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Abstract
Quality function deployment (QFD) is a new product development tool remarked with
interpreting customer requirements into engineering characteristics of the design
process. On account of the inherent imprecise and uncertain elements in the weights
of customer requirements, the relationships between customer requirements and
engineering characteristics, and the correlations among engineering characteristics,
uncertain variables are preferred to be applied in this paper. By taking advantage of
expected value modelling to determine the target values of engineering characteristics
in handling different practical design scenarios, two uncertain programming models
are proposed for optimizing the QFD process in an uncertain environment.
Subsequently, the proposed uncertain models are implemented in a motor car design
for quality development.

Keywords: Quality function deployment, Engineering characteristic, Uncertain
variable, Expected value modelling

Introduction
Nowadays, global economy has raised fierce international market competition and rapid
technological change, especially in traditional tangible products made by manufacturing
enterprises. For the sake of occupying sales and profits in larger market and long-term
development, more and more economical products with high quality are designed and
generated to cater diverse customer perceptions and expectations. As far as the con-
tinuous development of an existing product is concerned, the use of quality function
development (QFD) has gained extensive global support. Originated in Japan in the late
1960s [1], QFD was known as a customer-driven product design methodology, which is
meant to promote the quality of products. It is a systematic method contributing to trans-
lating various customer requirements (CRs) into several engineering characteristics (ECs)
of the product for achieving higher customer satisfaction. So far, QFD has been applied
in many other fields, including supply chain management [2, 3], investment [4], product
selection and assignment [5], etc.
The core concept of QFD is to utilize four sets of matrices integrated in a diagram that

resembles a house, namely, the House of Quality (HoQ) [6]. As demonstrated in Fig. 1,
CRs can be considered as whats, specific descriptions and the relative importance of
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Fig. 1 The core of QFD: House of Quality

which will be listed in the matrix on the left wall of HoQ, while ECs are on behalf of hows
of a product to meet these demands from customers. The body of HoQ is the relation-
ship matrix of the whats and hows, and the roof is the correlation matrix that illustrates
the dependence among the hows. Besides, the matrix of target values of ECs on the floor
provides the quantitative technical specifications for ECs required to satisfy CRs.
The product development process based on QFD is to determine a set of x1, x2, · · · , xn

for ECs of the new/improved product to match or exceed the degree of overall customer
satisfaction of all competitors in the target market with limited organizational resources.
It is a complex decision process with multiple variables, requiring trade-off and optimiz-
ing all kinds of conflicts contained in HoQ. As an important branch of QFD research,
more and more systematic and rational programmings with different considerations to
determine the target values of ECs have achieved flourishing advances in the last few
decades. Generally, a traditional and classic programming in QFD planning is designed to
achieve maximum overall customer satisfaction in the constraints of two functional rela-
tionships including levels of attainment between CRs and ECs and that among ECs, and
other constraints of resources including cost, resource, technology, etc.
In order to formulate the programming, it is critical to first determine the relative

importance of CRs and the functional relationships. According to the previous litera-
ture, they were either confirmed by subjective assessments and judgments expressed as
crisp, random or fuzzy variables [7–10], or by the frequent application of the fuzzy lin-
ear and non-linear regressions methods [11–14]. Even though the latter one seems more
objective, practically speaking, it is much less feasible due to sparse data collection.
It can be seen that, among them, fuzzy modelling approaches were popular since they

have applied fuzziness based on the fuzzy set theory [15] to define the imprecise elements
in HoQ. Therefore, the objective function and constraints of different programmings can
be incorporated with fuzzy parameters to get better results close to reality. On this basis,
numerous studies have been conducted on how to obtain a set of target values of ECs.
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Chen et al. proposed a fuzzy expected value modelling approach for target setting, which
simultaneously took maximizing the overall customer satisfaction and minimizing the
design cost into consideration [16]. Sener and Karsak developed some fuzzy mathemat-
ical programming models combining the functional relationships obtained from a fuzzy
regression based on non-linear programming and an integrated fuzzy linear regression
and fuzzy multiple objective programming approach to determining target values of ECs
[17, 18]. Zhong et al. proposed a fuzzy chance-constrained programming model with
the objective of minimizing the fuzzy expected cost and the chance constraint of overall
customer satisfaction [19].
Until now, most of the variables or parameters applied in QFD process were either

crisp values or fuzzy ones. However, it is usually not appropriate enough because both
the probability theory and the fuzzy set theory may sometimes lead to counterintuitive
results [20]. In this paper, we put forward a new method based on the uncertainty theory
proposed by Liu [21] and redefined in Liu [22]. Similarly to fuzzy optimization models,
the uncertain variables involved like the relative importance of CRs, the uncertain rela-
tionship between CRs and ECs, the uncertain correlations among ECs and the variable
cost to fulfill one unit of ECs, will be predefined by experts in a vague way using uncer-
tain variables rather than crisp values. So as to effectively determine the target values
of ECs in handling practical design scenarios, two uncertain programming models using
expected value modelling (EVM) are generated under the objectives of maximizing the
overall customer satisfaction and minimizing the total design cost, respectively.
The rest of the article is organized as follows. In Section Preliminaries, some prelim-

inaries of uncertain variable, uncertainty distribution, and uncertain programming are
described. In SectionUncertainty theory, two uncertain programmingmodels using EVM
for QFD planning in an uncertain environment are proposed to determine the target
values of ECs. Finally, Section Uncertain Expected Value Modelling for QFD Planning
illustrates a numerical example of a motor car design, which is presented to demonstrate
the performance of the proposed approach.

Preliminaries
Uncertainty theory is an efficient mathematical system to deal with indeterminacy, which
plays an crucial role to measure expert statistics and subjective estimations. In this
section, some basic knowledge of uncertainty theory is introduced for describing the
approaches of EVM applied in the uncertain programming method. The reader may refer
to Liu [20–22] for more details.

Uncertainty theory

Definition 1. (Liu [21]) Let � be a nonempty set, and L a σ -algebra over �. The set
function M : L →[ 0, 1] is called an uncertain measure if it satisfies normality, duality
and subadditivity axioms as follows:
(i) M{�} = 1 for the universal set �;
(ii) M{�} + M{�c} = 1 for any event �;
(iii) For every countable sequence of events �1,�2, · · · , we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.
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In addition, in order to introduce the operational law, the product uncertain measure
M on the product σ -algebraL is defined by the following product axiom according to Liu
[23]:
(iv) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · · . Then the product uncertain
measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k},

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
Based on the four axioms of uncertain measure given above, a formal definition of

uncertain variable is presented as follows.

Definition 2. (Liu [21]) An uncertain variable is ameasurable function ξ from an uncer-
tainty space (�,L,M) to the set of real numbers such that {ξ ∈ B} is an event for any Borel
set B.

To better describe uncertain variables, the concept of uncertainty distribution is
adopted. In many cases, it is more sufficient to know the uncertainty distribution than the
uncertain variable itself.

Definition 3. (Liu [21]) The uncertainty distribution � of an uncertain variable ξ is
defined by

�(x) = M{ξ ≤ x} (1)

for any real number x.

Furthermore, the regular uncertainty distribution is defined as follows, which is shown
in Fig. 2.

Definition 4. (Liu [22]) An uncertainty distribution �(x) is said to be regular if it is a
continuous and strictly increasing function with respect to x at which 0 < �(x) < 1, and

lim
x→−∞ �(x) = 0, lim

x→+∞ �(x) = 1. (2)

Suppose that a regular uncertainty distribution �(x) has an inverse function on the
range of xwith 0 < �(x) < 1, and the inverse function�−1(α) exists on the open interval
(0, 1) and is unique for each α ∈ (0, 1), then the inverse function �−1(α) is called the
inverse uncertainty distribution of an uncertain variable ξ , which is vital in operations of
independent uncertain variables with regular uncertainty distributions.
In order to ensure that we can separately define uncertain variables on different

uncertainty spaces, in 2009, Liu defined the independence of uncertain variables in the
following mathematical forms.



Miao et al. Journal of Uncertainty Analysis and Applications  (2015) 3:16 Page 5 of 20

Fig. 2 Regular uncertainty distribution

Definition 5. (Liu [23]) The uncertain variables ξ1, ξ2, . . ., ξn are said to be independent
if

M

{ n⋂
i=1

{ξi ∈ Bi}
}

=
n∧

i=1
M{ξi ∈ Bi} (3)

for any Borel sets B1,B2, . . . ,Bn of real numbers.

Therefore, regarding strictly monotone functions of independent uncertain variables
with regular uncertainty distributions, the operational law was given by Liu [22].

Theorem 1. (Liu [22]) Let ξ1, ξ2, · · · , ξn be independent uncertain variables with
inverse uncertainty distributions �−1

ξ1
,�−1

ξ2
, · · · ,�−1

ξn
, respectively. If the function

f (x1, · · · , xm, xm+1, · · · , xn) is strictly increasing with x1, · · · , xm and strictly decreasing
with xm+1, · · · , xn, then ξ = f (ξ1, · · · , ξm, ξm+1, · · · , ξn) is an uncertain variable with
inverse uncertainty distribution

�−1
ξ (α) = f (�−1

ξ1
(α), · · · ,�−1

ξm
(α),�−1

ξm+1
(1 − α), · · · ,�−1

ξn
(1 − α)). (4)

With respect to uncertain measure, the expected value of an uncertain variable is the
average value, which is able to be represented by the inverse uncertainty distribution as
follows.

Definition 6. (Liu [21]) Let ξ be an uncertain variable. Then the expected value of ξ is
defined by

E[ ξ ]=
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx, (5)

provided that at least one of the two integrals is finite.

Theorem 2. (Liu [22]) Let ξ be an uncertain variable with a regular uncertainty
distribution. Then

E[ ξ ]=
∫ 1

0
�−1(α)dα. (6)
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Thus, referring to the operational law of strictly monotone function of independent
uncertain variables, the expected value can be calculated as follows.

Theorem 3. (Liu and Ha [24]) Assume that ξ1, ξ2, · · · , ξn are independent uncertain
variables with regular distributions �1,�2, · · · ,�n, respectively. If f (x1, x2, · · · , xn) is
strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn, then the uncertain variable ξ = f (ξ1, ξ2, · · · , ξn) has an expected
value as

E[ ξ ]=
∫ 1

0
f (�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α))dα. (7)

Uncertain Expected ValueModelling for QFD Planning
QFD is a planning and problem-solving tool for product development, the core of which
is House of Quality (HoQ) embedded with four matrices, i.e., relative importance matrix
of CRs, relationship matrix between CRs and ECs, correlations matrix among ECs, and
target value matrix of ECs.
According to information provided in HoQ, the purpose of product planning process is

usually to determine target values of ECs to maximize the overall customer satisfaction
with limited organizational resources and technologies, or to minimize the design cost
under a preferred acceptable overall customer satisfaction. In reality, we frequently lack
observed data, and the estimated probability distribution may be far from the cumulative
frequency [20, 25]. In order to get over this difficulty, based on uncertainty theory, the
uncertain programming method using EVM is proposed in this section to deal with QFD
planning problem in an uncertain environment.

Problem Notations and Explanations

Assuming that m CRs, n ECs, and p competitors are involved in a product design, the
notations used in HoQ are summarized as follows,

– CRi: the i th customer requirement, i = 1, 2, · · · ,m;
– ECj: the j th engineering characteristic, j = 1, 2, · · · , n;
– Compq: the qth competitor, q = 1, 2, · · · , p;
– R : the original uncertain relationship matrix between CRs and ECs, the element rij

of which denotes the uncertain relation measure between CRi and ECj;
– P : the uncertain correlation matrix among ECs, the element pkj of which denotes

the uncertain correlation measure between ECj and ECk ;
– R’ : the modified uncertain relationship matrix between CRs and ECs by

accommodating the uncertain correlation matrix P, in which the element r′ij
denotes the modified uncertain relationship measure between CRi and ECj;

– Y: the uncertain vector of customer perception of CRs, Y = (y1, y2, · · · , ym)T , and
yi is the customer perception of the satisfaction degree of CRi, i = 1, 2, · · · ,m;

– W: the uncertain relative importance vector of CRs,W = (w1,w2, · · · , wm)T ,
among which wi is the uncertain relative importance of CRi, i = 1, 2, · · · ,m;

– X: the vector of level of attainment of ECs, X = (x1, x2, · · · , xn)T , and xj is the level
of attainment of ECj, 0 ≤ xj ≤ 1, j = 1, 2, · · · , n;
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– V: the importance vector of ECs, V = (v1, v2, · · · , vn)T , in which vj is the uncertain
importance of ECj, j = 1, 2, · · · , n;

– Sq: the overall customer satisfaction of the qth competitor, q = 1, 2, · · · , p;
– lj: the target value of ECj, j = 1, 2, · · · , n;
– C: the total product design cost;
– CF : the fixed part of design cost;
– CV : the variable part of design cost;
– Cj: the uncertain cost required for achieving xj, j = 1, 2, · · · , n;
– cj: the uncertain cost required for improving each one unit of ECj, j = 1, 2, · · · , n;
– B : the budget of product development.

As introduced above, owing to the subjective assessment of the relative importance wi
in matrix W, the relationships rij in matrix R, and correlations pkj in matrix P, it is more
appropriate to use uncertain variables to describe these imprecise linguistic terms like
“important/unimportant”, “strong/weak”, or “positive/negative”. Here, we unify uncertain
variables with a regular uncertainty distribution like

�(x) =

⎧⎪⎨
⎪⎩

0, if x < 0
xa, if 0 ≤ x ≤ 1
1, if x > 1.

(8)

As for the weight assessment of diverse CRs, before making improvements of a prod-
uct, it is crucial for an enterprise to discover customers’ needs in the first place. Most
of all, investigation will be launched in the target market among users. The feedbacks
collected after delivering questionnaires or conducting surveys will reflect what the cus-
tomer wants about the product. Thereby, in Formula (8), the values of parameter a in
�(x) were assigned based on the relative importance of CRs, which is defined in interval
[ 0, 1]. If a > 1, it is depicted in Fig. 3a. With the increasing of x, the value of M{wi ≤ x}
increases faster and faster, which means the corresponding wi is relatively high and close
to 1. Under this circumstance, it can be interpreted as “important”. If a < 1, it is depicted
in Fig. 3b. With the increasing of x, the value of M{wi ≤ x} increases slower and slower,
which means the corresponding wi is relatively small and close to 0. We can interpret this
circumstance as “unimportant”. And if a = 1, it is illustrated as Fig. 3c, which represents
“moderately important”.
The relationships between CRs and ECs are generated in the relationship matrix R, the

body of HoQ, in which, each vector can be denoted as rij. Generally, the relationships
summit to a pile of pre-defined uncertain variables measured by experts. The forms of

Fig. 3 An illustration of uncertain distribution of uncertain variables
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uncertain variables defined in Formula (8) can also be adopted to illustrate the strength
of relationship, i.e., concave uncertainty distribution can explain the “strong” relation-
ship between a certain CR and EC, while convex and linear ones represent “weak” and
“medium”, respectively.
Similarly, correlations among ECs can be represented as above uncertain variables

defined by experts as well, which are illustrated in the correlation matrix P, the roof of
HoQ, and Pkj denotes the correlation between ECk and ECj. Concave and convex uncer-
tainty distributions can reflect dependence like “positive” and “negative” among ECs,
respectively. It is certain that, the EC is defined as the strongest dependence on itself in
the construction of the correlation matrix [26], i.e., pjj is defined as the maximum degree
in the correlation matrix.

Normalizing the Target Values of ECs

Generally, the target values of ECs in a product have been collected in different units,
and usually, their ranges vary widely. In order to eliminate the influence of different mea-
surements, referring to Chen [12], the target values of ECj in a product, i.e., lj, can be
normalized into xj, j = 1, 2, · · · , n, according to the following transformation,

xj =

⎧⎪⎨
⎪⎩

lmax
j −lj

lmax
j −lmin

j
(S − type)

lj−lmin
j

lmax
j −lmin

j
, (L − type)

(9)

where lmax
j and lmin

j can be determined by the consideration of competition requirements
and technology feasibility [27]. For S-type ECs, lmax

j is the maximum target value of ECj
that matches the performance of themain competitors, and lmin

j is theminimized physical
limit. Conversely, for L-type ECs, lmin

j is the minimum target value of ECj that matches the
performance of the main competitors, and lmax

j is the maximized physical limit. In this
way, we can obtain the observation data matrix of ECs among q companies, denoted by

X = (
xqj

)
p×n , (10)

where 0 ≤ xqj ≤ 1.

Calculation of Overall Customer Satisfaction

The overall customer satisfaction can be calculated through the integration of four matri-
cesW, R, P, andX, which denote the relative importance of CRs, the relationships between
CRs and ECs, the correlations among ECs and the target values of ECs, respectively.
Since it is crucial to establish trade-offs in analysis of the roof of HoQ, in essence, the

correlation element pkj indicates the contribution to ECk when ECj is improved. There-
fore, by accommodating the correlations among ECs [28], the original relationship matrix
R can be modified as

R′ = RP, (11)

in which

r′ij =
n∑

k=1
rikpkj, i = 1, · · · ,m, j = 1, · · · , n. (12)

The overall customer satisfaction of the product, S, can be considered as amathematical
aggregation of yi (i = 1, 2, · · · ,m), which implies the degree of satisfaction of CRi in
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comparison among all the competitors. i.e., S=f (y1, y2, · · · , ym), where f (y1, y2, · · · , ym)

is an aggregation function reflecting the customer’s overall perceptions of the product.
Thus, S can be expressed as

S = WTY =
m∑
i=1

wiyi. (13)

It is the improvement of target values of ECs that will generate the increasing of the
satisfaction degree of each CR [28], so we can obtain

Y = R′X, (14)

i.e.,

yi =
n∑

j=1

n∑
k=1

rikpkjxj, i = 1, 2, · · · ,m. (15)

Thus, Formula (13) can be rewritten as

S = WTR′X = VTX =
n∑

j=1
vjxj, (16)

where V contains the vector of importance of ECs, and can be expressed as

V = (WTR′)T . (17)

Therefore, the importance of ECj can be calculated by

vj =
m∑
i=1

n∑
k=1

wirikpkj, j = 1, 2, · · · , n. (18)

Given a series values of ECs, the overall customer satisfaction can be obtained as

S =
n∑

j=1

( m∑
i=1

n∑
k=1

wirikpkj

)
xj. (19)

Formulation of Development Resources

Multiple and diverse resources are required for the development of a product, which
includes professional technical expertise, advanced equipment, tools, and other facilities.
With respect to strategic planning, these resources can be integrated in financial terms.
Owing to the uncertainties in the development process, such as incomplete understand-
ing of the relationship between the CRs and the ECs, as well as the correlation among the
ECs, thereby these financial terms can be expressed in uncertain variables. In general, the
design cost, C, is combination of a fixed part denoted as CF and a variable part denoted
as CV , i.e.,

C = CF + CV . (20)

CF can be either a crisp value or an uncertain variable. In the case proposed in this
paper, it is expressed as a crisp value, while the variable part of the design cost CV only
depends on the levels of attainment of ECs, i.e., xj, j = 1, 2, · · · , n. Then, CV can be
obtained by the sum of costs Cj required for achieving the level of individual EC. For sim-
plicity, suppose thatCj is scaled linearly to the level of attainment xj. Hence, we can obtain
the variable cost with
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CV =
n∑

j=1
Cj =

n∑
j=1

cjxj, j = 1, 2, · · · , n, (21)

where the cost coefficient cj denotes the cost needed when ECj is fully improved, i.e., a
cost cj will be required if one unit of attainment of the ECj is fulfilled. Since the price of
one unit material usually vibrates in an interval in the market, we adopt linear uncertain
variables listed below to define cj, which will be applied in the calculation later.
As shown in Fig. 4, the distribution of linear uncertain variable ξ is formulated as

�(x) =

⎧⎪⎨
⎪⎩

0, if x ≤ a
(x − a)/(b − a), if a ≤ x ≤ b

1, if x ≥ b,
(22)

denoted by L(a, b), where a and b are real numbers with a < b. In this case, a is the price
of lower limit of one unit material in the market, and b is the upper limit.
Hence, the total cost of development, C, can be expressed as

C = CF + CV = CF +
n∑

j=1
cjxj, j = 1, 2, · · · , n. (23)

If the total cost of product development is constrained to a budget B, it can be
represented as

CF +
n∑

j=1
cjxj ≤ B. (24)

Uncertain Programming Using EVM

Uncertain programming [29] has been adopted and improved to solving problems like
network optimization in [30] and shortest path problem in [31] and so on. Recently, uncer-
tain multi-objective programming and uncertain goal programming are generated by Liu
and Chen [32] to apply inmore research works. This paper used expected valuemodelling
approach of uncertain programming, assuming that a set of {x1, x2, · · · , xn} for ECs of a
product are needed to be determined during the course of product planning, which aims
to maximize the overall customer satisfaction under the organizational resources limits, it
seems adoptable to generalize such an uncertain programming model for QFD as follows,

Fig. 4 Linear uncertain variable
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max S =
n∑

j=1

m∑
i=1

n∑
k=1

wirikpkjxj

subject to:

CF +
n∑

j=1
cjxj ≤ B

0 ≤ xj ≤ 1, j = 1, 2, · · · , n.

(25)

In the above objective functions and constraints, wi, rik , pkj, and cj are pre-defined
uncertain variables mentioned in Section 3, the calculation of which will be described in
more detail later. Notably, it seems quite appropriate and rational to utilize these uncer-
tain variables in practical product design scenarios. However, it is hard for mathematical
calculation since uncertain variables are not as straightforward as crisp ones.
For this reason, in order to build unambiguous uncertain programming model for QFD

planning, two uncertain programming models using EVM are proposed in this section,
in which the underlying philosophy is based on selecting the decision with the maximum
expected returns.
Therefore, according to Section 3.3, the expected value of customer satisfaction S in

Formula (16) can be calculated as follows,

E(S) = E(VTX) = E

⎛
⎝ n∑

j=1
vjxj

⎞
⎠ =

n∑
j=1

E(vj)xj, (26)

where E(vj) is the expected value of importance of ECj and can be obtained as

E(vj) = E
( m∑

i=1

n∑
k=1

wirikpkj

)
=

m∑
i=1

n∑
k=1

E(wirikpkj), (27)

in which, the uncertain variables wi, rik , pkj, are assumed to have regular uncertainty dis-
tributions. Assume the inverse uncertainty distributions of wi, rik , and pkj are φ−1

i (α),
�−1

ik (α) and �−1
kj (α), respectively. Hence, based on Theorem 3, E(vj) can be calculated as

E(vj) =
m∑
i=1

n∑
k=1

E(wirikpkj) =
m∑
i=1

n∑
k=1

(∫ 1

0
φ−1
i (α)�−1

ik (α)�−1
kj (α)dα

)
. (28)

The higher E(vj), the more important is ECj. If the organization resources are not con-
sidered, the EC with the highest expected value would be improved first. Furthermore,
E(vj) can be scaled from 0 to 1 by

Ē(vj) = E(vj)
n∑

j=1
E(vj)

, (29)

where Ē(vj) is the expected value of relative importance of ECs.Without loss of generality,
by using Ē(vj), the expcted value of the overall customer satisfaction can be normalized
from 0 to 1. Thus, Formula (26) can be rewritten as

Ē(S) =
n∑

j=1
Ē(vj)xj, (30)
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where Ē(S) is the normalized expected value of the overall customer satisfaction.
Similar to the overall customer satisfaction, with respect to Section 3.4, the expected

value of total cost C can be calculated as

E(C) = E(CF + CV ) = CF + E(CV ) = CF +
n∑

j=1
E(cj)xj, (31)

in which cj is the cost coefficient of ECj. Assume the inverse uncertainty distribution of
linear uncertain variables cj is ϕ−1

j (α), we can obtain the equivalent form of expected
value of C in Formula (31) as

E(C) = CF +
n∑

j=1
E(cj)xj = CF +

n∑
j=1

(∫ 1

0
ϕ−1
j (α)dα

)
xj. (32)

Owing to Theorem 2, the expected value of linear uncertain variables cj denoted by
L(aj, bj) can be easily obtained as

E(cj) =
∫ 1

0
ϕ−1
j (α)dα =

∫ 1

0
((1 − α)aj + αbj)dα = aj + bj

2
. (33)

Therefore, when the design team wants to maximize the overall customer satisfaction
under a limited budget, an uncertain programming model using EVM (UP-1) can be
formulated as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max Ē(S) =
n∑

j=1
Ē(vj)xj

subject to:

CF +
n∑

j=1
E(cj)xj ≤ B

0 ≤ xj ≤ 1, j = 1, 2, · · · , n,

(34)

in which the constraint guarantees that the expected value of the total cost required for
the new/improved product will not exceed the expected value of the budget.
In some cases, an enterprise hopes to achieve a preferred acceptable overall customer

satisfaction with the minimum possible design costs under the objective function, which
can be described as

minE(C) = CF +
n∑

j=1
E(cj)xj. (35)

Since CF is a constant, Formula (35) can be rewritten as

minE(CV ) =
n∑

j=1
E(cj)xj =

n∑
j=1

(∫ 1

0
ϕ−1
j (α)dα

)
xj. (36)

Hence, a second uncertain programming model (UP-2) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

minE(CV ) =
n∑

j=1
E(cj)xj

subject to:
n∑

j=1
Ē(vj)xj ≥ S′

0 ≤ xj ≤ 1, j = 1, 2, · · · , n,

(37)

where S′ represents the preferred acceptable overall customer satisfaction. The defi-
nition of S′ depends on the decision-makers’ preference and subjectivity on customer
satisfaction of products.
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Table 1 The house of quality of a motor car

− + − + +
Engineering characteristics EC1 EC2 EC3 EC4 EC5

x1 x2 x3 x4 x5

EC1 x6 (α1/6) x1/9 (α9) x1/9 (α9) x1/9 (α9) x1/9 (α9)

EC2 x1/9 (α9) x6 (α1/6) x2 (α1/2) x1/9 (α9) x1/9 (α9)

Uncertain correlation matrix EC3 x1/9 (α9) x2 (α1/2) x6 (α1/6) x4 (α1/4) x1/9 (α9)

EC4 x1/9 (α9) x1/9 (α9) x4 (α1/4) x6 (α1/6) x1/9 (α9)

EC5 x1/9 (α9) x1/9 (α9) x1/9 (α9) x1/9 (α9) x6 (α1/6)

Customer Uncertain weighs of Uncertain relationship matrix between customer requirements and engineering characteristics

requirements customer requirements

CR1 Y1 x4 (α1/4) x6 (α1/6) x1/9 (α9) x2 (α1/2) x1/9 (α9) x1/9 (α9)

CR2 Y2 x2 (α1/2) x1/9 (α9) x4 (α1/4) x1/9 (α9) x1/9 (α9) x1/9 (α9)

CR3 Y3 x2 (α1/2) x1/9 (α9) x1/9 (α9) x6 (α1/6) x1/9 (α9) x1/9 (α9)

CR4 Y4 x6 (α1/6) x1/9 (α9) x1/9 (α9) x1/9 (α9) x6 (α1/6) x1/9 (α9)

CR5 Y5 x1/4 (α4) x1/9 (α9) x1/9 (α9) x1/9 (α9) x1/9 (α9) x4 (α1/4)

Units dB Horsepower Gallon Kg M3

Comp1 80 75 0.042 23 0.18

Comp2 65 70 0.034 24 0.20

Comp3 65 80 0.028 23 0.18

Technical measures Comp4 75 60 0.032 15 0.14

Comp5 95 80 0.030 20 0.19

Min 60 60 0.027 15 0.14

Max 95 90 0.042 25 0.21

Cost coefficients L(8, 12) L(9, 12) L(24, 26) L(14, 16) L(7, 10)
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Table 2 Different types of uncertain variables with different meanings for grading

Type Uncertain variables W R P

I �(x) = x1/9 extremely unimportant extremely weak strong negative

II �(x) = x1/6 very unimportant very weak very negative

III �(x) = x1/4 quite unimportant quite weak quite negative

IV �(x) = x1/2 some important weak weak negative

V �(x) = x moderately important medium medium

VI �(x) = x2 important strong weak positive

VII �(x) = x4 quite important quite strong quite positive

VIII �(x) = x6 very important very strong very positive

IX �(x) = x9 extremely important extremely strong strong positive

Numerical Example
To demonstrate the feasibility and effectiveness of the proposed uncertain programming
models, the development of a new type of motor car is introduced as an example in this
section. Applying QFD into the process aims to investigate the influence of target values
of ECs on the overall customer satisfaction and the total design cost, which will provide a
dynamic routine to guide the design team to determine a new set of target values for ECs.
A corporation is improving a new model of motor car to enhance competitiveness and

occupy larger market, thus a survey regarding an initial market among users was done.
With respect to the survey data in the market and feedbacks from users, five major CRs
are identified to be the most significant concerns of the customers. i.e., “reducing the
noise of car” (CR1), “enhancing the acceleration” (CR2), “saving fuel” (CR3), “improving
security” (CR4), and “seat comfort” (CR5), respectively.
Based on the design team’s experience and expert knowledge on car, the five crucial

ECs are identified, which are “reducing the noise of the exhaust system” (EC1), “increas-
ing the horsepower of the engine” (EC2), “reducing the amount of fuel per mile” (EC3),
“increasing the controlling force of braking system” (EC4), and “enlarging the space of

Fig. 5 Uncertain variables applied in HoQ of a motor car
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Table 3 Relative importance for five ECs through normalized expected values

EC1 EC2 EC3 EC4 EC5

E(vj) 2.18 2.91 3.67 3.17 1.78

Ē(vj) 0.16 0.21 0.27 0.23 0.13

Ranking 4 3 1 2 5

the seat” (EC5), respectively. These ECs are measured in units of dB, horsepower, gal-
lon, kg, and m3. The positive/negative sign on ECs indicates the design team’s wishes to
increase/decrease the target values of various ECs. There are five main competitors, i.e.,
Comp1 (our corporation), Comp2, Comp3, Comp4, and Comp5 to be considered. Detailed
information may refer to HoQ of a motor car presented in Table 1.
Through the HoQ, some more illustrative forms of uncertainty distribution and inverse

uncertainty distribution of uncertain variables can be seen in matricesW, R, and P. With
respect to Section 3.1, a certain kind of uncertain variables has been put forward to
describe subjective judgements from experts, the specific meanings of which are shown
in Table 2. Among them, five uncertain variables have been adopted by experts to define
the strength of relationship measure and correlation measure in HoQ, which are depicted
as solid lines in Fig. 5 while others are dash-dotted lines. Thereby, as introduced, I, VI,
VII, and VIII indicate different degrees of strength, such as extremely weak, strong, quite
strong, and very strong in matrix R and strong negative, weak positive, quite positive,
and very positive in matrix P, respectively. When it comes to matrix W, III, VI, VII, and
VIII represent “quite unimportant”, “important”, “quite important” and “very important”
correspondingly.
Thus, according to Formulae (28) and (29) through calculating the expected value of

importance vj of five ECs, the values and their normalized ones are summarized in Table 3,
together with their ranking.
Furthermore, based on Formulae (9) and (10), the current target values of ECs of all

competitors in Table 1 can be normalized as follows,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.43 0.50 0 0.80 0.57
0.86 0.33 0.53 0.90 0.86
0.86 0.67 0.93 0.80 0.57
0.57 0 0.67 0 0
0 0.83 0.80 0.50 0.71

⎤
⎥⎥⎥⎥⎥⎥⎦
. (38)

After we obtained all the data in matricesW, R, P, and X, according to Formula (30), the
evaluation of each company’s overall customer satisfaction can be easily obtained through
the relative importance of individual EC and the matrix X, which is shown in Table 4. It
is indicated that the existing design of Comp1 currently has a low score of E(S) (0.43) and
ranks 4th, which means it is much less competitive, while Comp3 achieves the highest
customer satisfaction (0.79) among the five competitors. Therefore, there is a need for
Comp1 to rationalize its existing design to improve its competitiveness.

Table 4 Rankings for five companies through normalized expected values

Comp1 Comp2 Comp3 Comp4 Comp5

Ē(Sq) 0.43 0.67 0.79 0.27 0.60

Ranking 4 2 1 5 3
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Table 5 Solutions of UP-1

EC1 EC2 EC3 EC4 EC5

xj 1 1 0.24 1 1

lj 60 90 0.0384 25 0.21

Ē(vj)/E(cj) 0.0160 0.0200 0.0108 0.0153 0.0152

Ranking 2 1 5 3 4

In order to improve the existing design process, the resources are needed to be allocated
more properly under the limit of a budget which will cover equipments and materi-
als. Through investigation, the budget is determined to be 100 units in terms if all the
resources are taken into consideration. As illustrated in Section 3.4, CF is the fixed cost in
the development of design process which will set to be 50 units in this numerical example
while Cj is the variable part required to improve one unit of ECj, and each cj of individual
ECj is uncertain to determine. Thus, as shown in Table 1, five linear uncertain variables
are applied to cj to express such circumstance.
As illustrated above, the expected value of relative importance vj of individual ECj has

been calculated. Besides, the budget, fixed and variable cost of the design process have
been settled. With respect to Formula (33), then UP-1 in (34) can be rewritten as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
max Ē(S) = 0.16x1 + 0.21x2 + 0.27x3 + 0.23x4 + 0.13x5
subject to:

10x1 + 10.5x2 + 25x3 + 15x4 + 8.5x5 ≤ 50
0 ≤ xj ≤ 1, j = 1, 2, · · · , n.

(39)

The solutions of UP-1 are represented in Table 5, which will achieve the overall cus-
tomer satisfaction of 0.79. The determined target values of ECs lj are obtained through
the invertible functions of Formula (9). Furthermore, it is noticeable that the value of x3
is the last to be optimized after EC1, EC2, EC4, and EC5 have been fulfilled. The reason
lies in the third row in Table 5, by comparing the parameters Ē(vj) and E(cj) in objective
functions and constraints, if the value is higher than others, the unit investment of which
will increase first, thus higher customer satisfaction will be gained, i.e., Ē(v3)/E(c3) gains
the lowest value, which means last worth to be improved even though the importance of
EC3 ranks foremost.
Meanwhile, with respect to different values of S′ scaled in [0,1], the corresponding

results for the second uncertain programming model UP-2 based on Formula (37) are
shown in Table 6. When analyzing the results, it is observable that five ECs are improved

Table 6 Solutions of UP-2 with different values of S′

S′ x1 x2 x3 x4 x5 E(CV )

0.1 0 0.4762 0 0 0 5.0001

0.2 0 0.9524 0 0 0 10.0002

0.3 0.5625 1 0 0 0 16.1250

0.4 1 1 0 0.1304 0 22.4575

0.5 1 1 0 0.5652 0 28.9795

0.6 1 1 0 1 0 35.5000

0.7 1 1 0 1 0.7693 42.0390

0.8 1 1 0.2593 1 1 50.4825

0.9 1 1 0.6296 1 1 59.7425

1 1 1 1 1 1 69.0000
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Fig. 6 Expected value of variable cost varies to different values of S′

in the order of EC2, EC1, EC4, EC5, and EC3 as the value of S′ increases. It can be explained
according to the last row of Table 5 as well, the improved order is the same as the rank-
ing of Ē(vj)/E(cj) in ECj. From Table 6, another conclusion can be drawn that the higher
the value of S′, the more the value of E(CV ), the visualization of which is demonstrated in
Fig. 6.
Through invertible functions of Formula (9), the target value of individual EC lj (j =

1, 2, · · · , n) for different value of S′ can be obtained. In Formula (21), the variable cost Cj
required for improving each EC can be calculated by cjxj, respectively, j = 1, 2, · · · , n,
in which cj expressed as L(aj, bj). Furthermore, the lower limit and the upper limit of Cj
can be obtained, respectively, where j = 1, 2, · · · , n. The relationships between S′ and the
target values of the five ECs and the corresponding variable costs incurred for improving
them are demonstrated in Fig. 7a, b, Fig. 8a, b, Fig. 9a, b, Fig. 10a, b, and Fig. 11a, b,
respectively.
The above five pairs of dynamic roadmaps would assist the design team to determine

the target values of the five ECs to improve the design of motor car by taking com-
petition requirements, the technical feasibility and financial factors into account. For
example, if our company (Comp1) wants to rank foremost among the competitors, the
preferred acceptable overall customer satisfaction should at least match or exceed that of

Fig. 7 a Relationship between l1 and S′ . b Relationship between C1 and S′
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Fig. 8 a Relationship between l2 and S′ . b Relationship between C2 and S′

Comp3 (0.79), which is the current leader among five competitors. It will become more
convenient for a design team to determine the target values for ECs of the improved car
based on above five pairs of plots by uncertain programming, e.g., the calculated target
values of ECs, l1 is 60 dB, l2 is 90 horsepower, l3 is smaller than 0.0384 gallon, l4 is 25
kg, and l5 is 0.21 m3, respectively, along with the overall customer satisfaction of 0.79.
Accordingly, the variable costs for improving them are (8, 12), (9, 12), (5.76, 6.24), (14,
16), and (7, 10). If the fixed cost is 50 units, the variable cost will be greater than (43.76,
56.24), which implies that the expected value of the total design cost will be at 100 units.
In resource constraints, the fixed cost and budget are crisp values pre-defined

by experts; actually, it can also be defined as uncertain variables or other differ-
ent crisp numbers in optimizing the models, which will lead to more comparative
results.
To some extent, incorporating uncertainty theory into QFD would assist the company

to better define the vagueness and ambiguity in the design process and achieve more
rational results in determining the target values of ECs and obtain higher overall customer
satisfaction.

Fig. 9 a Relationship between l3 and S′ . b Relationship between C3 and S′
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Fig. 10 a Relationship between l4 and S′ . b Relationship between C4 and S′

Conclusions
In this paper, the basic idea of uncertain programming which includes expected value
modeling has been applied to model the QFD planning process in an uncertain environ-
ment. On the basis of uncertainty theory, novel modeling approaches have been put up to
determine the target values of ECs in QFD.
On account of the imprecise and uncertain elements in the development process, uncer-

tain variables of regular uncertainty distributions have been adopted to define the relative
importance of each CR, the uncertain relationship between CRs and ECs and the correla-
tion among the ECs, while linear uncertain variables are applied to describe the variable
cost of improving one unit of individual EC. The illustrated example of quality improved
problem of a motor car showed that the proposed approach can model the process effec-
tively in an uncertain environment by taking competition requirements, the technical
feasibility and financial factors into consideration.
A new method based on uncertainty theory, namely, uncertain programming using

EVM has been introduced in QFD to determine the target values of engineering char-
acteristics in an uncertain environment of different real life scenarios. The work can be
extended to many angles with respect to diverse uncertain features in HoQ. Much more
can be done in this area, which may lead to more fruitful achievements.

Fig. 11 a Relationship between l5 and S′ . b Relationship between C5 and S′
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