
k=1

p(k).h(k)

m∑
k=1

h(k)
. (11)

Specificity, height and peak values are sometimes used simultaneously to compute
defuzzified value. Here, we propose a method for the defuzzification of fuzzy sets as in
the following:

u∗ =

m∑
k=1

p(k).h(k).s(k)
m∑
k=1

h(k).s(k)
. (12)

Example 2. In this example, we consider two fuzzy sets as given in Figure 12 and cor-
responding clipped fuzzy sets in Figure 13. From these sets, we compute the defuzzified
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Figure 11 B and B′ for mr1. Comparison of output with B.

value of the fuzzy sets using the methods of defuzzification as given in (10), (11) and (12),
respectively.

Sp(A(1)) = 0.175, Sp(A(2)) = 0.275; p(1) = 3, p(2) = 4 and h(1) = 0.6, h(2) = 0.8.
From (10), (11) and (12), we get u∗ = 3.61,u∗ = 3.57 and u∗ = 3.67.
We apply these three types of defuzzification methods in our fuzzy systems.

Application in different models
Let us consider a generalisedmodel as presented in Table 7. This form of reasoning is used
in rule-based fuzzy systems. In particular, it is used in pattern classification and fuzzy
control. Let there be n linguistic variables associated with another linguistic variable Y
according to the followingm fuzzy rules. The problem is to find the linguistic value of the
variable Y as suggested by the rules, when the values of the n variables are given.

Figure 12 Fuzzy sets for defuzzification.
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Figure 13 Clipped fuzzy sets for defuzzification.

Under the conventional technique, for each rule, the consequent fuzzy set is calculated
according to existing method of inference as already described, and then the union of all
consequent fuzzy sets is taken as the conclusion which is then defuzzified, if necessary,
using some defuzzification scheme. In similarity-based reasoning, this cannot be done.
Here, the membership values computed from the modified induced relation becomes less
and less specific as the similarity between the facts and antecedent of a rule decreases.
In conventional practice, the membership values of various elements become equal to
the maximum, making it an ambiguous one (more alternatives with similar membership
values at the positive level) with the reduction of the firing strength (used in deriving a
conclusion), but the membership values at which the ambiguity occurs become less than
one. For example, in case of Mamdani type of reasoning, if the firing strength of a rule is
say 0.3, then all alternatives which have membership values greater than or equal to 0.3
take membership values of 0.3. On the other hand, in the present case, if the similarity
value is 0.3, then the membership values of elements in the inferred fuzzy set will be at
least 0.3. Moreover, the elements having membership value greater than or equal to 0.3 in
the consequent of the rule will be equal to one in the consequent fuzzy set. This means
that with decrease in similarity the computed membership values increase and ultimately
move close to the least specific case (with membership values of 1 for all alternatives).
For this reason, we propose a new scheme, for computing the final conclusion, based on
a measure of similarity. Our method is based on rule selection and then rule execution.
In both cases, we use the concept of similarity between fuzzy sets as a basis of the task.
For that, first of all, we compute S(Aij,Ai); i = 1, 2, . . . ,m. Then, we perform the same

Table 7 Applicable form of approximate reasoning

if X1 is A11 and X2 is A12 · · · Xn is A1n then Y is B1
else if X1 is A21 and X2 is A22 · · · Xn is A2n then Y is B2

...
...

else if X1 is Am1 and X2 is Am2 · · · Xn is Amn then Y is Bm
X1 is A1 and X2 is A2 · · · Xn is An

Conclusion Y is B
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operation for different j = 1, 2, . . . , n. Let sij denote the different similarity values. We
next compute the overall rule matching index from the above data as

si = min
j

sij (13)

From among the m distinct rules, we choose those rules for which si > ε. This ε can be
interpreted as a threshold in our case. We then apply the algorithm SEAR to generate a
conclusion from each rule conformal for firing. The output can be generated using the
intersection of fuzzy sets. It is important to note that the intersection operation is chosen
in order to justify the rule selection procedure. Here, fewer rules are fired and the output
of each rule is significant.
To compute B′ as in Table 7, we apply the following algorithm.

Algorithm AFSAR: applicable form of similarity-based approximate reasoning

Step 1. Compute sij for i = 1, 2, . . . ,m; j = 1, 2, · · · , n and then si according to (13).
Step 2. Define ε and find the rules conformal for firing.
Step 3. Translate the ith rule, provided si > ε, and compute the relation Ri using any

suitable translating rule possibly, a t-norm operator as given in Table 3.
Step 4. Modify Ri with si to obtain the modified conditional relation R′

i according to
some modification scheme as given in Table 4.

Step 5. Use sup-projection operation on R′
i to obtain B′

i as given in (14).

μB′
i
(v) = sup

u1,u2,...,uk
μR(A1|Ai1,A2|Ai2,...,Ak

′|Aik ,B)(u1,u2, . . . ,uk , v). (14)

Step 6. Compute the specificity measure of B′
i denoted by Sp(B′

i), for all i for which a
rule is fired and set Sp = max

i
Sp(B′

i). If Sp > 1 − ε (ε > 0), the predefined

threshold, then output B =
{⋂

j B′
j|Sp(B′

j) > 1 − ε
}
.

Figure 14 DC shunt motor.
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Table 8 Rule base of DC shunt motor

If I = A1, then N = B17 also If I = A12, then N = B7 also

If I = A2, then N = B15 also If I = A13, then N = B9 also

If I = A3, then N = B13 also If I = A14, then N = B11 also

If I = A4, then N = B11 also If I = A15, then N = B13 also

If I = A5, then N = B9 also If I = A16, then N = B15 also

If I = A6, then N = B7 also If I = A17, then N = B17 also

If I = A7, then N = B5 also If I = A18, then N = B15 also

If I = A8, then N = B3 also If I = A19, then N = B13 also

If I = A9, then N = B1 also If I = A20, then N = B11 also

If I = A10, then N = B3 also If I = A21, then N = B9 also

If I = A11, then N = B5 also

In the process, we find a conceptual change in similarity-based inference mechanism.
A closer look at the connection between the proposed schemes and the existing schemes
allows us to conclude that our schemes can be thought of as an integration of Zadeh’s
compositional rule of inference and similarity-based inference schemes. Such a scheme is
expected to produce efficiency in inference mechanisms.

A case study on DC shunt motor
In this section, let us consider the DC shunt motor in Figure 14 as investigated in [33].
From the measurement of the current value I, the rotating speed value N in steady states
was determined by N = f (I).
Human experts observed the behaviour of the DC shunt motor and described the rela-

tion between current and speed in the form of fuzzy conditional statements as in the
following, where I is the linguistic variable representing the motor current and N is the
linguistic variable representing the motor rotations.
Let the domain set for the variable I be U = {0.0, 0.1, 0.2, 0.3, 0.4, . . . , 9.9, 10.0}.

Let A1,A2,A3,A4, . . . ,A21 be the fuzzy sets corresponding the points
0.0, 0.5, 1.0, 1.5, . . . , 10.0. Let V = {400, 410, 420, . . . , 1, 990, 2, 000} be the universe of
discourse of the linguistic variable N . Let B1,B2, . . . ,B17 be the fuzzy sets corresponding
the points 400, 500, 600, . . . , 2, 000. Now, we describe the behaviour of the motor (the
specific relation between current and speed) using fuzzy rules as in Table 8.
The data for the fuzzy model is given in Table 9, and the corresponding real static curve

is given in Figure 15.
For a particular observed value of current expressed in natural language, we first trans-

late the inexact concepts into fuzzy sets (the simple observation) or fuzzy relations (the
complex rule) over the specified universe of discourse using triangular membership func-
tions. We then perform approximate reasoning to obtain the corresponding speed of the
DC motor using the algorithm SAR.

Table 9 Real data for DC shunt motor

I N I N I N I N I N I N I N

0.0 2,000 1.5 1,400 3.0 800 4.5 600 6.0 1,200 7.5 1,800 9.0 1,600

0.5 1,800 2.0 1,200 3.5 600 5.0 800 6.5 1,400 8.0 2,000 9.5 1,400

1.00 1,600 2.5 1,000 4.0 400 5.5 1,000 7.0 1,600 8.5 1,800 10.0 1,200
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Figure 15 Real static characteristic of a DCmotor.

The defuzzified input/output are plotted for a comparative assessment of the utility
of the proposed similarity-based approximate reasoning methodology. The simulation
results are presented in the following self-explanatory diagrams given in Figure 16.

Conclusions
Developing intelligent systems becomes necessary to handle modern computer-based
technologies managing different kinds of information and knowledge. This paper dis-
cusses a theory to help provide solutions to difficult problems in the construction of
intelligent systems in which the available information is supplied by human experts which
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Figure 16 Comparison: real and proposed inference.



Pal et al. Journal of Uncertainty Analysis and Applications 2014, 2:18 Page 27 of 28
http://www.juaa-journal.com/content/2/1/18

at times are found incomplete, imprecise or even uncertain in nature and therefore inher-
ently ambiguous. It is hoped that by upgrading existing methodologies through addition
of concepts and techniques drawn from the fuzzy set theory opens the door to a sub-
stantial enhancement of our ability to model reality. In the process, we have developed
a mechanism to compute the matching degree of two fuzzy sets - representation of
imprecise concepts (e.g. low speed and very low speed of a DC motor).
It has been shown that the concept of similarity is inherent in approximate reasoning

methodology. Different problems arising out of the use of existing compositional rule of
inference as well as similarity-based reasoning have been discussed with suitable exam-
ples. Different functions used to measure the similarity between two inexact concepts
are reviewed. We have proposed axioms to compute the similarity between two fuzzy
sets and appropriately introduced the concept in approximate reasoning methodology.
It may be argued that the proposed similarity-based approximate reasoning technique is
a combination of Zadeh’s compositional rule of inference and Turksen’s similarity-based
reasoning. It is shown that this method is a more general characterisation of similarity-
based approximate reasoning, and Turksen’s method is a special case of the proposed
method.
We have suggested relevant issues involved in the design of fuzzy systems - intro-

duced similarity in reasoning, similarity relation in fuzzification and the concept of
specificity measure in defuzzification. The concept of similarity is effectively used in
system control. It is hoped that the introduction of the specificity-based defuzzifica-
tion technique will prove to be a powerful technique in qualitative control. Further
research on the use of similarity-based approximate reasoning is necessary for a bet-
ter understanding of the effect of the same on the cognitive process involved in
qualitative modelling and simulation. Similarity-based reasoning is a basic mode of
inference in fuzzy logic in a wide sense that provides a basis for formalisation of com-
monsense reasoning and a non-ad hoc computational framework for combining and
deriving evidence in expert systems. Similarity-based approximate reasoning may be
popularised because of the scope of its applications in wide and challenging fields of
investigation.
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