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Abstract
Based on the concept of uncertain process, uncertain linear systems with multiple
input delays are considered in this paper. An optimal problem for such systems is
introduced and solved by using the equation of optimality and maximum principle.
Finally, an example is given to show how to solve an uncertain optimal control model
with time-delay.

Keywords: Optimal control, Uncertain system, Input delay

Introduction
The delay system was first proposed in the eighteenth century. Until the twentieth
century, with the maximum principle and dynamic programming theory, delay system
attracted significant interest frommany researchers. In recent decades, the study of time-
delay systems had a great development not only in theory but also in applications. Optimal
control problems of linear time-delay systems were discussed in Basin [1] and Eller et
al. [2]. Stochastic control problems with delay were studied by Bauer and Rieder [3] and
Larssen and Risebro [4]. A set of infinite-dimensional differential equations could model
the dynamic systems which have multiple input delays. Hamiltonian function can be used
to solve the control problems with delay [5]. Moreover, the phenomenon of systems with
multiple input delays are ubiquitous. It widely exists in communications. With the rapid
development of information and technology, multi-input time-delay systems become a
research hot spot.
In the real world, we will encounter a lot of indeterminacy; these phenomena cannot

be explained by random events, such as high speed, about 50 kg. This fact prompted
researchers to create a new mathematical tool. Liu [6] found an uncertainty theory
through introducing an uncertain measure based on normality, self-duality, countable
subadditivity, and product measure axioms. Based on an uncertain variable, uncertain
process, and canonical process, Liu [7] presented uncertain differential equation. It aims
to describe the evolution of dynamic uncertain systems and has widely applied in finance
so far. Liu [8] assumed the stock price follows a time-homogenous uncertain differential
equation and proposed the first uncertain stock model. Ji and Zhou [9] proved the exis-
tence and uniqueness of a multi-dimensional uncertain differential equation. Based on
the uncertain differential equation, in 2010, Zhu [10] presented an equation of optimality
for an uncertain optimal control problem by using dynamic programming. This equation
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plays a significant role in solving uncertain optimal control problems. It has been applied
to uncertain bang-bang control problems by Xu and Zhu [11] and uncertain time-delay
systems control problem by Chen and Zhu [12].
In this paper, we will introduce an uncertain linear system with multiple input delays

and propose an optimal control problem subject to this system. The organization of the
paper is as follows. In the “Preliminary” section, some basic concepts are reviewed. In
the “Problem Statement” section, an uncertain linear system with multiple input delays
is formulated, and the optimal control is derived in the problem by using the equation
of optimality. In the “Example” section, we will give a numerical example of uncertain
linear systems with multiple input delays to illustrate the result obtained in the previous
section.

Preliminary
Some concepts about uncertain measure, uncertain variable, and uncertain process can
be found in Liu [6]. In convenience, we give some useful concepts. Let � be a nonempty
set and L be a σ -algebra over �. The set function M defined on the σ -algebra L is called
an uncertain measure if it satisfies the three axioms: M{�} = 1; M{�} + M{�c} = 1
for any event � ∈ L; and M

{⋃∞
i=1 �i

} ≤ ∑∞
i=1M{�i} for every countable sequence of

events {�i} ⊂ L. Then, the triplet (�, L,M) is called an uncertainty space. An uncertain
variable is a measurable function from an uncertainty space (�, L,M) to the set R of real
numbers, and an uncertain vector is a measurable function from an uncertainty space to
Rn. The uncertainty distribution �: R →[ 0, 1] of an uncertain variable ξ is defined by
�(x) = M{ξ ≤ x} for any real number x. An uncertain process is a measurable function
from V × (�, L,M) to the set of real numbers where V is an index set.

Definition 1 (Liu [8]) The uncertain variables ξ1, ξ2, · · · ξm are said to be independent if
M{⋂m

i=1(ξi ∈ Bi)} = min1≤i≤mM{ξi ∈ Bi} for any Borel sets B1,B2, · · ·Bm of real numbers.

Definition 2 (Liu [6]) The expected value of an uncertain variable ξ is defined by

E[ ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr,

provided that at least one of the two integrals is finite.

For any numbers a and b, E[ aξ + bη]= aE[ ξ ]+bE[ η] if ξ and η are independent
uncertain variables.

Definition 3 (Liu [8]) An uncertain process Ct is said to be a canonical process if (i)
C0 = 0 and almost all sample paths are Lipschitz continuous; (ii) Ct has stationary and
independent increments; (iii) every increment Cs+t − Cs is a normal uncertain variable
with expected value 0 and variance t2, denoted by Cs+t −Cs ∼ N(0, t), whose distribution
is

�(x) =
(
1 + exp

(−πx√
3t

))−1
, x ∈ R.

Definition 4 (Liu [8]) Let Xt be an uncertain process and Ct be a canonical process. For
any partition of closed interval [ a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh
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is written as 	 = max1≤i≤k | ti+1 − ti |. Then, uncertain integral of Xt with respect
to Ct is

∫ b

a
XtdCt = lim	→0

k∑

i=1
Xti · (

Cti+1 − Cti
)
,

provided that the limit exists almost surely and is finite.

Definition 5 (Liu [8]) Suppose Ct is a canonical process, and f and g are two functions.
Then,

dXt = f (t,Xt)dt + g(t,Xt)dCt , (1)

is called an uncertain differential equation. A solution is an uncertain process Xt that
satisfies (1) identically in t.

Remark The uncertain differential Eq. (1) is equivalent to the uncertain integral
equation

Xs = X0 +
∫ s

0
f (t,Xt)dt +

∫ s

0
g(t,Xt)dCt .

Problem Statement
Consider an uncertain linear system with multiple time-delays in the control input

dXs =
(

a0(s) + a1(s)Xs +
p∑

i=1
Bi(s)u(s − hi)

)

ds + b(s)dCs, (2)

with the initial condition X(t0) = X0, where t0 is the initial time. Here, Xs is the
state vector of n dimension, us is the control vector of m dimension; hi > 0(i =
1, · · · , p) are positive time-delays; h = max{h1, · · · , hp} is the maximum delay shift; and
Cs = (Cs1 ,Cs2 , · · · ,Csp), where Cs1 ,Cs2 , · · · ,Csp are independent canonical process. And
a0(s), a1(s), b(s), and Bi(s)(i = 1, 2, · · · , p) are piecewise continuous matrix functions of
appropriate dimensions.
The quadratic cost function to be maximized is defined as follows:

J(t,Xt) = sup
u∈U

E
(
1
2

∫ T

t
(uτ

s R(s)us + Xτ
s L(s)Xs)ds + Xτ

T
TXT

)

, (3)

where R(s) is positive definite, 
T , L(s) are nonnegative definite symmetric matrices, and
T > 0 is a time moment.
The optimal control problem is to find the control u∗(t)(t ∈[ t0,T] ) that maximizes the

criterion J(t, x) along with the trajectory x∗(t)(t ∈[ t0,T] ), generated upon substituting
u∗(t) into the state Eq. (2).

Theorem 1 Let Ct be a canonical process, u1t be an n × n integrable uncertain pro-
cess, and u2t and v2t be two n-dimensional integrable uncertain processes. Then, the
n-dimensional linear uncertain differential equation

dXt = (u1tXt + u2t) dt + v2tdCt , (4)
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has a solution

Xt = Ut

(
X0 +

∫ t

0
U−1
s u2sds +

∫ t

0
U−1
s v2sdCs

)
, (5)

where

Ut = exp
(∫ t

0
u1sds

)
.

Proof At first, we define two uncertain processes Ut and Vt via uncertain differential
equations,

dUt = u1tUtdt, dVt = U−1
t u2tdt + U−1

t v2tdCt .

It follows from the integration by parts that

d(UtVt) = UtdVt + dUt · Vt = (u1tUtVt + u2t)dt + (v2t)dCt .

That is, the uncertain process Xt = UtVt is a solution of the uncertain differential
Eq. (4). Write Ut as

Ut =
∞∑

n=0

1
n!

(∫ t

0
u1sds

)n
· U0.

Taking differentiation operations on both sides, we have

dUt =
∞∑

n=1

u1t
(n − 1)!

(∫ t

0
u1sds

)n−1
dt·U0 = u1t

∞∑

n=0

1
n!

(∫ t

0
u1sds

)n
·U0dt = u1tUtdt.

Thus, the solution of uncertain differential equation dUt = u1tUtdt is

Ut =
∞∑

n=0

1
n!

(∫ t

0
u1sds

)n
· U0 = exp

(∫ t

0
u1sds

)
· U0.

In addition, we have

Vt = V0 +
∫ t

0
U−1
s u2sds +

∫ t

0
U−1
s v2sdCs.

Taking U0 = I and V0 = X0, we get the solution (5). The theorem is proved.

Theorem 2 The solution to the optimal control problem for the uncertain linear sys-
tem with input delay (2) and the quadratic criterion (3) are given as follows. The optimal
control law for t ≥ t0 is given by

u∗(t) = −R−1(t)
p∑

i=1
Bi(t)Mi(t)(P(t)x + Q(t)),

where P(t) satisfies
⎧
⎨

⎩
Ṗ(t) = − 1

2

p∑

i=1
Mτ

i (t)B
τ
i (t)Pτ (t)R−1(t)P(t)

p∑

i=1
Bi(t)Mi(t) + L(t) + a1(t)P(t)

P(T) = 2
 ,
(6)

and Q(t) is a solution of the following differential equation
⎧
⎨

⎩
Q̇(t) = −

p∑

i=1
Mτ

i (t)B
τ
i (t)P(t)R−1(t)Q(t)

p∑

i=1
Bi(t)Mi(t) + a0(t)P(t) + a1(t)Q(t)

Q(T) = 0,
(7)
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where Mi(t) = exp(− ∫ t
t−hi a1(s)ds). The optimal value for t ≥ t0 is given by

J(t, x) = 1
2
xτP(t)x + Q(t)x + K(t),

where

K(t) =
∫ T

t

{
− 1

2

p∑

i=1
Mτ

i (s)Bτ
i (s)Q(s)τR−1(s)Q(s)

p∑

i=1
Bi(s)Mi(s) + a0(t)Q(s)

}
ds.

(8)

Proof Using the equation of optimality in Zhu [10] for the optimal control problems (2)
and (3), we get

−Jt(t,Xt) = sup
u∈U

{
1
2
(uτ

t R(t)ut + Xτ
t L(t)Xt) + Jτx a0(t) + Jτx a1(t)Xt + Jτx

p∑

i=1
Bi(t)ut−hi

}

.

(9)

Let

g(ut) = 1
2
(uτ

t R(t)ut + Xτ
t L(t)Xt) + Jτx a0(t) + Jτx a1(t)Xt + Jτx

p∑

i=1
Bi(t)ut−hi .

Setting ∂g(ut)
∂ut = 0 yields

R(t)ut +
p∑

i=1
Mτ

i (t)B
τ
i (t)Jx = 0,

whereMi(t) = ∂ut−hi
∂ut . Hence,

u∗
t = −R−1(t)

p∑

i=1
Mτ

i (t)B
τ
i (t)Jx. (10)

By Eq. (9), we have

−Jt = 1
2

(
u∗τ
t R(t)u∗

t + Xτ
t L(t)Xt

)
+ Jτx

(

a0(t) + a1(t)Xt +
p∑

i=1
Bi(t)u∗

t−hi

)

. (11)

Since J(T ,XT ) = Xτ
T
XT , we guess

J(t, x) = 1
2
xτP(t)x + Q(t)x + K(t).

Then,

Jt = 1
2
xτ Ṗ(t)x + Q̇(t)x + K̇(t), (12)

and

Jx = P(t)x + Q(t). (13)
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Substituting Eqs. (10) and (13) into Eq. (11) yields

−Jt(t,Xt) = xτ

{

−1
2

p∑

i=1
Mτ

i (t)B
τ
i (t)P

τ (t)R−1(t)P(t)
p∑

i=1
Bi(t)Mi(t) + L(t) + a1(t)P(t)

}

x

+
{

−
p∑

i=1
Mτ

i (t)Bτ
i (t)P(t)R−1(t)Q(t)

p∑

i=1
Bi(t)Mi(t) + a0(t)P(t) + a1(t)Q(t)

}

x

− 1
2

p∑

i=1
Mτ

i (t)B
τ
i (t)Q(t)τR−1(t)Q(t)

p∑

i=1
Bi(t)Mi(t) + a0(t)Q(t).

(14)

By Eqs. (12) and (14), we get
⎧
⎪⎪⎨

⎪⎪⎩

Ṗ(t) = − 1
2

p∑

i=1
Mτ

i (t)B
τ
i (t)Pτ (t)R−1(t)P(t)

p∑

i=1
Bi(t)Mi(t) + L(t) + a1(t)P(t)

Q̇(t) = −
p∑

i=1
Mτ

i (t)B
τ
i (t)P(t)R−1(t)Q(t)

p∑

i=1
Bi(t)Mi(t) + a0(t)P(t) + a1(t)Q(t),

(15)

and
K̇(t) = −1

2

p∑

i=1
Mτ

i (t)B
τ
i (t)Q(t)τR−1(t)Q(t)

p∑

i=1
Bi(t)Mi(t) + a0(t)Q(t). (16)

Since J(T , x) = 1
2x

τP(T)x+Q(T)x+ K(T) = xτ
Tx, we have P(T) = 2
T ,Q(T) = 0,
and K(T) = 0. By Eq. (15), we obtain Eqs. (6) and (7). By Eq. (16), Eq. (8) holds. Therefore,

J(t, x) = 1
2
xτP(t)x + Q(t)x + K(t)

is the optimal value of the uncertain linear system with input delay Eq. (2) and the
quadratic criterion Eq. (3), and

u∗
t = −R−1(t)Mτ

i (t)
p∑

i=1
Bτ
i (t)(P(t)x + Q(t)). (17)

Let us find the value of matricesMi(t) for this problem. Substituting the optimal control
law Eq. (17) into the Eq. (2) gives

dXs =
{

−
p∑

i=1
Bi(s)R−1(s − hi)Mτ

i (s − hi)
p∑

i=1
Bτ
i (s − hi)

(
P(s − hi)Xs−hi

+Q(s − hi)
) + a0(s) + a1(s)Xs

}

ds + b(s)dCs.

(18)

The multi-dimensional uncertain differential Eq. (18) is equivalent to the multi-
dimensional uncertain integral equation

Xt = U(r, t)
{

−
∫ t

r
U(t, s)−1

{ p∑

i=1
Bi(s)R(s − hi)−1Mτ

i (s − hi)
p∑

i=1
Bτ
i (s − hi)

(
P(s − hi)X + Q(s − hi)

)
+ a0(s)

}

ds +
∫ t

r
U(t, s)−1b(s)dCs + Xr

}

,

(19)

where t, r ≥ t0, and

U(r, t) = exp
(

−
∫ t

r
a1(s)ds

)
,
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and we know

U(t − hi, t) = exp
(

−
∫ t

t−hi
a1(s)ds

)
.

Since the integral terms in the right-hand side of Eq. (19) do not explicitly depend on ut ,

∂xt/∂ut = U(r, t)∂xr/∂ut .

It can be converted to

∂ut/∂xt = (∂ut/∂xr)U(t, r).

Hence, the equality

Tut = K1U(r, t)K2xr

holds, where T ∈ Rn×m and K1,K2 ∈ Rn×n can be selected the same for any t, r ≥ t0.
Writing the last equality for xt+hi , hi > 0, we have

Tut+hi = K1U(r, t + hi)K2xr .

Thus,
(
∂(Tut)/∂Tut+hi

) = U(r, t)(U(r, t + hi))−1 = U(t + hi, t),

which leads to
(
∂(Tut)/∂ut+hi

) = U(t + hi, t)T .

Now setting T = Bi(t) and using t − hi instead of t yields

Bi(t)
(
∂ut−hi/∂ut

) = Bi(t)Mi(t) = U(t, t − hi)Bi(t) = exp
(

−
∫ t

t−hi
a1(s)ds

)
Bi(t),

(20)

for t ≥ t0 + hi.
So,

Mi(t) = exp
(

−
∫ t

t−hi
a1(s)ds

)
.

The theorem is proved.

Example
We consider the following example of uncertain linear systems with multiple time-delays
in the control input

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

J(0,X0) = supu∈U E
(
1
2
∫ 2
0 (u2s + X2

s )ds + X2
T

)
,

subject to
dXt = (Xt + ut−0.1 + ut)dt + dCt , t ∈[ 0, 2]
ut = 0, t ∈[−0.1, 0]
X0 = 1.

(21)

We have a0(t) = 0, a1(t) = 1,B(t) = 1, b0(t) = 0, b1(t) = 1,R(t) = 1, L(t) = 1,
and 
(T) = 1. So, we getM1 = exp(−0.1) andM2(t) = 1. By Theorem 3.1, the function
Q(t) satisfies

⎧
⎨

⎩

dQ(t)
dt = −

(
1 + exp(−0.1)

)2
P(t)Q(t) + Q(t)

Q(2) = 0.
(22)
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Table 1 Numerical solutions

t 0 0.1 0.2 0.3 0.4 0.5 0.6

x(t) 1.000000 0.996292 1.008533 0.960251 0.968829 0.967966 0.967966

P(t) 1.067544 1.067548 1.067554 1.067565 1.067586 1.067624 1.067692

u ∗ (t) −2.033493 −1.922702 −2.025984 −2.050895 −1.952756 −1.970269 −1.968630

t 0.7 0.8 0.9 1.0 1.1 1.2 1.3

x(t) 0.976390 0.964772 0.977926 0.944681 0.940976 0.944992 0.929304

P(t) 1.067815 1.068038 1.068441 1.069075 1.070317 1.072567 10.7665

u ∗ (t) −1.985991 −1.962773 −1.990284 −1.92376 −1.918448 −1.930682 −1.905861

t 1.4 1.5 1.6 1.7 1.8 1.9 2.0

x(t) 0.906163 0.86307 0.873138 0.856087 0.784042 0.744824 0.678863

P(t) 1.084087 1.097717 1.11969 1.164538 1.252615 1.439701 2.000000

u ∗ (t) −1.871245 −1.804668 −1.862251 −1.899024 −1.870754 −2.042682 −2.586254

Thus,Q(t) = 0 for t ∈[ 0, 2], and then K(t) = 0 for t ∈[ 0, 2]. So, we get that the optimal
control u∗

t is

u∗
t = −

(
1 + exp(−0.1)

)
P(t)x,

and the optimal value is J(0,X0) = 1
2P(0)X2

0 , and P(t) satisfies
{

dP(t)
dt = −(1 + exp(−0.1))2P(t)2 + 2P(t) + 2

P(2) = 2.
(23)

Now, we consider the numerical solution of this model. Let S = t0, t1, · · · t200 be an
average partition of [ 0, 2](i.e., 0 = t0 < t1 < · · · < t200 = 2), and �t = 0.01. Thus,

�Xt = (
Xt + u∗

t−0.1 + u∗
t
)
�t + �Ct .

Since �Ct is a normal uncertain variable with expected value 0 and variance �t2, the
distribution function is �(x) =

(
1 + exp

(
− πx√

3�t

))−1
, x ∈ R. So, we maybe can get a

Fig. 1 Optimal control with time
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Fig. 2 Corresponding state with time

sample point c̃t of �Ct from c̃t = �−1(rand(0, 1)) that c̃t =
√
3�t
−π

ln
(

1
rand(0,1) − 1

)
. Thus,

xt and ut may be given by the following iterative equations:

utj = −(1 + exp(−0.1))P(tj)xtj ,

xtj+1 = xtj + (xt + utj−0.1 + utj)�t +
√
3�t
−π

ln
(

1
rand(0, 1)

− 1
)
,

for j = 0, 1, 2, · · · , 200, and utj−0.1 = 0, where tj ∈[ 0, 0.1]. The numerical solution P(tj) of
(23) is provided by

P(tj−1) = P(tj) − (−(1 + exp(−0.1))2P(tj)2 + 2P(tj) + 2
)
�t,

for j = 200, 199, · · · , 2, 1 with P(t200) = 2.
Therefore, the optimal value of the example is J(0,X0) = 1.067544, and the optimal

controls and corresponding states are obtained in Table 1 and Figs. 1 and 2.

Conclusion
In this paper, an optimal control problem for uncertain linear systems with multiple input
delays was investigated. By using uncertain optimality equation and uncertain differential
equation, then the optimal control of this problem was obtained. Finally, an example was
used to illustrate the result of uncertain optimal control.
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