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Abstract

The paper proves an existence and uniqueness theorem of the solution to an uncertain
fractional differential equation by Banach fixed point theorem under Lipschitz and
linear growth conditions. Then, the paper presents an existence theorem for the
solution of an uncertain fractional differential equation by Schauder fixed point
theorem under continuity condition.
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Introduction
Fractional differential equation has been a classical research field of differential equations.
The study of fractional differential equations attracted many mathematicians, physicists,
and engineers. Fractional differential equations have important applications such as in
rheology, viscoelasticity, electrochemistry, and electromagnetism. A fractional differential
equation is a differential equation including fractional derivatives. There are several kinds
of fractional derivatives such as the Riemann-Liouville type, Caputo type, Grünwald-
Letnikov type, and Riesz type. Some references about fractional differential equationsmay
be seen in [1-8].
Stochastic fractional differential equations were used to model dynamical systems

affected by random noises [9-15]. Generally, there are two types of stochastic fractional
differential equations. One is of the form

Dαx(t) = f (t, x(t)) + g(t, x(t))
dW (t)
dt

where Dαx(t) denotes the fractional derivative of the function x(t), and W (t) is the
Wiener process. The other is of the form

dx(t) = f (t, x(t))dt + g(t, x(t))dBH
t

where BH
t is the fractional Brownian motion.

Recently in [16], the concept of uncertain fractional differential equations was intro-
duced based on the uncertainty theory. The Riemann-Liouville type of uncertain frac-
tional differential equation

DpXt = f (t,Xt) + g(t,Xt)
dCt
dt
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and the Caputo type of uncertain fractional differential equation

cDpXt = f (t,Xt) + g(t,Xt)
dCt
dt

were dealt with where Ct is the canonical Liu process. The solutions were provided
by the Mittag-Leffler function for linear uncertain fractional differential equations. An
application to the price of a zero-coupon bond with a maturity date was presented.
Analytical solutions were presented only for some special uncertain fractional dif-

ferential equations in [16]. In order to understand what kinds of uncertain fractional
differential equations have solutions, we in this paper will give some sufficient conditions
to guarantee the existence of solutions of uncertain fractional differential equations. That
is, we will show the existence and uniqueness of solutions for uncertain fractional dif-
ferential equations. The structure of the paper is as follows: Firstly, some concepts and
results in uncertainty theory will be reviewed. Then, the fractional derivatives and uncer-
tain fractional differential equations will be recalled. Finally, an existence and uniqueness
theorem and an existence theorem will be proved.

Preliminary
Uncertainty theory was founded by Liu in 2007 [17] and refined in 2010 [18]. Basic
concepts in uncertainty theory include uncertain measure, uncertainty space, product
uncertain measure, and uncertain variable. Let � be a nonempty set and L be a
σ -algebra over �. Each element � ∈ L is called an event. Set function M defined on L

is called an uncertain measure if it satisfies three axioms: (normality) M{�} = 1, (dual-
ity) M{�} + M{�c} = 1 for any event �, and (countable subadditivity) M

{⋃∞
i=1 �i

} ≤∑∞
i=1M{�i} for every countable sequence of events �1,�2, · · · . The triplet (�,L,M) is

called an uncertainty space. The product uncertain measure M is an uncertain measure
satisfyingM

{∏∞
i=1 �k

} = ∞∧
i=1

Mk{�k}, where (�k ,Lk ,Mk) are uncertainty spaces and �k

are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively. An uncertain variable
is defined as a function ξ from an uncertainty space (�,L,M) to the set R of real numbers
such that {ξ ∈ B} is an event for any Borel set B.
The uncertainty distribution � : R →[0, 1] of an uncertain variable ξ is defined by

�(x) = M{ξ ≤ x} for x ∈ R. The expected value of an uncertain variable ξ is defined by

E[ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite. The variance of ξ is defined by
V [ξ ]= E

[
(ξ − E[ ξ ] )2

]
.

A normal uncertain variable with expected value e and variance σ 2 has the uncertainty
distribution

�(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1
, x ∈ R

which is denoted by ξ ∼ N(e, σ).
The uncertain variables ξ1, ξ2, · · · ξm are said to be independent [19] if

M

{ m⋂
i=1

(ξi ∈ Bi)

}
= min

1≤i≤m
M{ξi ∈ Bi}
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for any Borel sets B1,B2, · · ·Bm of real numbers. For numbers a and b, E[aξ + bη]=
aE[ξ ]+bE[η] if ξ and η are independent uncertain variables.
Liu [20] defined uncertain process as a function Xt from S × (�,L,M) to the set of real

numbers where S is a totally ordered set such that {Xt ∈ B} is an event for any Borel set B
at each time t ∈ S.

Definition 1. [19] An uncertain process Ct is called a canonical Liu process if it
satisfies the following: (i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments, and (iii) every increment Cs+t − Cs
is a normal uncertain variable with expected value 0 and variance t2, denoted by
Cs+t − Cs ∼ N(0, t).

For any partition of closed interval [a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh
is written as 
 = max1≤i≤k |ti+1 − ti|. Then, the uncertain integral of Xt with respect to
Ct is defined by Liu [19] as

∫ b

a
XtdCt = lim


→0

k∑
i=1

Xti · (
Cti+1 − Cti

)

provided that the limit exists almost surely and is finite. If there exist two uncertain pro-
cesses μt and σt such that Zt = Z0 + ∫ t

0μsds + ∫ t
0σsdCs for any t ≥ 0, then we say Zt has

an uncertain differential dZt = μtdt + σtdCt . An uncertain differential equation driven
by a canonical Liu process Ct is defined as

dXt = f (t,Xt)dt + g(t,Xt)dCt (1)

where f and g are two given functions. A solution Xt of the uncertain differential equation
is equivalent to a solution of the uncertain integral equation

Xt = X0 +
∫ t

0
f (s,Xs)ds +

∫ t

0
g(s,Xs)dCs.

For an uncertain differential equation (1) in a multidimensional case, Xt is a multidi-
mensional state,Ct is a multidimensional canonical Liu process, f (t,Xt) is a vector-valued
function, and g(t,Xt) is a matrix-valued function.
An existence and uniqueness theorem of solution for the uncertain differential

equation (1) was proved by Chen and Liu [21]. Meanwhile, Chen and Liu [21] obtained
an analytic solution to linear uncertain differential equations. Liu [22] and Yao [23]
presented some methods for solving nonlinear uncertain differential equations. Yao
and Chen [24] introduced a numerical method for solving the uncertain differential
equation. Some extensions of the uncertain differential equation were studied such
as the uncertain delay differential equation by Barbacioru [25], Ge and Zhu [26],
and Liu and Fei [27] and the backward uncertain differential equation by Ge and
Zhu [28]. The uncertain differential equation has been applied in some fields such
as uncertain finance [29], uncertain optimal control [30], and uncertain differential
game [31].
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Lemma 1. [28] Suppose that Ct is an l-dimensional canonical Liu process, and Yt is
an integrable n × l-dimensional uncertain process on [a, b] with respect to t. Then, the
inequality ∥∥∥∥∥

∫ b

a
Yt(γ )dCt(γ )

∥∥∥∥∥∞
≤ Kγ

∫ b

a
‖Yt(γ )‖∞dt

holds, where Kγ is the Lipschitz constant of the sample path Ct(γ ) with the norm ‖ · ‖∞.

Uncertain fractional differential equations
In the sequel, we will always assume p ∈ (0, 1]. The Riemann-Liouville type of uncertain
fractional differential equation and the Caputo type of uncertain fractional differential
equation in the one-dimensional case were introduced in [16]. Now we state those con-
cepts in a multidimensional case. Let Ct = (C1t ,C2t , · · · ,Clt)

τ be an l-dimensional
canonical Liu process.

Definition 2. Suppose that f :[0,∞) × Rn → Rn and g :[0,∞) × Rn → Rn×l are two
functions. Then,

DpXt = f (t,Xt) + g(t,Xt)
dCt
dt

(2)

is called an uncertain fractional differential equation of the Riemann-Liouville type. A
solution of (2) with the initial condition

lim
t→0+ t1−pXt = x0

is an uncertain process Xt such that

Xt = tp−1x0 + 1
�( p)

∫ t

0
(t − s)p−1f (s,Xs)ds + 1

�( p)

∫ t

0
(t − s)p−1g(s,Xs)dCs (3)

holds almost surely.

Definition 3. Suppose that f :[0,∞) × Rn → Rn and g :[0,∞) × Rn → Rn×l are two
functions. Then,

cDpXt = f (t,Xt) + g(t,Xt)
dCt
dt

(4)

is called an uncertain fractional differential equation of the Caputo type. A solution of (4)
is an uncertain process Xt such that

Xt = X0 + 1
�( p)

∫ t

0
(t − s)p−1f (s,Xs)ds + 1

�( p)

∫ t

0
(t − s)p−1g(s,Xs)dCs (5)

holds almost surely.

Remark 1. (i) The pth Riemann-Liouville fractional order derivative of the function
u :[0,T]→ Rn is defined by

Dpu(t) = 1
�(1 − p)

d
dt

∫ t

0
(t − s)−pu(s)ds, t > 0.
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(ii) The pth Caputo fractional order derivative of the function u :[0,T]→ Rn is defined by

cDpu(t) = 1
�(1 − p)

∫ t

0
(t − s)−pu′(s)ds, t > 0

where u′(s) is the first-order derivative of u(s).
(iii) The relation between the Riemann-Liouville and Caputo fractional order derivatives
is

Dpu(t) = cDpu(t) + t−p

�(1 − p)
u(0).

(iv) The gamma function

�(α) =
∫ ∞

0
tα−1e−tdt, α > 0

has the properties

�(α + 1) = α�(α), α > 0; �(1) = 1; �

(
1
2

)
= √

π .

Existence and uniqueness
For simplicity, we use | · | to denote a norm in Rn or Rn×l. Let D[a,b] denote the space of
continuous Rn-valued functions on [a, b], which is a Banach space with the norm

‖xt‖ = max
t∈[a,b]

|xt|, for xt ∈ D[a,b].

Give two functions f (t, x) :[0,T]×Rn → Rn, and g(t, x) :[0,T]×Rn → Rn×l. Now we
introduce the following mapping � on D[0,T]: for Xt ∈ D[0,T],

�(Xt) = tp−1x0 + 1
�( p)

∫ t

0
(t − s)p−1f (s,Xs)ds + 1

�( p)

∫ t

0
(t − s)p−1g(s,Xs)dCs (6)

where x0 is a given initial state.

Lemma 2. For uncertain process Xt ∈ D[0,T], the mapping  defined by

(Xt) = (
tp−1 − ã

)
x0 + Xa + 1

�( p)

∫ t

a
(t − s)p−1f (s,Xs)ds

+ 1
�( p)

∫ t

a
(t − s)p−1g(s,Xs)dCs, t > a ≥ 0 (7)

is sample-continuous where ã = ap−1 if a > 0 or 1 if a = 0, and f and g satisfy the linear
growth condition

| f (t, x)| + | g(t, x)| ≤ L(1 + |x|), ∀x ∈ Rn, t ∈[0,+∞)

where L is a positive constant.
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Proof. In fact, for γ ∈ � and t > r > a, we have

|(Xt(γ )) − (Xr(γ ))|

=
∣∣∣∣(tp−1 − rp−1) x0 + 1

�( p)

∫ t

r
(t − s)p−1f (s,Xs(γ ))ds

+ 1
�( p)

∫ t

r
(t − s)p−1g(s,Xs(γ ))dCs(γ )

+ 1
�( p)

∫ r

a

[
(t − s)p−1 − (r − s)p−1] f (s,Xs(γ ))ds

+ 1
�( p)

∫ r

a

[
(t − s)p−1 − (r − s)p−1] g(s,Xs(γ ))dCs(γ )

∣∣∣∣
≤ (

rp−1 − tp−1) |x0| + 1
�( p)

∫ t

r
(t − s)p−1| f (s,Xs(γ ))|ds

+ 1
�( p)

∣∣∣∣
∫ t

r
(t − s)p−1g(s,Xs(γ ))dCs(γ )

∣∣∣∣
+ 1

�( p)

∫ r

a

[
(t − s)p−1 − (r − s)p−1] | f (s,Xs(γ ))|ds

+ 1
�( p)

∣∣∣∣
∫ r

a

[
(t − s)p−1 − (r − s)p−1] g(s,Xs(γ ))dCs(γ )

∣∣∣∣
≤ (

rp−1 − tp−1) |x0| + 1
�( p)

∫ t

r
(t − s)p−1| f (s,Xs(γ ))|ds

+ Kγ

�( p)

∫ t

r
(t − s)p−1|g(s,Xs(γ ))|ds

+ 1
�( p)

∫ r

a

[
(t − s)p−1 − (r − s)p−1] | f (s,Xs(γ ))|ds

+ Kγ

�( p)

∫ r

a

[
(t − s)p−1 − (r − s)p−1] ∣∣g(s,Xs(γ ))

∣∣ ds (by Lemma 1)

≤ (
rp−1 − tp−1) |x0| + L

�( p + 1)
(1 + ‖Xt(γ )‖)(1 + Kγ )

[
(t − a)p − (r − a)p

]

by the linear growth condition. Thus, |(Xt(γ )) − (Xr(γ ))| → 0 as |t − r| → 0. That
is, (Xt) is sample-continuous.

Theorem 1. (Existence and uniqueness) The uncertain fractional differential
equation (2) (or (4)) has a unique solution Xt in [0,+∞) if the coefficients f (t, x) and
g(t, x) satisfy the Lipschitz condition

| f (t, x) − f (t, y)| + |g(t, x) − g(t, y)| ≤ L|x − y|, ∀x, y ∈ Rn, t ∈[0,+∞)

and the linear growth condition

| f (t, x)| + |g(t, x)| ≤ L(1 + |x|), ∀x ∈ Rn, t ∈[0,+∞)

where L is a positive constant. Furthermore, Xt is sample-continuous.
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Proof. We only prove the theorem for the uncertain fractional differential equation (2).
A similar process of the proof is suitable to the uncertain fractional differential
equation (4). Let T > 0 be an arbitrarily given number, and let � be a mapping defined
by (6) on D[0,T].
Give γ ∈ �. For λ ∈[0,T), assume c > 0 such that λ + c ≤ T . Define a mapping ψ on

D[λ,λ+c]: for Xt ∈ D[λ,λ+c], t ∈[λ, λ + c],

ψ(Xt) =
(
tp−1 − λ̃

)
x0 + Xλ+ 1

�( p)

∫ t

λ

(t − s)p−1f (s,Xs)ds

+ 1
�( p)

∫ t

λ

(t − s)p−1g(s,Xs)dCs

where λ̃ = λp−1 if λ > 0 or 1 if λ = 0. For Xt(γ ) ∈ D[λ,λ+c], we know that ψ(Xt(γ )) ∈
D[λ,λ+c] by Lemma 2.
Let Xt(γ ),Yt(γ ) ∈ D[λ,λ+c]. For any t ∈[λ, λ + c], we have

‖ψ(Xt(γ )) − ψ(Yt(γ ))‖ = max
t∈[λ,λ+c]

|ψ(Xt(γ )) − ψ(Yt(γ ))|

≤ max
t∈[λ,λ+c]

∣∣∣∣ 1
�( p)

∫ t

λ

(t − s)p−1 [
f (s,Xs(γ )) − f (s,Ys(γ ))

]
ds

+ 1
�( p)

∫ t

λ

(t − s)p−1 [
g(s,Xs(γ )) − g(s,Ys(γ ))

]
dCs(γ )

∣∣∣∣
≤ max

t∈[λ,λ+c]

{
1

�(p)

∫ t

λ

(t − s)p−1| f (s,Xs(γ )) − f (s,Ys(γ ))|ds

+ Kγ

�( p)

∫ t

λ

(t − s)p−1|g(s,Xs(γ )) − g(s,Ys(γ ))|ds
}

≤ (1 + Kγ )L
�( p)

max
t∈[λ,λ+c]

∫ t

λ

(t − s)p−1|Xs(γ ) − Ys(γ )|ds (by Lipschitz condition)

≤ (1 + Kγ )Lcp

�( p + 1)
‖Xt(γ ) − Yt(γ )‖.

Let ρ(γ ) = (
1 + Kγ

)
Lcp/�( p+ 1). By taking a suitable c = c(γ ) > 0 such that ρ(γ ) ∈

(0, 1). That is, ψ is a contraction mapping on D[λ,λ+c]. Thus, by the well-known Banach
fixed point theorem, we have a unique fixed point Xt(γ ) of ψ in D[λ,λ+c]. Furthermore,
Xt(γ ) = limk→∞ ψ(Xt,k(γ )) where

Xt,k(γ ) = ψ(Xt,k−1(γ )), k = 1, 2, · · ·
for any given Xt,0(γ ) = xt ∈ D[λ,λ+c].
Assume that [0, c] , [c, 2c] , · · · , [kc,T] are the subsets of [0,T] with kc < T ≤ (k + 1)c.

The above process implies that the mapping ψ has a unique fixed point X(i+1)
t (γ ) with

X(i+1)
ic (γ ) = X(i)

ic (γ ) on the interval [ic, (i + 1)c] for i = 0, 1, 2, · · · , k, where we set
(k + 1)c = T . Define Xt(γ ) on the interval [0,T] by setting

Xt(γ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X(1)
t (γ ), t ∈[0, c] ,

X(2)
t (γ ), t ∈[c, 2c] ,

· · ·
X(k+1)
t (γ ), t ∈[kc,T] .
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It is easy to see that Xt(γ ) is the unique fixed point of � defined by (6) in D[0,T]. In
addition, Xt(γ ) = limk→∞ �(Xt,k(γ )) where

Xt,k(γ ) = �(Xt,k−1(γ )), k = 1, 2, · · ·
for any given Xt,0(γ ) = xt ∈ D[0,T]. Since Xt,k are uncertain vectors for k = 1, 2, · · · , we
know that Xt is an uncertain vector by Theorem 3 in the Appendix. It follows from the
arbitrariness of T > 0 that Xt is the unique solution of uncertain fractional differential
equation (2). Furthermore, since Xt(γ ) is inD[0,T], Xt is sample-continuous. The theorem
is proved.

If the functions f and g do not satisfy the Lipschitz condition and linear growth
condition, we present the following existence theorem just for continuous f and g.

Theorem 2. (Existence) Let f (t, x) and g(t, x) be continuous in

G =[0,T]× {
x ∈ Rn : |x − x0| ≤ b

}
.

Then, uncertain fractional differential equation of the Caputo type (4) has a solution Xt
in t ∈[0,T] with the crisp initial condition X0 = x0 ∈ Rn.

Proof. For any γ ∈ �, let c > 0 be a positive number such that

M
(
1 + Kγ

)
�( p + 1)

cp = b

where Kγ is the Lipschitz constant of the canonical Liu process Ct , and M =
max(t,x)∈G | f (t, x)| ∨ |g(t, x)|. Denote

H =
{
Xt(γ ) ∈ D[0,h] : Xt is an uncertain vector and

‖Xt(γ ) − x0‖ ≤ M(1 + Kγ )

�( p + 1)
hp

}

where h = min {T , c}.
It is easy to see that H is a closed convex set. Define a mapping � on H by

�(Xt(γ )) = x0 + 1
�( p)

∫ t

0
(t − s)p−1f (s,Xs(γ ))ds

+ 1
�( p)

∫ t

0
(t − s)p−1g(s,Xs(γ ))dCs(γ ), 0 ≤ t ≤ h. (8)

For Xt(γ ) ∈ H , we have

‖�(Xt(γ )) − x0‖ = max
0≤t≤h

|�(Xt(γ )) − x0|

≤ max
0≤t≤h

{
1

�( p)

∫ t

0
(t − s)p−1| f (s,Xs(γ ))|ds

+ Kγ

�( p)

∫ t

0
(t − s)p−1|g(s,Xs(γ ))|ds

}

≤ max
0≤t≤h

M(1 + Kγ )

�( p)

∫ t

0
(t − s)p−1ds

≤ M(1 + Kγ )

�( p + 1)
hp. (9)
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That is �(Xt(γ )) ∈ H , and the mapping � is bounded uniformly in Xt(γ ) ∈ H . In
addition, for 0 ≤ t1 < t2 ≤ h, it is easy to verify

|�(Xt1(γ )) − �(Xt2(γ ))| =
∣∣∣∣ 1
�( p)

∫ t2

t1
(t2 − s)p−1f (s,Xs(γ ))ds

+ 1
�( p)

∫ t2

t1
(t2 − s)p−1g(s,Xs(γ ))dCs(γ )

+ 1
�( p)

∫ t1

0

[
(t2 − s)p−1 − (t1 − s)p−1] f (s,Xs(γ ))ds

+ 1
�( p)

∫ t1

0

[
(t2 − s)p−1 − (t1 − s)p−1] g(s,Xs(γ ))dCs(γ )

∣∣∣∣
≤ M

(
1 + Kγ

)
�( p + 1)

(
tp2 − tp1

)
which comes to a conclusion that � is equicontinuous for Xt(γ ) ∈ H in [0, h]. It follows
from the Ascoli-Arzela theorem that � is a compact mapping on H .
Let Xt,i(γ ) converge to Xt(γ ) in H as i → ∞. That is, Xt,i(γ ) converges to Xt(γ )

uniformly in t ∈[0, h]. Thus,

�(Xt,i(γ )) = 1
�( p)

∫ t

0
(t − s)p−1f (s,Xs,i(γ ))ds

+ 1
�( p)

∫ t

0
(t − s)p−1g(s,Xs,i(γ ))dCs(γ )

→ 1
�( p)

∫ t

0
(t − s)p−1f (s,Xs(γ ))ds

+ 1
�( p)

∫ t

0
(t − s)p−1g(s,Xs(γ ))dCs(γ )

= �(Xt(γ ))

uniformly in t ∈[0, h]. This shows that � is continuous on H .
It follows from the Schauder fixed point theorem that � has a fixed point Xt(γ ) on H .

Hence,

Xt(γ ) = x0 + 1
�( p)

∫ t

0
(t − s)p−1f (s,Xs(γ ))ds

+ 1
�( p)

∫ t

0
(t − s)p−1g(s,Xs(γ ))dCs(γ ) (10)

for t ∈[0, h]. By the extension method, there exists Xt(γ ) satisfying (10) in t ∈[0,T]. That
is, Xt is a solution of (4). Therefore, the conclusion of the theorem is proved.

Conclusions
For uncertain fractional differential equations of the Riemann-Liouville type and Caputo
type, an existence and uniqueness theorem of solution was presented by employing
the Banach fixed point theorem under sufficient conditions that the drift and diffu-
sion functions are linear growing and Lipschitzian. If the drift and diffusion functions
are just continuous, an existence theorem of solution for the uncertain fractional differ-
ential equation of the Caputo type was proved by employing the Schauder fixed point
theorem. The existence and uniqueness of solution to the uncertain fractional differential
equation will give a theoretical foundation for studying the stability of uncertain fractional
differential equations and uncertain finance.
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Appendix
Theorem 3. Let ξ1, ξ2, · · · be uncertain variables and limi→∞ ξi = ξ almost surely.

Then, ξ is an uncertain variable.

Proof. Let

B = {B ⊂ R : {ξ ∈ B}is an event} .
Then, B is a σ -algebra. For a, b ∈ R, since

ξ = sup
n≥1

inf
i≥n

ξi = inf
n≥1

sup
i≥n

ξi,

we have

{ξ < b} =
{
sup
n≥1

inf
i≥n

ξi < b
}

=
⋃
k≥1

⋂
n≥1

⋃
i≥n

{ξi ≤ b − εk} ,

{ξ > a} =
{
inf
n≥1

sup
i≥n

ξi > a
}

=
⋃
k≥1

⋂
n≥1

⋃
i≥n

{ξi ≥ a + εk}

where {εk} is a sequence of positive numbers converging decreasingly to zero. Since ξi are
uncertain variables for all i, we know that {ξi ≤ b−εk} and {ξi ≥ a+εk} are events. Hence,
{ξ < b} and {ξ > a} are events and then {a < ξ < b} is an event. That is, (a, b) ∈ B. Since
the smallest σ -algebra containing all open intervals of R is just Borel algebra over R, the
class B contains all Borel sets. That is, for any Borel set B, {ξ ∈ B} is an event. Therefore,
ξ is an uncertain variable.
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