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Abstract
In this paper, a new method is proposed for testing fuzzy hypotheses based on the
following two generalized p-values: (1) the generalized p-value of null fuzzy hypothesis
against alternative fuzzy hypothesis and (2) the generalized p-value of alternative fuzzy
hypothesis against null fuzzy hypothesis. In the proposed method, each generalized
p-value is formulated on the basis of Zadeh’s probability measure of fuzzy events. The
introduced p-value method has several advantages over the common p-value methods
for testing fuzzy hypotheses. A few illustrative examples and also an agricultural
example, based on a real-world data set, are given to clarify the proposed method.

Keywords: Fuzzy statistics, Fuzzy hypothesis, Testing hypothesis, p-value

Introduction
After the inception of the concept of fuzzy set by Zadeh [23], many statistitions have
extended different methods of testing statistical hypotheses using the fuzzy set theory, e.g.
see [3, 4, 18, 19]. Beside the mentioned works on testing hypothesis in fuzzy environment,
some works have been done by researchers based on the concept of p-value. Filzmoser
andViertl [8] worked on the problem of testing hypotheses and introduced a fuzzy p-value
when the observations are fuzzy and hypotheses are crisp, also see [6, 21]. For instance,
when the form of the rejection region isT ≥ tr , the δ cut of their proposed fuzzy p-value is

[
Pθ0 (T ≥ t2(δ)) ,Pθ0 (T ≥ t1(δ))

]
, δ ∈ (0, 1] ,

in which θ0 is the boundary of null hypothesis and t̃δ = [t1(δ), t2(δ)] is the δ cut of the test
statistic.
Using the extension principle, Parchami et al. [14] discussed on testing fuzzy hypotheses

with crisp data and introduced the concept of the fuzzy p-value for such situations. For
instance, when the form of the rejection region is T ≥ tr , the δ cut of their fuzzy p-value is[

Pθ1(δ)(T ≥ t),Pθ2(δ)(T ≥ t)
]
, δ ∈ (0, 1] ,

in which (H0b)δ = [θ1(δ), θ2(δ)] is the δ cut of the null hypothesis boundary and t is the
observed test statistic.
Parchami et al. [15] and Fazlalipor et al. [7] combined the two abovementioned ideas of

Filzmoser and Viertl [8] and Parchami et al. [14] by two different approaches which lead
to the same solution for testing fuzzy hypotheses based on fuzzy data. For instance, when
the form of the rejection region is T ≥ tr , the δ cut of their proposed fuzzy p-value is
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[
Pθ1(δ) (T ≥ t2(δ)) ,Pθ2(δ) (T ≥ t1(δ))

]
, δ ∈ (0, 1] ,

in which (H0b)δ = [θ1(δ), θ2(δ)] and t̃δ = [t1(δ), t2(δ)] are δ cuts of null hypothesis
boundary and test statistic, respectively.
Also, Geyer and Meeden [9] investigated the concepts of fuzzy p-value and fuzzy

confidence interval when both the hypotheses and data are crisp.
Unlike these studies, another efficient and simple p-value-based method for testing

fuzzy hypotheses is presented in this paper. The proposed method is on the basis of the
probability measure of fuzzy event introduced by Zadeh [22]. Also, it must be mentioned
that all results of this study coincide with the results of testing classical hypotheses, when
the hypotheses reduce to two crisp sets on the parameter space.
This paper is organized as follows. Some preliminaries, motivations and basic def-

initions about testing fuzzy hypotheses are reviewed in Section “Fuzzy Hypotheses:
Motivation and Basic Definitions”. In Section “Testing Fuzzy Hypotheses Based on a New
p-Value-Based Approach”, we present a new p-value-based approach for testing fuzzy
hypotheses. Some illustrative examples are given in Section “Illustrative Examples”. An
agricultural applied example is presented in Section “Application to Agricultural Studies”.
Also, a conclusion is given in the final section.

Fuzzy Hypotheses: Motivation and Basic Definitions
Here, we are going to briefly review some basic concepts which are needed or developed
through this paper.

Testing Statistical Hypotheses

LetX = (X1, . . . ,Xn) be a random sample with the observed value x = (x1, . . . , xn), where
Xi has the probability density function (p.d.f.) or the probability mass function (p.m.f.)
f (xi; θ), i = 1, . . . , n, with the unknown parameter θ ∈ � ⊆ R. It will be assumed that
the functional form of f (x; θ) is known. The problem of testing statistical hypotheses is
to decide whether to accept (or reject) the null hypothesis “H0 : θ ∈ �0 ⊂ �” against
“H1 : θ ∈ �c

0 = � − �0”, based on the random sample X. Usually, statistical hypotheses
are one of the following forms:

(i ) H0 : θ = θ0 versus H1 : θ = θ1 (θ0 > θ1)

(ii ) H0 : θ = θ0 versus H1 : θ = θ1 (θ0 < θ1)

(iii ) H0 : θ ≥ θ0 versus H1 : θ < θ0
(iv) H0 : θ ≤ θ0 versus H1 : θ > θ0
(v) H0 : θ = θ0 versus H1 : θ �= θ0

In which θ0 and θ1 are two known numbers and we named them the boundary of the null
and alternative hypotheses, respectively. A test φ is said to be a test of (significance) level
α ∈ [ 0, 1] if αφ ≤ α, where αφ = supθ∈�0Pθ (rejection of H0). Commonly, the statistical
tests are based on a so-called test statistic T(X). In a nonrandomized test, the space of
possible values of the test statistic T is decomposed into a rejection region and its comple-
ment, the acceptance region. Under some certain conditions, the rejection region usually
takes one of the following forms:

(a) T ≤ tl (b) T ≥ tr (c) T /∈ (t1, t2), (1)
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where tl, tr , or t1 and t2 are certain quantiles of the distribution of T, so that αφ = α. In
case (c), we may obtain t1 and t2 by the equal tails method, so that Pθ (T ≤ t1) = Pθ (T ≥
t2) = α/2. The hypothesis H0 is rejected if the value of t = t(x) falls into the rejection
region. In usual tests, the critical regions of testing hypotheses (i) and (iii) are of form
(1.a), the critical region of testing hypotheses (ii) and (iv) are of form (1.b) and the critical
region of testing hypothesis (v) is of form (1.c). For more details, see [8, 11, 15].

Fuzzy Hypotheses: Motivation

The motivation of introducing fuzzy hypotheses can be briefly presented by considering
the following example. Suppose that an experimenter is interested in evaluating the mean
growth of a plant by measuring its diameter which is distributed by a normal distribution
with unknownmeanμ and known standard deviation σ . The traditional method is testing
hypothesis “H0 : μ = μ0” against “H1 : μ �= μ0”, for a certain value μ0, on the basis
of a random sample X, where Xi ∼ N

(
μ, σ 2), i = 1, . . . , n. But obviously, if the mean of

the given sample is slightly different from μ0, then the null hypothesis is acceptable, and a
considerable difference fromμ0 makesH0 unacceptable. Therefore, it is more appropriate
and more reasonable to formulate the hypotheses H0 and H1 by fuzzy terms “near to μ0”
and “away from μ0”, respectively. In other words, more realistic hypotheses are{

H̃0 : μ is near to μ0,
H̃1 : μ is away from μ0,

which can be formulated by using Definition 1. Having faced by such real situations leads
statisticians to reformulate some classical and crisp hypotheses by using fuzzy hypothe-
ses. Considering the above discussion, the main problem studied in this work is to test
fuzzy hypotheses{

H̃0 : θ is H0(θ),
H̃1 : θ is H1(θ),

based on a random sample from a p.d.f. or p.m.f. f (x; θ), θ ∈ � (for more details, see Def-
inition 1). This problem is called the problem of testing fuzzy hypotheses. In this paper,
motivated by [22], we propose a new p-value-based approach to such a problem. Con-
cerning the common p-value-basedmethods, the introducedmethod has some important
advantages. The main advantage of the introduced method is that it is based on both null
and alternative hypotheses, while the commonmethods are based on null hypothesis only.

Fuzzy Hypothesis and Its Boundary

Here, we review some basic concepts about fuzzy hypotheses from Taheri and Behbood-
ian [18] and Parchami et al. [15], which are used in Section “Testing Fuzzy Hypotheses
Based on a New p-Value-Based Approach”.

Definition 1. Any hypothesis of form “H̃ : θ isH(θ)” is called a fuzzy hypothesis, where
“θ is H(θ)” implies that θ is in a fuzzy set of �, the parameter space, with membership
function H(θ).

Note that the ordinary hypothesis “H : θ = θ0” is a fuzzy hypothesis with the member-
ship function H(θ) = 1 at θ = θ0 , and zero otherwise, i.e. the indicator function of the
crisp set {θ0}.
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Definition 2. (See also [1, 2]) (a) Fuzzy hypothesis H̃ : θ is H(θ) is called a fuzzy
one-sided hypothesis, if there exists θ1 ∈ � so that: (i) H(θ) = 1 for θ ≤ θ1 (θ ≥ θ1) and
(ii) H is an decreasing (increasing) function of θ for θ > θ1 (θ < θ1).

(b) Fuzzy hypothesis H̃ : θ is H(θ) is called a fuzzy two-sided hypothesis, if there exists
an interval [θ1, θ2] ⊂ � so that: (i) H(θ) = 1 for θ ∈ [θ1, θ2] and (ii) H is an increasing
function of θ for θ ≤ θ1 and is a decreasing function for θ ≥ θ2.

Definition 3. The boundary of the fuzzy hypothesis H̃ is a fuzzy subset of � with
membership function Hb defined as follows:

(i ) Hb(θ) =
{
H(θ) for θ ≤ θ1,
0 for θ > θ1

}
, if H̃ is one-sided and H is increasing,

(ii ) Hb(θ) =
{
H(θ) for θ ≥ θ1,
0 for θ < θ1

}
, if H̃ is one-sided and H is decreasing,

(iii ) Hb(θ) = H(θ), if H̃ is two-sided.

Example 1. Let X be an exponential random variable with unknown mean λ, i.e.
f (x; λ) = 1

λ
e− x

λ , x > 0, λ > 0. Suppose that

H(λ) =
{
e−(λ−3)2 if λ ≤ 3,
1 if λ > 3.

Then, the hypothesis “H̃ : λ is H(λ)” is a fuzzy one-sided hypothesis. So, by Definition 3,

Hb(λ) =
{
e−(λ−3)2 if λ ≤ 3,
0 if λ > 3,

is the boundary of the fuzzy hypothesis H̃ (see Fig. 1).

Fig. 1 The membership functions of the fuzzy hypothesis and its boundary in Example 1
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Probability Measure Under a Fuzzy Hypothesis

Definition 4. (Torabi and Behboodian [20]) Let the random variable X have p.d.f. or
p.m.f. f (x; θ) and H̃ : θ isH(θ) is a fuzzy hypothesis where

∫
θ
H(θ)dθ < ∞. The weighted

probability density function of X, under the fuzzy hypothesis H̃ , is defined by

f (x; H̃) =
∫

θ

H∗(θ)f (x; θ)dθ ,

where H∗(θ) = H(θ)∫
θ H(θ)dθ

is the normalized membership function of H(θ). Replace
integration by summation in discrete cases.

Remark 1. (Torabi and Behboodian [20]) (a) The normalized membership function is
not necessarily a membership function, i.e. it may be greater than 1 for some values of θ .
(b) Note that f (x; H̃) in Definition 4 is a p.d.f., since f (x; H̃) is nonnegative and∫
x f (x; H̃)dx = 1.
(c) If H is the crisp hypothesis H : θ = θ0, then f (x; H̃) = f (x; θ0).

Example 2. Let X be a normal random variable with unknownmeanμ and variance 0.7.
The weighted p.d.f. of X under fuzzy hypothesis “H̃ : μ ∼= 4” is as follows:

f (x;μ ∼= 4) =
∫

μ

H∗(μ)f (x;μ)dμ

= 2
3

∫
μ

H(μ)

(
1√
1.4π

e−
(x−μ)2

1.4

)
dμ , x ∈ R,

where μ ∼= 4 is defined by

H(μ) =

⎧⎪⎨
⎪⎩

μ−2
2 if 2 < μ ≤ 4

2(4.5 − μ) if 4 < μ ≤ 4.5
0 otherwise.

The calculation process for the weighted p.d.f. of X under fuzzy hypothesis μ ∼= 4 is
drawn in Fig. 2 on the basis of Definition 4.

The major advantage of Definition 4 is that the weighted p.d.f. can integrate all possible
p.d.f.s with different weights. The value of H∗(θ) can be understood as the weight of
f (x; θ), and the weighted p.d.f. can let different possible f (x; θ)s play different roles in this
integration (e.g. see Fig. 2 in Example 2).

Testing Fuzzy Hypotheses Based on a New p-Value-Based Approach
The p-Value Approach

Similar to the usual kinds of hypotheses which are listed at the first of Section “Fuzzy
Hypotheses: Motivation and Basic Definitions”, the fuzzy hypotheses can be usually
modelled by one of the following forms:

(i )
{
H̃0 : θ is approximately θ0,
H̃1 : θ is approximately θ1,

where Def(H0) > Def(H1),

(ii )
{
H̃0 : θ is approximately θ0,
H̃1 : θ is approximately θ1,

where Def(H0) < Def(H1),

(iii )
{
H̃0 : θ is approximately bigger than θ0,
H̃1 : θ is approximately smaller than θ0,
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Fig. 2 Calculating normal weighted p.d.f. of X under fuzzy hypothesis μ ∼= 4 in Example 2

(iv)
{
H̃0 : θ is approximately smaller than θ0,
H̃1 : θ is approximately bigger than θ0,

(v)
{
H̃0 : θ is near to θ0,
H̃1 : θ is away from θ0,

where θ0 and θ1 are two known numbers and Def(.) is a defuzzifier function. It is obvious
that critical regions of testing fuzzy hypotheses are similar to the critical regions of testing
precise hypotheses which are formulated by Relations (1). In other words, the critical
regions of testing fuzzy hypotheses (i) and (iii) are of form (1.a), the critical regions of
testing fuzzy hypotheses (ii) and (iv) are of form (1.b) and the critical region of testing
fuzzy hypothesis (v) is of form (1.c). It must be noted that the critical regions of testing
fuzzy hypotheses (i) and (ii) must be determined after defuzzification of the hypotheses,
and it depends on the defuzzifier function.
Considering Definitions 1 and 3, one can assert that “H̃b : θ isHb(θ)” is a fuzzy hypoth-

esis, and therefore we can generalize the classical p-value for testing fuzzy hypothesis H̃0
against H̃1 as follows (see Subsection “Probability Measure Under a Fuzzy Hypothesis”,
for more details about the probability measure under a fuzzy hypothesis).

Definition 5. In testing fuzzy hypotheses problem, for any critical region of forms (1.a),
(1.b) and (1.c), the p-value is respectively defined as

(a) p-value = PH̃0 b
(T ≤ t)

=
∫

θ

H∗
0 b(θ) Pθ (T ≤ t) dθ , (2)

(b) p-value = PH̃0 b
(T ≥ t)

=
∫

θ

H∗
0 b(θ) Pθ (T ≥ t) dθ (3)
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and

(c) p-value =
{
2PH̃0 b

(T ≥ t) if t ≥ mH0 b

2PH̃0 b
(T ≤ t) if t ≤ mH0 b

=
{
2
∫
θ
H∗
0 b(θ) Pθ (T ≥ t) dθ if t ≥ mH0 b ,

2
∫
θ
H∗
0 b(θ) Pθ (T ≤ t) dθ if t ≤ mH0 b ,

(4)

where H∗
0 b(θ) = H0 b(θ)∫

θ H0 b(θ)dθ
is the normalized membership function of the boundary

in the fuzzy null hypothesis, t is the observed value of test statistic (T) and mH0 b is
the median of the weighted distribution of T(X) under the boundary of the fuzzy null
hypothesis H̃0 b. Replacement of integration by summation is needed in discrete case.

Remark 2. In contrast with previous p-value methods in fuzzy environments (reviewed
in Section “Introduction”), the proposed p-value in this study is a real number on unit
interval which is formulated according to the probability measure under fuzzy hypothesis.

Remark 3. When the hypotheses are crisp rather than fuzzy, the membership function
of the fuzzy boundary is reduced to the indicator function of a single point, i.e. the indi-
cator function of the boundary θ0. Then, the introduced p-value for cases (a), (b) and (c)
in Definition 5 are reduced to classical p values

(a) Pθ0(T ≤ t), (b) Pθ0(T ≥ t)

and

(c) 2min
{
Pθ0(T ≤ t),Pθ0(T ≥ t)

} =
{
2Pθ0(T ≥ t) if t ≥ mθ0 ,
2Pθ0(T ≤ t) if t ≤ mθ0 ,

where θ0 is the boundary of the null hypothesis andmθ0 is the median of T under θ0, see
[8] and page 381 of [11].

Decision Rule

In testing fuzzy hypothesis H̃0 against H̃1, suppose that p01 is the p-value in testing H̃0
against H̃1 and p10 is the p-value in testing H̃1 versus H̃0. Now we are going to extend
the proposed method of Emadi and Arghami [5] for testing fuzzy hypotheses. It must
be mentioned that the proposed decision rule omit several weaknesses of the classical
p-value-based tests which are point out in the next subsection.
Decision rule: Accept H̃1 with confidence factor p10

p01+p10 if p01 < p10; otherwise, accept
H̃0 with confidence factor p01

p01+p10 . Therefore in this method, the “confidence factor into
the given decision” can be introduced by

CF = p01
p01 + p10

I(p01 ≥ p10) + p10
p01 + p10

I(p01 < p10) (5)

in which I(.) is the indicator function.

Advantages of the Proposed Method

Some advantages of the proposed decision rule with respect to the decision rule of the
classical p-value-based tests (i.e. reject null hypothesis at significance level α iff α > p01)
are presented as follows:
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1. The proposed decision rule is a function of both fuzzy hypotheses H̃0 and H̃1, while
the current fuzzy p-value methods are based on null fuzzy hypothesis (e.g. see
Remark 7 in [14]).

2. The proposed decision rule is symmetric with respect to the hypotheses. In other
words, the acceptance (rejection) H̃0 versus H̃1 in this method is equivalent to the
rejection (acceptance) H̃1 versus H̃0, while the previous p-value-based methods in
fuzzy environments do not have such reasonable property (see [16] for investigation
on misleading statistical evidence by the current p-value methods). Also, there exist
such a symmetry in the introduced confidence factor, since CF(H̃0) = 1 − CF(H̃1).

3. When H̃1 −→ H̃0, then p10 −→ p01 and therefore, CF −→ 1
2 which indicates a

similar supporting data from both hypotheses. It must be mentioned that not only
the usual p-value methods for testing crisp hypotheses do not have this property
but also the fuzzy p-value-based methods for fuzzy environments do not have such
property, e.g. see [8, 17].

4. The previous fuzzy p-value-based methods may not lead the user to a clear
decision in two-sided tests, when the fuzziness of the data or/and the fuzziness of
the null hypothesis is/are high (for more details, see [7, 8, 14, 15]). This problem is
solved in the proposed approach by omitting no-decision area in Formula (4).

Illustrative Examples
Example 3. Let x = 2.25 be an observation from N(μ, 1) distribution. We wish to test{

H̃0 : μ is approximately smaller than 1.5,
H̃1 : μ is approximately bigger than 1.5,

where H̃0 and H̃1 have membership functions

H0(μ) =

⎧⎪⎨
⎪⎩
1 if μ ≤ 0
3−μ
3 if 0 < μ ≤ 3

0 if μ ≥ 3

and H1(μ) = 1 − H0(μ) (see Fig. 3). Considering Definition 3, the membership function
of the boundary of fuzzy null hypothesis is

H0 b(μ) =
{

3−μ
3 if 0 < μ < 3,

0 otherwise.

The fuzzy hypotheses in this example can be modelled by form (iv) and so the rejec-
tion region is of form (1.b). Therefore, considering Relation (3), one can compute p-value
based on the weighted p.d.f. of X under H̃0 b as follows:

p01 = PH̃0 b
(X ≥ 2.25)

=
∫

μ

H∗
0 b(μ) Pμ(X ≥ 2.25) dμ

=
∫ 3

0

(3 − μ)/3
1.5

[1 − 
(2.25 − μ)] dμ

= 0.156,

which is equivalent to the area of dark grey surface in Fig. 3. To decide on the basis of the
proposed decision rule, we need to calculate the p-value of testing H̃1 versus H̃0. Hence,
one can similarly compute p10 as follows, which is equivalent to the area of light grey
surface in Fig. 3
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Fig. 3 p01 and p10 in Example 3 based on the weighted p.d.f. of the test statistic under the boundary of fuzzy
hypotheses

p10 = PH̃1 b
(X ≤ 2.25)

=
∫ 3

0

1−[ (3 − μ)/3]
1.5


(2.25 − μ) dμ

= 0.572.

Therefore, p01 < p10, and so we accept H̃1 against H̃0 with confidence factor CF =
0.572

0.156+0.572 = 0.786. Note that on the basis of the classical p-value method, one accepts
H̃0 against H̃1 at any significance level α < p01 = 0.156. Although in this example, the
result of the proposed method is in conflict with the result of the classical significance
tests (e.g. at level 0.05), but we assert that the proposed method is much better according
to the comparison of two grey surfaces in Fig. 3.

Example 4. Let x = 1.75 be an observation from N(μ, 1) distribution. We wish to test{
H̃0 : μ is approximately 4,
H̃1 : μ is approximately 1,

where H̃0 and H̃1 have membership functions (see the first graph in Fig. 4)

H0(μ) =

⎧⎪⎨
⎪⎩

μ − 3 if 3 < μ ≤ 4
5 − μ if 4 < μ ≤ 5
0 otherwise

and

H1(μ) =

⎧⎪⎨
⎪⎩

μ if 0 < μ ≤ 1
2 − μ if 1 < μ ≤ 2
0 otherwise.

Considering Definition 3, the membership function of the boundary of fuzzy null
hypothesis is equal to the membership function of the fuzzy null hypothesis. Also, the
above fuzzy hypotheses can be modelled by form (ii), and so the rejection region for
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Fig. 4 The membership functions of fuzzy hypotheses H̃0 and H̃1 for five tests in Example 4 which are
respectively drawn with a straight line and broken line

testing H̃0 versus H̃1 is of form (1.a). Therefore, considering Relation (2), one can compute
p-value based on the weighted p.d.f. of X under H̃0 b as follows:

p01 = PH̃0 b
(X ≤ 1.75)

=
∫

μ

H∗
0 b(μ) Pμ(X ≤ 1.75) dμ

=
∫ 4

3
(μ − 3) 
(1.75 − μ) dμ +

∫ 5

4
(5 − μ) 
(1.75 − μ) dμ

= 0.019.



Parchami et al. Journal of Uncertainty Analysis and Applications  (2016) 4:2 Page 11 of 16

To decide on the basis of the proposed decision rule, we need to calculate the p-value
of testing H̃1 versus H̃0. Hence, one can similarly compute p10 = PH̃1 b

(X ≥ 1.75) =
0.244. Therefore, p01 < p10, and so we accept H̃1 against H̃0 with confidence factor CF =

0.244
0.019+0.244 = 0.927 (see the result of test 1 in Table 1).
To compare the results of several testing fuzzy hypotheses based on the proposed

approach, five different tests are considered in this example by changing the fuzzy
hypotheses (see Fig. 4). The membership functions of fuzzy hypotheses and the results of
tests are presented in Table 1. Comparing the result of test 1 with the result of test 2 shows
the sensitivity of the proposed approach to the location of the alternative fuzzy hypothe-
sis (compare the first graph with the second one in Fig. 4). Also, comparing the result of
test 1 with the result of test 3 shows the sensitivity of the proposed approach to the fuzzi-
ness of H̃1. Instead of the current fuzzy p-value methods, the results of tests 1–5 show
that the proposed decision rule in this paper is a function of both fuzzy hypotheses H̃0
and H̃1 (see the first advantage from Subsection “Advantages of the Proposed Method”).
Regarding to the used defuzzifier function Def(H) =

∫
θ θH(θ)dθ∫
θ H(θ)dθ

in this example, the
form of critical region is (1.b) for calculating p01 in test 5 (since Def(H0) < Def(H1)),
while in tests 1–4, the form of critical region is of form (1.a).

Example 5. The lifetime X of lamps (in terms of hour) produced by a factory is normally
distributed with unknown mean μ and standard deviation σ = 120. In a random sample
of size n = 36 lamps, we observe x̄ = 1327 h. We wish to test{

H̃0 : μ is approximately 1300,
H̃1 : μ is approximately 1500,

where their membership functions are (see Fig. 5)

H0(μ) =

⎧⎪⎨
⎪⎩

μ−1200
100 if 1200 < μ ≤ 1300

1400−μ
100 if 1300 < μ ≤ 1400

0 otherwise

Table 1 The results of five different tests in Example 4

Test H0(μ) H1(μ) p01 p10 Accepted CF

number hypothesis

1

⎧⎪⎨
⎪⎩

μ − 3 3 < μ ≤ 4

5 − μ 4 < μ ≤ 5

0 o.w.

⎧⎪⎨
⎪⎩

μ 0 < μ ≤ 1

2 − μ 1 < μ ≤ 2

0 o.w.

0.019 0.244 H̃1 0.927

2

⎧⎪⎨
⎪⎩

μ − 3 3 < μ ≤ 4

5 − μ 4 < μ ≤ 5

0 o.w.

⎧⎪⎨
⎪⎩

μ + 5 −5 < μ ≤ −4

−3 − μ −4 < μ ≤ −3

0 o.w.

0.019 
 0 H̃0 0.99

3

⎧⎪⎨
⎪⎩

μ − 3 3 < μ ≤ 4

5 − μ 4 < μ ≤ 5

0 o.w.

⎧⎪⎨
⎪⎩

μ+1
2 −1 < μ ≤ 1

3−μ
2 1 < μ ≤ 3

0 o.w.

0.019 0.283 H̃1 0.937

4

⎧⎪⎨
⎪⎩

μ−2
2 2 < μ ≤ 4

6−μ
2 4 < μ ≤ 6

0 o.w.

⎧⎪⎨
⎪⎩

μ+1
2 −1 < μ ≤ 1

3−μ
2 1 < μ ≤ 3

0 o.w.

0.041 0.283 H̃1 0.873

5

⎧⎪⎨
⎪⎩

μ+4
8 −4 < μ ≤ 4

5 − μ 4 < μ ≤ 5

0 o.w.

⎧⎪⎨
⎪⎩

μ −1 < μ ≤ 1
5−μ
4 1 < μ ≤ 3

0 o.w.

0.527 0.452 H̃0 0.538
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Fig. 5 The membership functions of fuzzy hypotheses in Example 5

and

H1(μ) =

⎧⎪⎨
⎪⎩

μ−1400
100 if 1400 < μ ≤ 1500

1600−μ
100 if 1500 < μ ≤ 1600

0 otherwise.

Considering Definitions 3 and 4, we have Hj b(μ) = Hj(μ) and H∗
j b(μ) = Hj b(μ)

100 , for
j = 0, 1. In this example, fuzzy hypotheses can be modelled by form (ii) and the rejection
region for testing H̃0 versus H̃1 is of form (1.b). Therefore, considering Relation (3), one
can compute p-value based on the weighted p.d.f. of X under H̃0 b as follows:

p01 = PH̃0 b
(X̄ ≥ 1327)

=
∫

μ

H∗
0 b(μ) Pμ(X̄ ≥ 1327) dμ

=
∫ 1300

1200

μ−1200
1002

[
1−


(
1327−μ

120/
√
36

)]
dμ+

∫ 1400

1300

1400−μ

1002

[
1−


(
1327−μ

120/
√
36

)]
dμ

= 0.285.

Similarly, p10 = PH̃1 b
(X̄ ≤ 1327) = ∫

μ
H∗
1 b(μ) Pμ(X̄ ≤ 1327) dμ = 2.95×10−7. There-

fore, H̃0 is strongly accepted against H̃1 with confidence factor CF = 0.285
0.285+2.95×10−7 =

0.999.

Example 6. The manager of a factory has reinstalled a new system to upgrade the secu-
rity of his personnel. We can suppose that the number of monthly accidents has a Poisson
distribution with unknown mean λ. A study shows that 27 accidents have occurred dur-
ing the past year. Having installed the new system, themanager wants to test if the average
of the monthly accidents is approximately bigger than 3. That is, to test{

H̃0 : λ is approximately bigger than 3,
H̃1 : λ is approximately smaller than 3,

where their membership functions are
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H0(λ) =

⎧⎪⎨
⎪⎩
1 if λ > 3.25
2(λ − 2.75) if 2.75 < λ ≤ 3.25
0 if λ ≤ 2.75

andH1(λ) = 1−H0(λ) (see Fig. 6). Considering Definitions 3 and 4,H∗
j b(λ) = 4Hj b(λ) =

4Hj(λ)I(2.75 < λ ≤ 3.25), where j = 0, 1. Fuzzy hypotheses are modelled by (iii) in this
example, and the rejection region for testing H̃0 versus H̃1 is of form (1.a). By assumption,
we have T(X) = ∑12

i=1 Xi ∼ Poisson(12λ) while X = (X1, . . . ,X12), and therefore one can
compute p01 and p10 by Relations (2) and (3), respectively, as follows:

p01 = PH̃0 b
(T(X) ≤ 27)

=
∫

λ

H∗
0 b(λ) Pλ(

12∑
i=1

Xi ≤ 27) dλ

=
∫ 3.25

2.75
8(λ − 2.75)

27∑
t=0

e−12λ(12λ)t

t!
dλ

= 0.059,

p10 =
∫ 3.25

2.75
4[ 1 − 2(λ − 2.75)]

[
1 −

27∑
t=0

e−12λ(12λ)t

t!

]
dλ

= 0.895.

Therefore, p01 < p10, and H̃1 is accepted against H̃0 with confidence factor CF =
0.895

0.059+0.895 = 0.938.

Application to Agricultural Studies
This applied example was conducted on an agriculturally polluted soil with CdNO3 salt
in a laboratory at Tehran University, Iran [10]. Suppose that we are going to have an inves-
tigation on the amount of cadmium (Cd) absorption in a plant from a polluted soil with
CdNO3 salt. The unknown parameter is the amount of Cd absorption in a plant (in terms

Fig. 6 The membership functions of fuzzy hypotheses in Example 6
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of mg.kg−1 dry matter) from soil which we denoted it with μ. The optimum range of Cd
absorbed in a plant has been proposed by Pais and Benton [12] as [0.05, 0.2], and also
its maximum has been specified with 3mg.kg−1 dry matter. The experimenter wants to
investigate on the following question: Whether the mean of Cd uptake coincides with the
proposed suitable amounts by Pais and Benton or not?
In this applied example, one cannot represent the whole above presented information

by Pais and Benton with a classical (precise) set. But, using fuzzy set theory, one can show
the optimum range and the maximum amount of Cd uptakes in a plant by the following
fuzzy set, in which the membership is considered to be one on the interval [0, 0.05], since
the lower absorption of cadmium is better for any plant (Fig. 7)

H0(μ) =

⎧⎪⎨
⎪⎩
1 if 0 ≤ μ < 0.2,
3−μ
2.8 if 0.2 ≤ μ < 3,
0 if 3 ≤ μ.

Now, the experimenter can test fuzzy hypotheses H̃0 : μ isH0(μ), against H̃1 : μ isH1(μ)

without facing any contradiction in the result, where the membership functions of H̃0(μ)

and H̃1(μ) = 1 − H̃0(μ) are shown in Fig. 7. This is an advantage of considering fuzzy
hypotheses rather than crisp hypotheses in some practical problems.
In order to test fuzzy hypothesis H̃0 against H̃1, the experimenter has recorded the

following data for the amount of Cd absorption via below radish parts from a random
sample of size n = 25 pots: 1.33, 1.42, 1.56, 1.85, 1.89, 2.96, 2.97, 1.60, 2.02, 1.78, 1.98,
1.86, 1.63, 1.56, 2.12, 1.35, 1.52, 1.32, 2.06, 1.38, 1.09, 2.50, 1.61, 1.46 and 2.18; see [13].
The sample mean is x̄ = 1.80mg.kg−1 dry matter and the sample standard devia-

tion is s = 0.479mg.kg−1 dry matter. In this study, we assume that Xi ∼ N(μ, s2), for
i = 1, . . . , 25, in which the unknown variance parameter can be estimated by a maximum
likelihood estimator s2 = 1

n
∑n

i=1(xi − x̄)2. Note that the normal distribution assumption
for random variable Xi comes from the essence of random variable Xi, which is rooted
from nature. For instance, one can accept that the weight of seeds picked from a partic-
ular plant type, the absorption amount of heavy metals through the roots of a plant in a
special greenhouse experiment, or the growth rate of plants in a specific time period, are
all normal random variables with suitable means and variances.

Fig. 7 The membership functions of the fuzzy hypotheses in agricultural example



Parchami et al. Journal of Uncertainty Analysis and Applications  (2016) 4:2 Page 15 of 16

Fig. 8 The membership functions of the fuzzy null hypothesis and its boundary in agricultural example

Considering Definitions 3 and 4, H∗
j b(μ) = Hj b(μ)

1.4 = Hj(μ)

1.4 I(0.2 < λ ≤ 3), where
j = 0, 1. Also, the form of fuzzy hypothesis H̃0 against H̃1 is (iv), hence the form of critical
region is (1.b) and one can compute p01 by Relation (3) as follows:

p01 = PH̃0 b
(X̄ ≥ 1.80)

=
∫

μ

H∗
0 b(μ) Pμ(X̄ ≥ 1.80) dμ

=
∫ 3

0.2

(3 − μ)/2.8
1.4

⎡
⎣1 − 


⎛
⎝1.80 − μ

0.479√
25

⎞
⎠
⎤
⎦ dμ

= 0.185.

Similarly, the form of fuzzy hypothesis H̃1 against H̃0 is (iii), hence the form of critical
region is (1.a). So, one can compute p01 by Relation (2) as follows:

p10 = PH̃1 b
(X̄ ≤ 1.80)

=
∫

μ

H∗
1 b(μ) Pμ(X̄ ≤ 1.80) dμ

=
∫ 3

0.2

1−[ (3 − μ)/2.8]
1.4




(
1.80 − μ

0.479
5

)
dμ

= 0.328.

Therefore, p01 < p10, and so H̃1 is accepted against H̃0 with confidence factor CF =
0.328

0.185+0.328 = 0.639. In other words, considering the confidence factor 0.639, one can
assert that the mean absorption Cd in the lower radish parts does not coincides with the
proposed amounts by Pais and Benton [12] and so it is not suitable.
Note that if the experimenter decides to solve this problem by classical p-value method,

first he/she must formulate the problem by one of the following hypotheses:
Test 1: H0 : μ ≥ 0.2 against H1 : μ < 0.2 and
Test 2: H0 : μ ≥ 3 against H1 : μ < 3,
while the results of tests 1 and 2 are in conflict with each other, for more details, see

Tables 3–5 of [13]. It must be noted that the presented contradiction in the result of tests
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1 and 2 comes from the difference between the null hypotheses in the two; in other words,
it comes from very vague proposed information by Pais and Benton [12].

Conclusions
In this paper, a new p-value-based approach was presented for testing statistical hypothe-
ses when the hypotheses are fuzzy rather than crisp. In contrast with the commonly
p-value-based approach for testing fuzzy hypotheses, the decision rule in this approach is
based on two p-values: (1) the p-value of testing fuzzy null hypothesis against fuzzy alter-
native hypothesis and (2) the p-value of testing fuzzy alternative hypothesis against fuzzy
null hypothesis. On the basis of this idea, therefore, the introduced method has several
advantages over the common methods. The main advantage is that the proposed method
is based on both the null and alternative hypotheses. Several numerical examples and also
an agricultural example were provided to illustrate the performance of the method. The
study of testing fuzzy hypotheses in the framework of uncertainty theory is a potential
topic for future work. Also, the study of testing fuzzy hypotheses using the introduced p-
value and based on the paradigm of evidential statistics [16] is another potential topic for
more research.
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