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Abstract

Multiobjective programming, known as multi-criteria or multi-attribute optimization, is
the process of simultaneously optimizing two or more conflicting objectives. This
paper aims to provide a new multiobjective programming named uncertain
multiobjective programming that is a type of multiobjective programming involving
uncertain variables. Some mathematical properties are also explored. Besides,
uncertain goal programming is introduced as a compromise method for solving the
uncertain multiobjective programming models. Both the uncertain multiobjective
programming model and the uncertain goal programming model are transformed to
crisp programming models with the help of the operational law of uncertain variables
via inverse uncertainty distributions.

Keywords: Uncertainty theory; Uncertain programming; Multiobjective programming;
Goal programming

Introduction
Multiobjective programming was introduced by Neumann andMorgenstern [19] to opti-
mize two or more conflicting objectives subject to certain constraints. Then, Koopmans
[6] introduced the concept of Pareto optimal solutions for the multiobjective program-
ming problem. As a compromise method for solving multiobjective programming, goal
programming was proposed by Charnes and Cooper [2]. These models are all deter-
ministic multiobjective programming models. However, the decision environment is
usually full of indeterminacy. Stochastic programming was first studied by Dantzig [3] in
1955. Probability theory was introduced to multiobjective programming by Charnes and
Cooper [1] and further developed by many researchers.
As we know, when we want to apply probability theory, adequate historical data are

required to estimate the probability distribution. However, in many cases, there are no
samples available to estimate the probability distribution. Then some domain experts
are invited to evaluate the degree of belief that each event may happen. Kahneman and
Tversky [5] pointed out that human beings usually overweight unlikely events. On the
other hand, Liu [15] demonstrated that human beings usually estimate a much wider
range of values than the object actually takes. This conservatism of human beings makes
the belief degrees deviate far from the frequency [14]. In order to deal with degree of
belief, uncertainty theory was founded by Liu [8] in 2007 and perfected by Liu [13] in
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2009. After born, uncertainty theory has also been widely applied to many other fields.
The study of uncertain statistics was started by Liu [13] in 2010. Besides, Liu [13] intro-
duced the principle of least squares method for uncertain statistics. Furthermore, Wang
and Peng [21] proposed the method of moments. Uncertain risk analysis and uncertain
reliability analysis were discussed by Liu [12]. Uncertain set theory was proposed by Liu
[11] and was also applied to inference control systems by Liu [11]. Gao [4] successfully
controlled an inverted pendulum using the uncertain inference rules. Peng and Chen
[20] proved that the uncertain systems are universal approximators. In order to study
dynamic systems, Liu [9] introduced uncertain processes which are sequences of uncer-
tain variables indexed by time. The uncertain finance theory was built based on uncertain
processes. Readers who are interested in uncertainty theory can refer to the book [15] for
more details.
Uncertain programming is a type of mathematical programming involving uncertain

variables (Liu [7]). It is a useful tool handling decision processing involving degree of
belief. So far, uncertain programming has been applied to machine scheduling problems,
vehicle routing problems, and project scheduling problems (Liu [13]). Liu and Yao [16]
studied uncertain multilevel programming and its solution algorithm. In this paper, we
will propose an uncertain multiobjective programming model and an uncertain goal pro-
gramming model. Furthermore, some mathematical properties of the proposed models
are discussed. The rest of the paper is organized as follows. In “Preliminary” section,
we review some results in uncertainty theory. In “Uncertain programming—basic form”
section, we introduce the basic form of uncertain programming model. In “Uncertain
multiobjective programming” section, we propose an uncertain multiobjective program-
ming model. In “Uncertain goal programming” section, we introduce an uncertain goal
programming model. Finally, some conclusions are made in “Conclusions” section.

Preliminary
As a branch of axiomatic mathematics, uncertainty theory was founded by Liu [8] in 2007
and perfected by Liu [13] in 2009. The core content, uncertain measureM, is defined as a
set function on a non-empty set � satisfying the following axioms (Liu [8]):

Axiom 1. (Normality axiom)M{�} = 1 for the universal set �;
Axiom 2. (Duality axiom)M{�} + M{�c} = 1 for any event �;
Axiom 3. (Subadditivity axiom) For every countable sequence of events �1,�2, · · · , we
have

M
{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

The triplet (�,L,M) is called an uncertainty space. In order to obtain an uncertain
measure of compound events, a product uncertain measure was defined by Liu [10]:

Axiom 4. (Product axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · · . Then,
the product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
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An uncertain variable (Liu [8]) is a measurable function ξ from an uncertainty space
(�,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ �
∣∣ ξ(γ ) ∈ B} (1)

is an event.
In order to describe an uncertain variable in practice, the concept of uncertainty

distribution was defined by Liu [8] as the following function,

�(x) = M {ξ ≤ x} , ∀x ∈ �. (2)

The expected value of an uncertain variable ξ was defined by Liu [8] as an average value
of the uncertain variable in the sense of uncertain measure, i.e.,

E[ ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr (3)

provided that at least one of the two integrals is finite. Suppose the uncertain variable ξ

has an uncertainty distribution �(x). Then, the expected value of the uncertain variable
ξ is

E[ ξ ]=
∫ +∞

0
(1 − �(r))dr −

∫ 0

−∞
�(r)dr. (4)

Definition 1. (Liu [13]) An uncertainty distribution �(x) is said to be regular if it is a
continuous and strictly increasing function with respect to x at which 0 < �(x) < 1, and

lim
x→−∞ �(x) = 0, lim

x→∞ �(x) = 1.

Definition 2. (Liu [13]) Let ξ be an uncertain variable with regular uncertainty distri-
bution �. Then, the inverse function �−1 is called the inverse uncertainty distribution of
ξ .
It has been proved that the expected value of the uncertain variable ξ with regular

uncertainty distribution � is

E[ ξ ]=
∫ 1

0
�−1(α)dα

provided that the integral exists.
Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty distribu-

tions �1, �2, · · · , �n, respectively. Liu [13] showed that if the function f (x1, x2, · · · , xn)
is strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn, then

ξ = f (ξ1, ξ2, · · · , ξn)
is an uncertain variable with inverse uncertainty distribution

�−1(α) = f
(
�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α)

)
. (5)

Furthermore, Liu and Ha [17] proved that the uncertain variable ξ = f (ξ1, ξ2, · · · , ξn)
has an expected value

E[ ξ ]=
∫ 1

0
f
(
�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α)

)
dα. (6)
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Uncertain programming—basic form
Uncertain programming is a type of mathematical programming involving uncertain
variables. The objectives and constraints include uncertain variables. Assume that x is
a decision vector, and ξ is an uncertain vector. Assume that ξ = (ξ1, ξ2, · · · , ξn) in
which ξ1, ξ2, · · · , ξn are independent uncertain variables with regular uncertainty distri-
butions �1,�2, · · · ,�n, respectively. Since an uncertain objective function f (x, ξ) cannot
be directly minimized, we may minimize its expected value, i.e.,

minx E[ f (x, ξ)] . (7)

In addition, since the uncertain constraints gj(x, ξ) ≤ 0 (j = 1, 2, · · · , p) do not define a
crisp feasible set, it is naturally desired that the uncertain constraints hold with confidence
levels α1,α2, · · · ,αp, respectively. Then, we have a set of chance constraints,

M
{
gj(x, ξ) ≤ 0

} ≥ αj, j = 1, 2, · · · , p. (8)

In order to obtain a decision with minimum expected objective value subject to a set of
chance constraints, Liu [7] proposed the following uncertain programming model,⎧⎪⎪⎨

⎪⎪⎩
minx E[ f (x, ξ)]

subject to:

M{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , p.
(9)

Without loss of generality, we assume the objective function f (x, ξ1, ξ2, · · · , ξn) is
strictly increasing with respect to ξ1, ξ2, · · · , ξk and strictly decreasing with respect to
ξk+1, ξk+2, · · · , ξn, and the constraint functions gj(x, ξ1, ξ2, · · · , ξn) are strictly increasing
with respect to ξ1, ξ2, · · · , ξkj and strictly decreasing with respect to ξkj+1 , ξkj+2 , · · · , ξn for
j = 1, 2, · · · , p, respectively. Then, the uncertain programming model (9) is equivalent to
a crisp model,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minx
∫ 1
0 f

(
x,�−1

1 (r), · · · ,�−1
k (r),�−1

k+1(1 − r), · · · ,�−1
n (1 − r)

)
dr

subject to:

gj
(
x,�−1

1 (αj), · · · ,�−1
kj (αj),�−1

kj+1(1 − αj), · · · ,�−1
n (1 − αj)

)
≤ 0,

j = 1, 2, · · · , p.

(10)

In many cases, an uncertain programming model can be transformed to a
deterministic mathematical programming model. All the methods to solve deter-
ministic programming models can be used to solve uncertain programming
models.

Uncertain multiobjective programming
In practice, a decision maker may want to optimize two or more conflicting objectives
subject to certain constraints. Uncertain multiobjective programming is a type of mathe-
matical multiobjective programming in which the objectives and the constraints contain
uncertain variables.

Model description

Now, we consider an uncertain multiobjective programming model. Assume that x is
a decision vector, ξ is an uncertain vector, and f1(x, ξ), f2(x, ξ), · · · , fm(x, ξ) are return
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functions. Since the objective functions are uncertain variables, they cannot be directly
maximized. Instead, we maximize their expected values, i.e.,

E[ f1(x, ξ)] ,E[ f2(x, ξ)] , · · · ,E[ fm(x, ξ)] .

Assume that the constraints are

gi(x, ξ) ≤ 0, i = 1, 2, · · · , p. (11)

Since gi(x, ξ) are uncertain variables, the inequalities (11) do not define a crisp feasible
set. Instead, we hope that the inequalities (11) hold with given confidence levels αi. Then,
the feasible set is defined by the chance constraints

M{gi(x, ξ) ≤ 0} ≥ αi, i = 1, 2, · · · , p.
Thus, we have the following uncertain multiobjective programming model,⎧⎪⎪⎨

⎪⎪⎩
max

[
E[ f1(x, ξ)] ,E[ f2(x, ξ)] , · · · ,E[ fm(x, ξ)]

]
subject to:

M{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , p.
(12)

Definition 3. A solution x is said to be feasible to the uncertain multiobjective program-
ming (12) if

M{gj(x, ξ) ≤ 0} ≥ αj (13)

for j = 1, 2, · · · , p.
Definition 4. A feasible solution x∗ is said to be a Pareto solution to the uncertain
multiobjective programming (12) if there is no feasible solution x such that

E[ fi(x, ξ)]≥ E[ fi(x∗, ξ)] , i = 1, 2, · · · ,m (14)

and E[ fj(x, ξ)]> E[ fj(x∗, ξ)] for at least one index j.
Theorem 1. Assume f (x, ξ) = h1(x)ξ1 + h2(x)ξ2 + · · · + hn(x)ξn + h0(x) where
h1(x), h2(x), · · ·, hn(x), h0(x) are real-valued functions and ξ1, ξ2, · · ·, ξn are independent
uncertain variables. Then,

E[ f (x, ξ)]= h1(x)E[ ξ1]+h2(x)E[ ξ2]+ · · · + hn(x)E[ ξn]+h0(x). (15)

Proof. Since ξ1, ξ2, · · ·, ξn are independent uncertain variables, it follows from the
linearity of expected value operator of uncertain variables that

E[ f (x, ξ)]= h1(x)E[ ξ1]+h2(x)E[ ξ2]+ · · · + hn(x)E[ ξn]+h0(x).

The theorem is proved.

Theorem 2. Assume that ξ1, ξ2, · · · , ξn are independent uncertain variables and
h1(x), h2(x), · · · , hn(x), h0(x) are real-valued functions. Then,

E[ h1(x)ξ1 + h2(x)ξ2 + · · · + hn(x)ξn + h0(x)]≤ 0 (16)

holds if and only if

h1(x)E[ ξ1]+h2(x)E[ ξ2]+ · · · + hn(x)E[ ξn]+h0(x) ≤ 0. (17)



Liu and Chen Journal of Uncertainty Analysis and Applications  (2015) 3:10 Page 6 of 8

Proof. Since ξ1, ξ2, · · · , ξn are independent uncertain variables, it follows from
Theorem 1 that

E[ h1(x)ξ1 + h2(x)ξ2 + · · · + hn(x)ξn + h0(x)]= h1(x)E[ ξ1]+h2(x)

E[ ξ2]+ · · · + hn(x)E[ ξn]+h0(x).
(18)

Thus, two sides of (18) will satisfy the same inequality. The theorem is proved.

Theorem 3. Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncer-
tainty distributions �1, �2, · · · , �n, respectively. Assume gj are strictly increasing with
respect to ξ1, ξ2, · · · , ξsj and strictly decreasing with respect to ξsj+1, ξsj+2, · · · , ξn, j =
1, 2, · · · ,m, respectively. Then,M{gj(x, ξ) ≤ 0} ≥ αj are equivalent to

gj
(
x,�−1

1 (αj),�−1
2 (αj), · · · ,�−1

sj (αj),�−1
sj+1(1 − αj), · · · ,�−1

n (1 − αj)
)

≤ 0,

j = 1, 2, · · · , p, respectively.

Proof. Since the constraint functions gj are strictly increasing with respect to
ξ1, ξ2, · · · , ξsj and strictly decreasing with respect to ξsj+1, ξsj+2, · · · , ξn, for j =
1, 2, · · · ,m, respectively, it follows from the operational law of uncertain variables that the
inverse uncertainty distributions of the uncertain variables gj(x, ξ) are

�−1
j (αj) = gj

(
x,�−1

1 (αj),�−1
2 (αj), · · · ,�−1

sj (αj),�−1
sj+1(1 − αj), · · · ,�−1

n (1 − αj)
)
,

j = 1, 2, · · · , p, respectively. According to the the definition of inverse uncertainty dis-
tribution, the inequalities M{gj(x, ξ) ≤ 0} ≥ αj and �−1

j (αj) ≤ 0 are equivalent, for
j = 1, 2, · · · , p, respectively. Thus, the theorem is proved.

Equivalent crisp model

From the mathematical viewpoint, there is no difference between deterministic math-
ematical programming and uncertain programming except for the fact that there exist
uncertain variables in the latter. In fact, the uncertain multiobjective programming model
(12) is equivalent to a deterministic multiobjective programming model. Without loss
of generality, we assume that fi are strictly increasing with respect to ξ1, ξ2, · · · , ξki and
strictly decreasing with respect to ξki+1, ξki+2, · · · , ξn, i = 1, 2, · · · ,m, respectively. Then,
we have

E[ fi(x, ξ1, ξ2, · · · , ξn)]=
∫ 1

0
fi

(
x,�−1

1 (r), · · · ,�−1
ki (r),�−1

ki+1(1 − r), · · · ,�−1
n (1 − r)

)
dr,

for i = 1, 2, · · · ,m. It follows from Theorem 3 that the uncertain multiobjective
programming model (12) is equivalent to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxx

[∫ 1
0 fi(x,�−1

1 (r), · · · ,�−1
k (r),�−1

k+1(1 − r), · · · ,�−1
n (1 − r))dr, i = 1, 2, · · · ,m.

]
subject to:

gj(x,�−1
1 (αj), · · · ,�−1

kj (αj),�−1
kj+1(1 − αj), · · · ,�−1

n (1 − αj)) ≤ 0,
j = 1, 2, · · · , p.

(19)
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The common method to solve multiobjective programming model is to translate it to
a single objective programming model. If the decision maker already has weights ωi for

objectives i with
m∑
i=1

ωi = 1, then the multiobjective programming model becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

maxx
m∑
i=1

ωi
∫ 1
0 fi

(
x,�−1

1 (r), · · · ,�−1
k (r),�−1

k+1(1 − r), · · · ,�−1
n (1 − r)

)
dr

subject to:

gj
(
x,�−1

1 (αj), · · · ,�−1
kj (αj),�−1

kj+1(1 − αj), · · · ,�−1
n (1 − αj)

)
≤ 0,

j = 1, 2, · · · , p.

(20)

Uncertain goal programming
In order to balance multiple conflicting objectives, a decision maker may establish a hier-
archy of importance among these incompatible goals so as to satisfy as many goals as
possible in the specified order. Thus, we have an uncertain goal programming,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd+
i + vijd−

i )

subject to:

E[ fi(x, ξ)]+d−
i − d+

i = bi, i = 1, 2, · · · ,m
M{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , p
d+
i , d

−
i ≥ 0, i = 1, 2, · · · ,m

(21)

where Pj are the preemptive priority factors which express the relative importance of
various goals, Pj 
 Pj+1, for all j, uij are the weighting factors corresponding to positive
deviation for goals i with priority j assigned, vij are the weighting factors corresponding
to negative deviation for goals i with priority j assigned, d+

i are the positive deviations
from the target of goals i, d−

i are the negative deviations from the target of goals i, fi are
objective functions in goal constraints, gj are functions in real constraints, bi are the target
values, l is the number of priorities, m is the number of goal constraints, and p is the
number of real constraints.

Equivalent crisp model

In fact, the uncertain goal programming model (21) is equivalent to a deterministic goal
programming model. Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regu-
lar uncertainty distributions �1,�2, · · · ,�n, respectively. Without loss of generality, we
assume that fi are strictly increasing with respect to ξ1, ξ2, · · · , ξki and strictly decreasing
with respect to ξki+1, ξki+2, · · · , ξn, for i = 1, 2, · · · ,m, respectively. Then, we have

E[ fi(x, ξ1, ξ2, · · · , ξn)]=
∫ 1

0
fi

(
x,�−1

1 (r), · · · ,�−1
ki (r),�−1

ki+1(1 − r), · · · ,�−1
n (1 − r)

)
dr,

for i = 1, 2, · · · ,m. Assume gj are strictly increasing with respect to ξ1, ξ2, · · · , ξsj and
strictly decreasing with respect to ξsj+1, ξsj+2, · · · , ξn, for j = 1, 2, · · · , p, respectively.
Then,M{gj(x, ξ) ≤ 0} ≥ αj are equivalent to

gj(x,�−1
1 (αj),�−1

2 (αj), · · · ,�−1
sj (αj),�−1

sj+1(αj) · · · ,�−1
n (1 − αj)) ≤ 0,
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for j = 1, 2, · · · , p, respectively. Thus, the uncertain goal programming model (21) is
equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(
uijd+

i + vijd−
i

)
subject to:∫ 1

0 fi
(
x,�−1

1 (r), · · · ,�−1
ki (r),�−1

ki+1(1 − r), · · · ,�−1
n (1 − r)

)
dr + d−

i − d+
i = bi, i = 1, 2, · · · ,m

gj
(
x,�−1

1 (αj), · · · ,�−1
sj (αj),�−1

sj+1(1 − αj), · · · ,�−1
n (1 − αj)

)
≤ 0, j = 1, 2, · · · , p

d+
i , d

−
i ≥ 0, i = 1, 2, · · · ,m.

Conclusions
This paper provided an uncertain multiobjective programming model and an uncertain
goal programming model which are mathematical programming models involving uncer-
tain variables. These models were turned to a crisp multiobjective programming model
and a crisp goal programming model using operational law of uncertain variables via
inverse uncertainty distributions, respectively. Several properties were also investigated
in this paper.
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