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Abstract
Multi-asset options are created to accelerate investment among countries with the
development of globalization and financial market integration. Considering the human
uncertainty and the influence of sudden events such as wars and economic crisis, this
paper proposes an uncertain model of multi-asset price with uncertain jumps. Option
pricing formulas for the European-style dual-strike option, product option, and
quotient option are derived.
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Introduction
Wiener process was used as the stock price process as early as 1900 by Bachelier. Since
Wiener process allows negative value which is violating the reality, geometric Brownian
motion with positive drift was proposed to describe the stock price by Samuelson [17]. In
1973, Black and Scholes [1] andMerton [16] developed the famous analytic option pricing
formulas based on assuming the underlying stock price followed geometric Brownian
motion. Since then, geometric Brownian motion has become the basic component part
for option pricing and many studies have derived various option pricing formulas with
different assumptions about the market.
When these option pricing models are dealt with, indeterminacy must be taken into

account.We need amass of data when constructingmodels based on probability or statis-
tics. However, due to lack of observed data and the complexity of environment, when
making decisions, people have to consult with domain experts. In this case, information
and knowledge cannot be described well by random variables since human beings usu-
ally overweigh unlikely events. In order to model this type of human uncertainties, Liu [9]
suggested to deal with it with uncertainty theory. Based on normality, duality, subadditiv-
ity, and product axioms, uncertainty theory was well developed in both theory aspect and
practice aspect, see Liu [5–7].
Uncertain process was first introduced by Liu [14] to model the uncertain dynamic

systems. Then, Liu [15] designed a canonical Liu process as the basic building block for
uncertain calculus [15] and uncertain differential equation [14]. By assuming stock price
followed a geometric canonical Liu process, Liu [14] derived the European option pricing
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formulas. Based on Liu’s framework, American option pricing formulas for uncertain
stock market were derived by Chen [2].
However, more reasonable stock price model should include jumps. Liu [14] intro-

duced an uncertain renewal process which has uncertain event occurrence times. Yao [18]
defined an uncertain integral with respect to uncertain renewal process and proposed
a concept of uncertain differential equation with jumps. After that, Yu [19] proposed
an uncertain stock model with positive constant jumps. Ji and Zhou [4] developed an
uncertain stock model with positive and negative jumps, but the jump sizes were still
constant.
In this paper, we study the uncertain jump process which consists of two parts. The

continuous part of this uncertain jump process refers to an integral with respect to canon-
ical Liu process, and the discontinuous part finitely jumps in each finite time interval.
We will present the definition of integral and differential with respect to uncertain jump
process. And then, we propose an uncertain model of asset price which contains multi-
assets and uncertain jumps. The remainder of this paper is organized as follows. The
next two sections introduce some results of uncertain variable and uncertain differential
equation. In the “Uncertain Jump Process” section, uncertain jump process and uncertain
integral with respect to uncertain jump process are proposed. In the “Multi-asset Option
Pricing Formulas” section, pricing formulas for three different exotic options with payoffs
affected by at least two underlying asset prices are derived. Finally, a conclusion is drawn
in the “Conclusions” section.

Uncertain Variable
Uncertainty theory is an axiomatic mathematical system founded by Liu [5] in 2007 and
attracts many researchers to conduct studies on uncertain statistics [7], uncertain pro-
gramming [6], uncertain risk analysis [10], uncertain finance [11], uncertain set [12],
uncertain logic [13], and other application fields. To start with, some useful concepts
about uncertain variables are introduced.
Let (�,L,M) be an uncertainty space where � is a nonempty set, L is a σ -algebra

defined on �, and M is an uncertain measure which was defined by Liu [5] as a set
function satisfying the following axioms:

Axiom 1. (Normality axiom)M{�} = 1 for the �.

Axiom 2. (Duality axiom)M{�} + M{�c} = 1 for any � ∈ L.

Axiom 3. (Subadditivity axiom) For every countable sequence of {�i} ⊂ L, we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

Axiom 4. (Product axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · · The
product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

M{�k},

where �k ∈ Lk for k = 1, 2, · · · , respectively.
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Following the concept of uncertainty space, uncertain variable ξ is defined as a
measurable function from an uncertainty space to the set of real numbers. For describ-
ing an uncertain variable ξ , uncertainty distribution �(x) = M{ξ ≤ x} (x ∈
�,� is the set of real numbers) is proposed, and if its inverse function �−1(α) exists and
is unique for each α ∈ (0, 1), �(x) is said to be regular.
Note that product axiom is the main difference between uncertainty theory and prob-

ability theory which implies that uncertain variable and random variable obey different
operational laws.

Definition 1. (Liu [15]) The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent
if

M

{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi} (1)

for any Borel sets B1,B2, · · · ,Bn of real numbers.

Theorem 1. (Liu [7], operational law) Let ξ1, ξ2, · · · , ξn be independent uncertain
variables with continuous uncertainty distributions �1,�2, · · · ,�n, respectively. If the
function f (x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, · · · , xm, and strictly
decreasing with respect to xm+1, xm+2, · · · , xn, then,

ξ = f (ξ1, ξ2, · · · , ξn) (2)

has an uncertainty distribution

�(x) = sup
f (x1,x2,··· ,xn)=x

(
min
1≤i≤m

�i(xi) ∧ min
m+1≤i≤n

(1 − �i(xi))
)
. (3)

Definition 2. (Liu [5]) Let ξ be an uncertain variable. Then, the expected value of ξ is
defined by

E[ξ]=
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx. (4)

provided that at least one of the two integrals is finite.

For exploring more details and recent developments of uncertainty theory, readers can
consult the book by Liu [8].

Uncertain Differential Equation
In this section, we introduce the concepts of uncertain integral and uncertain differential
equation driven by canonical Liu process.

Definition 3. (Liu [15]) An uncertain process Ct(t ∈ T, T is a time set) is said to be a
canonical Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t − Cs is a normal uncertain variable with expected value 0
and variance t2, whose uncertainty distribution is
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�(x) =
(
1 + exp

(
− πx√

3t

))−1
, x ∈ �. (5)

Definition 4. (Liu [15]) Let Xt be an uncertain process and let Ct be a canonical Liu
process. For any partition of closed interval [a, b] with a = t1 < t2 < · · · < tk+1 = b, the
mesh is written as


 = max
1≤i≤k

|ti+1 − ti|. (6)

Then, Liu integral of Xt with respect to Ct is defined as

∫ b

a
XtdCt = lim


→0

k∑
i+1

Xti · (Cti+1 − Cti
)

(7)

provided that the limit exists almost surely and is finite. In this case, the uncertain process
Xt is said to be integrable.

Definition 5. (Liu [14]) Suppose Ct is a canonical Liu process, and f and g are some
given functions. Then,

dZt = f (t,Zt)dt + g(t,Zt)dCt (8)

is called an uncertain differential equation. A solution is an uncertain process Zt that
satisfies (8) identically in t.

Theorem 2. (Chen and Ralescu [3]) Suppose Ct is a canonical Liu process, and μt and
σt are two uncertain processes. Let Zt be an uncertain process that satisfies the following
uncertain differential equation

dZt = μtdt + σtdCt . (9)

Assume G(t, x) is a continuously differentiable function. Then, the uncertain process
G(t,Zt) satisfies

G(t,Zt) = G(0,Z0) +
∫ t

0

(
∂G
∂s

(s,Zs) + ∂G
∂x

(s,Zs) · μs

)
ds +

∫ t

0

∂G
∂x

(s,Zs) · σsdCs.

(10)

In differential form:

dG(t,Zt) =
(

∂G
∂t

(t,Zt) + ∂G
∂x

(t,Zt) · μt

)
dt + ∂G

∂x
(t,Zt) · σtdCt . (11)

There is a two-dimensional version of Theorem 2 as follows.

Theorem 3. (Chen and Ralescu [3]) Suppose C(i)
t (i = 1, 2) are canonical Liu processes,

and μ
(i)
t and σ

(i)
t (i = 1, 2) are uncertain process. Let Z(i)

t (i = 1, 2) be Liu processes that
satisfy the following uncertain differential equations

dZ(i)
t = μ

(i)
t

(
t,Z(i)

t

)
dt + σ

(i)
t

(
t,Z(i)

t

)
dC(i)

t , i = 1, 2. (12)
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G(t, x1, x2) is a continuously differentiable function, then the uncertain process
G
(
t,Z(1)

t ,Z(2)
t

)
satisfies

G
(
t,Z(1)

t ,Z(2)
t

)
= G

(
0,Z(1)

0 ,Z(2)
0

)
+
∫ t

0

(
∂G
∂s

+ ∂G
∂x1

· μ(1)
s + ∂G

∂x2
· μ(2)

s

)
ds

+
∫ t

0
+ ∂G

∂x1
· σ (1)

s dC(1)
s +

∫ t

0

∂G
∂x2

· σ (2)
s dC(2)

s . (13)

In differential form:

dG
(
t,Z(1)

t ,Z(2)
t

)
=

(
∂G
∂t

+ ∂G
∂x1

· μ
(1)
t + ∂G

∂x2
· μ

(2)
t

)
dt

+ ∂G
∂x1

· σ
(1)
t dC(1)

t + ∂G
∂x2

· σ
(2)
t dC(2)

t . (14)

Uncertain Jump Process
In this section, we consider the jump process in Ha et al. (Ha, MH, Gao, ZC, Wang,
XS: Managing water supply risk through an option contract in uncertain environment,
submitted) as follows

Zt = Z0 +
∫ t

0
μsds +

∫ t

0
σsdCt + Jt , (15)

where Ct is a canonical Liu process, and μt and σt are two integrable uncertain processes.
Jt is a right-continuous pure jump uncertain process which has only finite jumps on each
finite interval and is constant between jumps.

Definition 6. A process Zt described above is called a jump process. Zc
t = Z0 + ∫ t

0μsds+∫ t
0σsdCt is called the continuous part of this process.

Definition 7. Let Zt be an uncertain jump process defined by (15), Xt be an uncertain
process. Then, the uncertain integral of Xt with respect to Zt is defined to be

∫ t

0
XsdZs =

∫ t

0
Xsμsds +

∫ t

0
XsσsdCs +

∑
0<s≤t

Xs
Js, (16)

where 
Js is the jump size at time s. In differential notation:

XtdZt = Xtμtdt + XtσtdCt + XtdJt = XtdZc
t + XtdJt . (17)

Theorem 4. Let Z(t) be a jump process and G(t, x) be a continuously differentiable
function. Then,

G(t,Zt) = G(0,Z0) +
∫ t

0

(
∂G
∂s

(s,Zs) + ∂G
∂x

(s,Zs) · μs

)
ds +

∫ t

0

∂G
∂x

(s,Zs) · σtdCt

+
∑
0<s≤t

[G(s,Zs) − G(s,Zs−)] . (18)
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Proof. Let Yt = G(t,Zt) and Ti (i = 1, · · · ,Nt) denote the jump times of Z. Let u, v be
in the same (Ti,Ti+1). In [u, v], Z evolves according to

dZt = μtdt + σtdCt .

By applying Theorem 2, we obtain

Yv − Yu =
∫ v

u

(
∂G
∂s

(s,Zs) + ∂G
∂x

(s,Zs) · μs

)
ds +

∫ v

u

∂G
∂x

(s,Zs) · σsdCs.

Let u ↓ Ti and v ↑ Ti+1. We have

YTi+1 − YTi =
∫ T−

i+1

Ti

(
∂G
∂s

(s,Zs) + ∂G
∂x

(s,Zs) · μs

)
ds +

∫ T−
i+1

Ti

∂G
∂x

(s,Zs) · σsdCs.

If there is a jump at Ti+1, then the resulting change in Y is G
(
t,ZTi+1

) − G
(
t,ZT−

i+1

)
.

Summing over these two contributions, we obtain

G(t,Zt) = G(0,Z0) +
∫ t

0

(
∂G
∂s

(s,Zs) + ∂G
∂x

(s,Zs) · μs

)
ds +

∫ t

0

∂G
∂x

(s,Zs) · σtdCt

+
∑
0<s≤t

[G(s,Zs) − G(s,Zs−)] .

Hence, the theorem is proved.
Following the same method, we give the two-dimensional version of Theorem 4.

Theorem 5. Let Z(1)
t and Z(2)

t be two jump processes and G(t, x1, x2) be a continuously
differentiable function. Then

G
(
t,Z(1)

t ,Z(2)
t

)
= G

(
0,Z(1)

0 ,Z(2)
0

)
+
∫ t

0

(
∂G
∂s

(
s,Z(1)

s ,Z(2)
s

)

+ ∂G
∂x1

(
s,Z(1)

s ,Z(2)
s

)
· μ(1)

s + ∂G
∂x2

(
s,Z(1)

s ,Z(2)
s

)
· μ(2)

s

)
ds

+
∫ t

0

∂G
∂x1

(
s,Z(1)

s ,Z(2)
s

)
· σ

(1)
t dC(1)

t +
∫ t

0

∂G
∂x2

(
s,Z(1)

s ,Z(2)
s

)
· σ

(2)
t dC(2)

t

+
∑
0<s≤t

[
G
(
s,Z(1)

s ,Z(2)
s

)
− G

(
s,Z(1)

s− ,Z(2)
s−
)]

. (19)

Multi-asset Option Pricing Formulas
With the development of globalization and cross-market integration, multi-asset options
are created. In this section, we suppose that the asset price follows uncertain jump pro-
cesses whose right-continuous pure jump part is determined by an uncertain renewal
reward process. Let r denote the risk-free interest rate, e be the log drift, σ be the log dif-
fusion, and Ct be a canonical Liu process. Rt = ∑Nt

i=1 Yi is an uncertain renewal reward
process whereNt is the number of renewals in (0, t] with independent and identically dis-
tributed (i.i.d) uncertain interarrival times X1,X2, · · · and Y1,Y2, · · · are i.i.d uncertain
variables. We assume that X1,Y1,X2,Y2, · · · are also independent. Then, the underlying
uncertain model of asset price is given by

dZt = eZtdt + σZtdCt + Zt−dRt . (20)
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Let Yi > −1, i = 1, 2, · · · . This assumption guarantees that the asset price can jump
down but it cannot jump from positive to negative or to zero. The solution to (20) is

Zt = Z0exp{et + σCt}
Nt∏
i=1

(1 + Yi). (21)

To check if (21) satisfies the uncertain differential Eq. (20), we define the continuous
part

Zc
t = Z0exp{et + σCt} (22)

and the pure jump part

Jt =
Nt∏
i=1

(1 + Yi). (23)

Then, Zt = Zc
t Jt . By using Theorem 2, we have

dZc
t = eZc

tdt + σZc
tdCt . (24)

And the jump size of Jt at time t is


Jt = Jt − Jt− = Jt−(1 + Yi) − Jt = Jt−
Rt . (25)

By using Theorem 5 and the above equations, we obtain

Zt = Zc
t Jt

= Zc
0J0 +

∫ t

0
eZc

s Jsds +
∫ t

0
σZc

s JsdCs +
∑
0<s≤t

[
Zc
s Js − Zc

s−Js−
]

= Zc
0J0 +

∫ t

0
eZc

s Jsds +
∫ t

0
σZc

s JsdCs +
∑
0<s≤t

Zc
s−Js−
Rs

= Z0 +
∫ t

0
eZsds +

∫ t

0
σZsdCs +

∑
0<s≤t

Zs−
Rs. (26)

This verifies that (21) is the solution to (20).

Theorem 6. Assume Ct has distribution �t(x), Y1,Y2, · · · and X1,X2, · · · have distribu-
tions F(x) and H(x), respectively. Then, Zt has an uncertainty distribution

�t(x) = sup
x1x2=x/Z0

{
�t

(
ln x1 − et

σ

)

∧
(
max
k≥0

(
1 − H

(
t

k + 1

))
∧ F

(
exp

(x2
k

)
− 1

))}
. (27)
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Proof. Because Yi has distribution F(x), ln(1 + Yi) has distribution F (exp(x) − 1).∏Nt
i=1(1 + Yi) has an uncertainty distribution

ϒt(x) = M

{ Nt∏
i=1

(1 + Yi) ≤ x
}

= M

{ Nt∑
i=1

ln(1 + Yi) ≤ ln x
}

= M

⎧⎨
⎩

∞⋃
k=0

(Nt = k) ∩
k∑

i=1
ln(1 + Yi) ≤ x

⎫⎬
⎭

= M

{ ∞⋃
k=0

(Nt = k) ∩
(
ln(1 + Y1) ≤ x

k

)}

= max
k≥0

M
{
(Nt ≤ k) ∩

(
ln(1 + Y1) ≤ x

k

)}
= max

k≥0
M {(Nt ≤ k)} ∧ M

{(
ln(1 + Y1) ≤ x

k

)}

= max
k≥0

(
1 − H

(
t

k + 1

))
∧ F

(
exp

(x
k

)
− 1

)
. (28)

On the other hand, exp{et + σCt} has uncertainty distribution �
(
ln x−et

σ

)
. By the

operational law of uncertain variables, Zt has an uncertainty distribution

�t(x) = M{Zt ≤ x}

= M

{
Z0exp{et + σCt}

Nt∏
i=1

(1 + Yi) ≤ x
}

= sup
x1x2=x/Z0

M

{
(exp{et + σCt} ≤ x1) ∩

( Nt∏
i=1

(1 + Yi) ≤ x2

)}

= sup
x1x2=x/Z0

M {(exp{et + σCt} ≤ x1)} ∧ M

{( Nt∏
i=1

(1 + Yi) ≤ x2

)}

= sup
x1x2=x/Z0

{
�t

(
ln x1 − et

σ

)
∧
(
max
k≥0

(
1 − H

(
t

k + 1

))

∧F
(
exp

(x2
k

)
− 1

))}
.

The theorem is proved.

Dual-Strike Options

A dual-strike option is an option which has two strike prices written on two underlying
financial assets. In an uncertain environment, suppose the two assets Z(1)

t and Z(2)
t both

follow the uncertain jump process given by (20) and are independent. Then, the payoff of
a European dual-strike option is max

{
ω1

(
Z(1)
1 − K1

)
,ω2

(
Z(2)
1 − K2

)
, 0
}
where K1 and

K2 are the strike prices, ω1 and ω2 are 1 for a call option and −1 for a put option. By
discounting the expected payoff at expiration date T , the price of the dual-strike option is

fds = exp(−rT)E
[
max

{
ω1

(
Z(1)
t − K1

)
,ω2

(
Z(2)
t − K2

)
, 0
}]

. (29)

In the following, we derive the pricing formula for dual-strike option with ω1 = ω2 = 1.
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Theorem 7. The price of a European dual-strike option is

fds =
∫ +∞

0

(
1 − �

(1)
T (x + K1)

)
∨
(
1 − �

(2)
T (x + K2)

)
dx (30)

where

�
(i)
T (x) = sup

x1x2=x/Z0

{
�T

(
ln x1 − eit

σi

)
∧
(
max
k≥0

(
1 − H(i)

(
t

k + 1

))

∧F(i)
(
exp

(x2
k

)
− 1

))}
, i = 1, 2.

Proof. By the definition of expected value

E
[
max

{(
Z(1)
T − K1

)
,
(
Z(2)
T − K2

)
, 0
}]

=
∫ +∞

0
M

{(
Z(1)
T − K1 ≥ x

)
∪
(
Z(2)
T − K2 ≥ x

)}
dx

=
∫ +∞

0
M

{
Z(1)
T ≥ x + K1

}
∨ M

{
Z(2)
T ≥ x + K2

}
dx

=
∫ +∞

0

(
1 − M

{
Z(1)
T < x + K1

})
∨
(
1 − M

{
Z(2)
T < x + K2

})
dx

=
∫ +∞

0

(
1 − �

(1)
T (x + K1)

)
∨
(
1 − �

(2)
T (x + K2)

)
dx. (31)

Using (27), we know that

�
(i)
T (x) = sup

x1x2=x/Z0

{
�T

(
ln x1 − eit

σi

)
∧
(
max
k≥0

(
1 − H(i)

(
t

k + 1

))

∧ F(i)
(
exp

(x2
k

)
− 1

))}
, i = 1, 2.

Hence, the deal-strike option pricing formula is verified.

Product Options

A product option is an option which is written on the product of two financial assets. Let
Z(1)
t and Z(2)

t be uncertain jump processes which satisfy (20) and (1). Then, the price of a
European-style product option with strike price K and expiration date T is

fp = exp(−rT)E
[
max

{
ωZ(1)

T Z(2)
T − ωK , 0

}]
, (32)

where ω is 1 for a call option and −1 for a put option. In the following, we consider the
product call option.

Theorem 8. The price of a European product option is

fp =
∫ +∞

0

(
1 − �p(x + K)

)
dx, (33)

where

�p(x) = sup
x1x2=x

�
(1)
T (x1) ∧ �

(2)
T (x2), (34)

�
(i)
T (x) = sup

x1x2=x/Z0

{
�T

(
ln x1 − eit

σi

)
∧
(
max
k≥0

(
1 − H(i)

(
t

k + 1

))

∧F(i)
(
exp

(x2
k

)
− 1

))}
, i = 1, 2.
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Proof. By the operational law, we can obtain the distribution of Z(1)
T Z(2)

T

�p(x) = sup
x1x2=x

�
(1)
T (x1) ∧ �

(2)
T (x2),

where �
(1)
T and �

(2)
T are distribution functions of Z(1)

T and Z(2)
T . Then, by the definition of

expected value,

E
[
max

{
Z(1)
T Z(2)

T − K , 0
}]

=
∫ +∞

0
M

{
max

{
Z(1)
T Z(2)

T − K , 0
}

≥ x
}
dx

=
∫ +∞

0
M

{
Z(1)
T Z(2)

T ≥ x + K
}
dx

=
∫ +∞

0

(
1 − M

{
Z(1)
T Z(2)

T < x + K
})

dx

=
∫ +∞

0

(
1 − �p(x + K)

)
dx.

Thus, the product option pricing formula is verified.

Quotient Options

A quotient option is an option which is written on the ratio of two financial assets. Let
Z(1)
t and Z(2)

t be uncertain jump processes which satisfy (20) and (1). Then, the price of a
European-style quotient option with strike price K and expiration date T is

fq = exp(−rT)E
[
max

{
ω
Z(1)
T

Z(2)
T

− ωK , 0
}]

, (35)

where ω is 1 for a call option and −1 for a put option. In the following, we derive the
pricing formula for quotient call option.

Theorem 9. The price of a European quotient option is

fq =
∫ +∞

0

(
1 − �q(x + K)

)
dx, (36)

where

�q(x) = sup
y>0

�
(1)
T (xy) ∧

(
1 − �

(2)
T (y)

)
, (37)

�
(i)
T (x) = sup

x1x2=x/Z0

{
�T

(
ln x1 − eit

σi

)
∧
(
max
k≥0

(
1 − H(i)

(
t

k + 1

))

∧F(i)
(
exp

(x2
k

)
− 1

))}
, i = 1, 2.

Proof. By the operational law, we can obtain the distribution of Z(1)
T /Z(2)

T ,

�q(x) = sup
y>0

�
(1)
T (xy) ∧

(
1 − �

(2)
T (y)

)
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where �
(1)
T and �

(2)
T are distribution functions of Z(1)

T and Z(2)
T . Then, by the definition of

expected value,

E
[
max

{
Z(1)
T

Z(2)
T

− K , 0
}]

=
∫ +∞

0
M

{
max

{
Z(1)
T

Z(2)
T

− K , 0
}

≥ x
}
dx

=
∫ +∞

0
M

{
Z(1)
T

Z(2)
T

≥ x + K
}
dx

=
∫ +∞

0

(
1 − M

{
Z(1)
T

Z(2)
T

< x + K
})

dx

=
∫ +∞

0

(
1 − �q(x + K)

)
dx.

The quotient option pricing formula is verified.

Conclusions
More realistic stock model should consider jumps in the price process. This paper pro-
posed an uncertain jump process and an uncertain model of multi-asset price with jumps.
Option pricing formulas for European-style dual-strike option, product option, and quo-
tient option were derived. In the future, various other multi-asset options in uncertain
environment can be studied.
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