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Abstract

In this paper, we introduce closed-form symbolic expressions for the possibility
distributions of the coefficients of friction during the tightening process of bolted
joints. The parameters in the distribution functions are then identified by a standardized
fastener testing system according to ISO 16047. An uncertainty analysis finally shows
that the total amount of uncertainty in the coefficient of bearing friction is almost 40%
larger than in the coefficient of thread friction. Furthermore, the real value of the
coefficent of bearing friction is likely to be about 5% higher than the expected value.
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Introduction
Bolted joints are among the most used joints in mechanical engineering. But failures still
occur during the tightening process and in operation. In order to improve the quality and
reliability of bolted joints, a main goal is to achieve a proper clamping force.With a certain
effort [1], it is possible to measure the clamping force directly. But most of the bolts and
screws still are assembled by an indirect measurement of the clamping force [2].
The required torque T for tightening a bolted joint is determined by [3]

T = Tb + Tt, (1)

whereTb denotes the bearing friction torque component andTt the thread friction torque
component. These components are in a direct relationship with the clamping force and
the coefficients of friction of the particular material pairing. Hence, the information about
the coefficients of friction has a great influence on the quality and reliability of bolted
joint connections.
Suppliers of bolts and screws often give only parameter windows for the desired

coefficients of friction. These intervals are rather general andmay not be suitable for indi-
vidual applications. Furthermore, no information about the distribution functions of the
coefficients of friction is provided.
Basically, twomain approaches for modeling distribution functions are available: proba-

bility [4] and possibility theory [5]. In probability theory, the integral over the distribution
function p(x) is equal to one:
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∫ +∞

−∞
p(x) dx = 1, (2)

whereas in possibility theory, the distribution functions π(x) are always normalized:

max{π(x)} = 1. (3)

For example, the Gaussian distribution function can be generally expressed by

f (x) = C exp
[
−1
2

(
x − x̄

σ

)2
]
,

where x̄ denotes the mean value and σ the standard deviation of f (x). In probability
theory, the constant scaling factor is set to

C = 1
σ
√
2π

to satisfy the property (2). However, in possibility theory, we set

C = 1

to meet the requirement (3).
The general disadvantage in working with probability distribution functions is that in

order to construct a probabilistic model, a large amount of statistical data is needed,
which, in reality, is not always the case. In contrast to that, when only little information
about the uncertain parameters is available, possibility theory is most appropriate. For
this reason, we use possibility theory in this paper to model parametric uncertainty.
The main contributions of this paper are the following. First, closed-form symbolic

expressions for the possibility distributions of the coefficients of friction during the
tightening process of bolted joints are introduced for the first time. The parameters in
the distribution functions are then identified by a standardized fastener testing system
according to ISO 16047. An uncertainty analysis finally compares the total amount of
uncertainty in the coefficient of bearing friction with that in the coefficient of thread fric-
tion. Furthermore, the deviations of the real values of the coefficients of friction from the
expected values are given.

Possibility theory
Historically, possibility theory emerged from the theory of fuzzy sets [6] because of ‘the
need for a systematic way of dealing with [...] forms of uncertainty which are not proba-
bilistic in nature’ [5]. In fact, the membership function μx̃(x) of a fuzzy number x̃ can be
viewed as a possibility distribution π(x) of the parameter x [7]. More specifically, the pos-
sibility distribution π(x) is a function that maps a value x to the possibility of the singleton
event {x} [8]:

π(x) = �({x}).
However, a high possibility of some event does not automatically mean that this event has
also a high probability. In fact, the probability P(A) of an event A can be viewed as a lower
bound for the corresponding possibility �(A) [9]:

�(A) ≥ P(A).

This is in accordance with intuition since ‘before an event becomes probable, it must be
possible’ [8]. For a detailed overview of possibility theory, the reader is referred to [5].
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Sensitivity analysis
For the analysis of models with uncertain parameters, it is important to know to which
extent the uncertainties of the individual model parameters contribute to the overall
uncertainty of the model answer. Such a sensitivity analysis can be defined by the total
differential [10]

d f =
n∑

i=1
(d f )i =

n∑
i=1

∂f (x̄)
∂xi

dxi (4)

of the model function f at the point x̄ = (x̄1, . . . , x̄n), where d f represents the total change
of f in a neighborhood of x̄ if all parameters are changed simultaneously. The change dxi
of a single parameter xi contributes to the amount (d f )i to the total change d f .
If the change rates dxi of the parameters xi are assumed to be a constant fraction c of

the corresponding modal values x̄i, the total differential from Equation (4) can be written
as [10]

df = c
n∑

i=1

∂f (x̄)
∂xi

x̄i. (5)

Using Equation (5), we can define the following relative sensitivity measures [10]:

ρi =
∣∣∣ ∂ f (x̄)

∂xi

∣∣∣ x̄i∑n
j=1

∣∣∣ ∂ f (x̄)
∂xj

∣∣∣ x̄j
satisfying the consistency condition

n∑
i=1

ρi = 1.

Uncertainty propagation
In order to propagate the uncertainties through the computations, we introduce the
following transformation:
Let

π(x) =
{

πL(x), x ≤ x̄,
πR(x), x > x̄,

be the possibility distribution of the parameter x in the x domain, where πL(x) denotes
the left branch, πR(x) the right branch, and x̄ the modal value of π(x). The transformation
of π(x) into the π domain leads to the (generalized) interval x(π) = [

xL(π), xR(π)
]
with

xL(π) = πL(x)−1, 0 < π ≤ 1,

xR(π) = πR(x)−1, 0 < π ≤ 1.

For example, the transformation of the Gaussian possibility distribution leads to

xL(π) = x̄ − σ
√−2 ln(π), 0 < π ≤ 1,

xR(π) = x̄ + σ
√−2 ln(π), 0 < π ≤ 1.

The Gaussian possibility distribution in the x and the π domain is illustrated in Figure 1.
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a

b

Figure 1 Gaussian possibility distribution. (a) x domain. (b) π domain.

Using the above transformation, we can formulate the following analytical approach [11]:
Let π(x1), . . . ,π(xn) be the possibility distributions of the n independent parameters

x1, . . . , xn, and let f :Rn → R be a continuous function with y = f (x1, . . . , xn). Further-
more, let f be (strictly) monotonic increasing in xi, i = 1, . . . , k, and (strictly) monotonic
decreasing in xj, j = k + 1, . . . , n, in the domain of interest. Then, the possibility
distribution y(π) = [

yL(π), yR(π)
]
of y in the π domain is determined by

yL(π) = f
(
xL1(π), . . . , xLk (π), xRk+1(π), . . . , xRn(π)

)
, 0 < π ≤ 1,

yR(π) = f
(
xR1 (π), . . . , xRk (π), xLk+1(π), . . . , xLn(π)

)
, 0 < π ≤ 1.

(6)
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If Equations (6) are invertible with respect to π , then the possibility distribution of y in
the y domain yields

π(y) =
{
yL(π)−1, yL(0) < y ≤ yL(1),
yR(π)−1, yR(1) < y < yR(0).

Distribution functions
In this section, we use the above analytical approach to derive closed-form symbolic
expressions for the distribution functions of the coefficients of friction during the
tightening process of bolted joints.

Coefficient of bearing friction

The coefficient of friction between the turning head or nut and the bearing surface μb
can be computed from [3]

μb = Tb
Frb

,

where Tb denotes the bearing friction torque component, F the clamping force, and rb
the effective bearing radius.
During the tightening process, the clamping force F should be achieved exactly. Hence,

it exhibits no uncertainty. The parameters Tb and rb, on the other hand, are assumed to
be normally distributed.
With the partial derivatives

∂μb
∂Tb

= + 1
Frb

,

∂μb
∂rb

= − Tb

Fr2b
,

the sensitivity measures for μb are

ρTb = ρrb = 0.5.

Hence, the uncertainties of Tb and rb contribute to the same amount to the overall
uncertainty of μb.
We can see from the signs of the partial derivatives that μb is (strictly) monotonic

increasing in Tb and (strictly) monotonic decreasing in rb for positive values. Hence,
according to Equations (6), the possibility distribution of μb in the π domain is μb(π) =[
μL
b(π),μR

b (π)
]
with

μL
b(π) = TL

b (π)

FrRb (π)
= T̄b − σTb

√−2 ln(π)

F
(
r̄b + σrb

√−2 ln(π)
) , 0 < π ≤ 1,

μR
b (π) = TR

b (π)

FrLb(π)
= T̄b + σTb

√−2 ln(π)

F
(
r̄b − σrb

√−2 ln(π)
) , 0 < π ≤ 1,

and in the μb domain,

π(μb) = exp

⎡
⎣−1

2

(
Fr̄bμb − T̄b
Fσrbμb + σTb

)2
⎤
⎦ . (7)
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Introducing the abbreviations

μ̄b = T̄b
Fr̄b

,

σμb = σTb

Fσrb
,

Equation (7) can be simplified to

π(μb) = exp
[
−1
2
r̄2b
σ 2
rb

(
μb − μ̄b
μb + σμb

)2
]
.

Coefficient of thread friction

For metric ISO threads with a thread profile angle of 60°, the coefficient of friction
between male and female threads μt can be approximated by [3]

μt =
√
3

dt

(
Tt
F

− P
2π

)
,

where dt denotes the effective thread diameter, Tt the thread friction torque component,
F the clamping force, and P the thread pitch. (Note that the possibility degree π , which
is used throughout the paper, should not be confused with the mathematical constant
π = 3.14. . . ).
Again, the clamping force F is assumed to exhibit no uncertainty, and the other

parameters are assumed to be normally distributed.
With the partial derivatives

∂μt
∂dt

= −
√
3

d2t

(
Tt
F

− P
2π

)
,

∂μt
∂Tt

= +
√
3

dt
1
F
,

∂μt
∂P

= −
√
3

dt
1
2π

,

the sensitivity measures for μt are

ρdt = 2πT̄t − FP̄
4πT̄t

,

ρTt = 0.5,

ρP = FP̄
4πT̄t

,

with

ρdt + ρP = 0.5.

However, since 2πT̄t � FP̄, we can deduce:

ρdt ≈ 0.5,

ρTt = 0.5,

ρP ≈ 0.

Hence, the uncertainties of dt and Tt contribute to the nearly same amount to the overall
uncertainty of μt, whereas the uncertainty of P has a negligible influence.
We can see from the signs of the partial derivatives that μt is (strictly) monotonic

increasing in Tt and (strictly) monotonic decreasing in dt for positive values. Hence,
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according to Equations (6), the possibility distribution of μt in the π domain is μt(π) =[
μL
t (π),μR

t (π)
]
with

μL
t (π) =

√
3

dRt (π)

(
TL
t (π)

F
− P

2π

)

=
√
3

2πF
(2πT̄t − FP) − 2πσTt

√−2 ln(π)

d̄t + σdt
√−2 ln(π)

, 0 < π ≤ 1,

μR
t (π) =

√
3

dLt (π)

(
TR
t (π)

F
− P

2π

)

=
√
3

2πF
(2πT̄t − FP) + 2πσTt

√−2 ln(π)

d̄t − σdt
√−2 ln(π)

, 0 < π ≤ 1,

and in the μt domain,

π(μt) = exp
[
−1
2

(
aμ2

t + bμt + c
dμ2

t + eμt + f

)]

with

a = 4π2d̄2t F
2,

b = −4
√
3πd̄tF

(
2πT̄t − FP

)
,

c = 12π2T̄2
t − 12πT̄tFP + 3F2P2,

d = 4π2σ 2
dtF

2,

e = 8
√
3π2σdtσTtF ,

f = 12π2σ 2
Tt
.

Parameter identification
In order to identify the parameters in the distribution functions of μb and μt, practical
experiments had been carried out on a fastener testing system according to ISO 16047
[12] as illustrated in Figure 2. This system contains a multi-parameter sensor that enables
a measurement of the fastener preload, the tightening torque, and one of the friction
torque components at the same time.

Figure 2 Fastener testing system used in our experiments.
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Materials andmethods

The descriptions and materials of the test parts are summarized in Table 1. The dimen-
sions of the flat steel bar are illustrated in Figure 3.
For carrying out the experiments, we followed the instructions from ISO 16047 [12]. A

tightening torque was steadily applied until a clamping force of 16 kN was reached. Here,
F , T , and Tb were measured, and Tt was computed according to Equation (1). The sample
size was 32 bolts.

Experimental results

Since the effective bearing radius is usually hard to determine in practice [13], rb is
assumed to be normally distributed with the mean value

r̄b = do + di
4

= 6.625mm

and the standard deviation

σrb = do − di
12

= 0.625mm,

where do denotes the outer diameter and di the inner diameter of the bearing surface.
Furthermore, the effective thread diameter is also usually hard to determine in practice

[13]. For this reason, dt is also assumed to be normally distributed with the mean value

d̄t = d2 = 7.188mm

and the standard deviation

σdt = d − D1
6

= 0.226mm,

where d2 denotes the thread pitch diameter, d the nominal thread diameter, and D1 the
minor nut thread diameter. The standard deviations are chosen such that the intervals
[di, do] and [D1, d] correspond to 6 · 2 σrb and 6 σdt , respectively. (The factor two at σrb
results from the fact that the standard deviation of a diameter is twice as large as the
standard deviation of the corresponding radius). Beyond the interval boundaries, the
possibility values are smaller than 1% [14] and can be thus neglected. In fact, they are
physically impossible.
Using the above assumptions, the distribution functions of μb and μt for F ∈ [2, 16]

kN are illustrated in Figure 4. We can see that after an initial shakedown, a steady-state
distribution is always reached.
According to ISO 16047 [12], the determination of the coefficients of friction shall

be carried out at 75% of the maximum clamping force. In our experiments, this is

Table 1 Descriptions andmaterials of the test parts

Test part Description/material Remark

Bolt DIN 6921 M8× 50 10.9 Black chromated

Nut DIN 934 M8 8.8 Black chromated

Flat bar S235JRC+C (EN 1.0122) Surface polished
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Figure 3 Dimensions of the flat steel bar. Here, t denotes the thickness.

the case at F = 12 kN. The distribution functions of μb and μt at this point
are

π(μb) = exp
[
−56

(
μb − 0.114
μb + 0.091

)2
]
,

π(μt) = exp
[
−1
2

(
2.94 · 105μ2

t − 1.13 · 105μt + 0.109 · 105
7.19 · 10−3μ2

t + 152μt + 19.9

)]
.

(8)

The plots of Equations (8) are illustrated in Figure 5.

a

b

Figure 4 Distribution functions of μb andμt for F ∈ [ 2, 16] kN. (a) Distribution function of μb.
(b) Distribution function of μt.
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Figure 5 Distribution functions of μb andμt at F = 12 kN.

Uncertainty analysis
In order to quantify the total amount of uncertainty of a possibility distribution π(x), we
use the (absolute) cardinality [14]:

card (π(x)) =
∫ +∞

−∞
π(x) dx.

Since the coefficients of friction are all elements of [ 0, 1], the total amount of uncer-
tainty can be defined as

uncer (π(x)) =
∫ 1

0
π(x) dx.

Numerical integration of Equations (8) yields

uncer (π(μb)) = 0.050,

uncer (π(μt)) = 0.036,

meaning that in our application, the total amount of uncertainty inμb is almost 40% larger
than in μt.
In the next step, the (relative) eccentricities of the possibility distributions of the

coefficients of friction are analyzed [14]:

ecc (π(x)) = defuzz (π(x)) − x̄
x̄

.

Here,

defuzz (π(x)) =
∫ 1
0 xπ(x) dx∫ 1
0 π(x) dx

denotes the defuzzified value of π(x).
Further numerical integration yields

defuzz (π(μb)) = 0.120,

defuzz (π(μt)) = 0.194.
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Hence, the desired eccentricities are

ecc (π(μb)) = 0.120 − 0.114
0.114

= 0.05,

ecc (π(μt)) = 0.194 − 0.193
0.193

= 0.01.

Both eccentricities are positive, that is, the real values of the coefficients of friction will
be potentially higher than the expected values. More specifically, the real value of μb is
likely to be about 5% and the real value ofμt to be about 1% higher than the corresponding
expected value.

Conclusions
We introduced closed-form symbolic expressions for the possibility distributions of the
coefficients of friction during the tightening process of bolted joints. This relieves the
engineer from the burden of propagating the uncertainties through the computations to
obtain the uncertain output. The parameters in the distribution functions can be iden-
tified by a standardized fastener testing system according to ISO 16047 as has been
demonstrated in this paper. An uncertainty analysis also revealed that the total amount
of uncertainty in the coefficient of bearing friction is almost 40% larger than in the coef-
ficient of thread friction. This finding suggests that in practice, it is more important
to control the coefficient of bearing friction than the coefficient of thread friction. The
uncertainty analysis also showed that the real value of the coefficient of bearing friction
is likely to be about 5% and the real value of the coefficient of thread friction to be about
1% higher than the corresponding expected value.
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