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Abstract

On the basis of uncertainty theory, plenty of researches have been done on uncertain
resource-constrained project scheduling problems. Instead of minimizing the
makespan, in this paper, we address the maximization of net present value of a
project’s cash flows when activity durations are assumed to be uncertain. In addition to
precedence constraint and resource constraint involved in resource-constrained
project scheduling problem, a deadline constraint is taken into account. Thus, our aim
is to maximize net present value and to satisfy the deadline constraint as well.
Accordingly, we introduce three models and utilize a revised estimation of distribution
algorithm to solve this problem. This work may provide net present value criterion for
financial officers on project scheduling.

Keywords: Project scheduling, Uncertainty theory, Net present value, Estimation of
distribution algorithm

Introduction
Project scheduling is to assign activity starting times based on scheduling objectives [1].
Researches in this area have primarily emphasized on modeling and algorithmic devel-
opments for specific classes of project scheduling problems, such as net present value
(NPV) maximization, quality maximization, and makespan minimization [2]. Most liter-
ature on project scheduling focused on arranging activity starting times in such a way
that the project makespan is minimized. This objective may be unsuitable for capital-
intensive IT and construction projects, where large amounts of money are invested over a
long period of time. In such an environment, the wise coordination of cash flows crucially
affects the profitability of a project. This suggests that in such situations, financial aspects
should be the center of decision makers’ attention. The financial benefit of a project is
measured by its NPV, which is determined by discounting all arising cash flows to the
start time of the project. In other words, NPV can be regarded as the cash equivalent
of undertaking the project. In reality, contractors sign contracts with clients to define
ways of receiving payments linked with progress of related activities. Thus, different con-
tracts lead to different time points of payments and cash flows vary correspondingly. In
this paper, we assume that contractors only receive payments when related activities are
completed. For instance, when a construction company undertakes a project consisting
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of lots of activities funded by its client, it seems unreasonable to make payments hap-
pen either at the beginning of the project or at the end of the project. Therefore, to avoid
being cheated by each other and to keep the project progress on schedule, an agreement
is signed to set payments on the completion time of each activity. This criterion can be
applied to resource-constrained project scheduling problem (RCPSP), discrete time-cost
trade-off problem (TCTP), and other classical subproblems of project scheduling prob-
lems. Scheduling projects to maximize NPV in a deterministic setting has been studied
under a broad range of contractual arrangements and planning constraints [3], but in
practice, there are frequently significant indeterminacies. In this paper, we focus on an
uncertain resource-constrained project scheduling problem with discounted cash flows
(URCPSPDC) additionally considering a due date constraint.
Then, we propose three uncertain models. The chance-constrained model is proposed

to maximize NPV with a certain belief degree, which can be applied to decision makers
who may be risk-averse and desire to realize the objective value with a pretty high belief
degree. Besides, the expected value model aims at maximizing the expected NPV of cash
flow received on the completion time of each activity. The chance maximization model
is based on dependent-chance programming. Moreover, a revised estimation of distribu-
tion algorithm (EDA) is utilized in this paper. EDAs have been developed for years and
successfully applied in RCPSP. For more details about EDA for RCPSP, readers may refer
to [4, 5].
The remainder of this paper is as follows. In Section Literature Review, we summarize

related literature. Section Preliminaries introduces some basic concepts in uncertainty
theory. Section NPV Models describes URCPSPDC in detail and proposes three corre-
sponding NPV models to satisfy the demand of financial officers. To solve these three
models, revised EDAs are designed in Section Revised EDA. Section Numerical Examples
conducts some numerical examples. Finally, conclusions are drawn in Section
Conclusion and Future Work.

Literature Review
Maximizing the NPV of a project was first suggested by Russell [6]. Besides, Buss and
Rosenblatt [7] as well as Sobel et al. [8] extended Russell’s model by including indetermi-
nacies assuming independent and exponentially distributed activity durations. Neuman
and Zimmermann [9] presented different heuristic and exact procedures for solving
RCPSP with NPV criterion. Leyman and Vanhoucke [10] introduced a new schedule con-
struction technique to improve the project NPV. Researches on RCPSP in early phase
were done with the assumptions of complete information and deterministic environment.
For a given project, a baseline schedule can be obtained by solving deterministic RCPSP.
The deterministic RCPSP has been extensively studied and numerous exact and heuristic
methods have been proposed to solve it [11, 12]. However, the baseline schedule is vulner-
able when being executed in indeterminate environment. In reality, there are considerable
indeterminacies (accident, resource breakdown, unreliable deliveries, etc.), which may
result in an infeasible baseline schedule. Hence, it is necessary to consider indeterminate
factors when solving a project scheduling problem.
Recently, Fathallahi and Najafi [13] studied fuzzy RCPSP with NPV criterion. In the

fuzzy set theory, the decision can be estimated by experts based on their experiences and
professional judgments. However, fuzzy set theory may lead to counterintuitive results
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[14]. Besides, the stochastic resource-constrained project scheduling problem (SRCPSP),
the main context of stochastic project scheduling, is characterized by random activity
durations and scheduling policies. Activity durations are assumed to be random vari-
ables and a scheduling policy is used to decide which activities to be started at decision
points (the starting time of project and the finishing times of activities) [15]. Generally,
the SRCPSP aims at minimizing the expected makespan by making a limited set of deci-
sions during project execution. Tsai and Gemmill [16] proposed tabu search for both
deterministic and stochastic RCPSP. For more details about SRCPSP, readers may refer
to [12, 17, 18].
In SRCPSP, activity durations are represented by random variables. The assumption is

reasonable when there are enough historical data to estimate variables’ probability dis-
tributions precisely. However, in a project, it is difficult to get enough historical data
for activities seldom or never executed. This situation is common in consideration of
the uniqueness of a project. Therefore, new ways instead of probability distribution are
needed to describe such variables. In this case, uncertainty theory, initiated by Liu [14],
was founded to rationally deal with belief degrees, which inspired a new method of
describing indeterministic phenomena. For now, the new theory has been successfully
applied to varieties of fields, such as, option pricing problem [19–21], stock problem [22],
production control problem [23], shortest path problem [24], etc. Ke et al. [25] researched
project scheduling problem in the environment with uncertainty and randomness. For
more details about uncertain project scheduling problem, readers may refer to [26, 27].
In this paper, we build three NPV models for URCPSPDC additionally considering a

due date constraint.

Preliminaries
Uncertainty theory, as a branch of axiomatic mathematics, has been well developed in
many aspects in reality. In this section, some concepts and theorems of uncertainty theory
are introduced to lay the foundation for URCPSPDC modeling.
Let � be a nonempty set, L a σ -algebra over �, and each element � in L is named as an

event. Uncertain measureM, initiated by Liu [14] and perfected by Liu [28], is a function
from L to [10, 1]. It is defined over the following four axioms.

Axiom 1 (Normality Axiom)M{�} = 1.

Axiom 2 (Duality Axiom)M{�} + M{�c} = 1 for any event �.

Axiom 3 (Subadditivity Axiom) For every countable sequence of events {�i}, i =
1, 2, · · · , we have:

M
{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

Axiom 4 (Product Measure Axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k =
1, 2, · · · The product uncertain measureM is an uncertain measure satisfying

M
{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
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Definition 1 Liu [14] An uncertain variable is a measurable function ξ from an uncer-
tainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ �
∣∣ ξ(γ ) ∈ B}

is an event.

The uncertainty distribution is indispensable to establish practical uncertain optimiza-
tion models.

Definition 2 Liu [14] The uncertainty distribution � of an uncertain variable ξ is
defined by

�(x) = M{ξ ≤ x}
for any real number x.

An uncertainty distribution � is confirmed to be regular if its inverse function �−1(α)

exists uniquely for each α ∈[ 0, 1].

Definition 3 Liu [14] Let ξ be an uncertain variable. The expected value of ξ is defined
by

E[ ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the above two integrals is finite.

Lemma 1 Liu [28] Let ξ be an uncertain variable with uncertainty distribution �. If the
expected value exists, then

E[ ξ ]=
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx.

Lemma 2 Liu [28] Let ξ be an uncertain variable with regular uncertainty distribution
�. If the expected value exists, then

E[ ξ ]=
∫ 1

0
�−1(α)dα.

Lemma 3 Liu [28] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regu-
lar uncertainty distributions �1,�2, · · · ,�n, respectively. A function f (x1, x2, · · · , xn) is
strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn. Then ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse
uncertainty distribution

	−1(α) = f
(
�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α)

)
.

NPVModels
Problem Description

A project containing n activities can be described by an activity-on-the-node network
G(N ,A). The set of nodesN = {1, 2, · · · , n+ 2} represents activities, and the set of arcs A
denotes finish-start, zero-lag precedence relations between activities. Activities 1 and n+
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2 do not consume time and resources, and only signify project starting point and finishing
point, respectively. Specially, durations of all activities in URCPSPDC are represented by
an uncertain vector d = {0, d̃2, · · · , d̃n+1, 0} and the start times of all activities are denoted
as a vector s = {0, s2, · · · , sn+1, sn+2}. Therefore, the completion time of ith activity fi can
be calculated as si + d̃i. Moreover, there are totally K types of renewable resources and
each of them has a constant availability ak , k = 1, 2, · · · ,K . Besides, when activity i is
completed, a cash flow CF

i will be received accordingly and we discount it to the project
staring time with a discount rate r ∈ (0, 1]. In this paper, we additionally take a due date δ

into consideration.
The URCPSPDC aims at maximizing the NPV of a whole project with uncertain activity

durations meanwhile satisfying the deadline constraint. Solving URCPSPDC is a dynamic
decision process. The decision maker decides to start which feasible activity at each deci-
sion point, including project starting time and activity finishing times. In the decision
process, the decision maker can only utilize partial information which appears before his
decision point.
With a given activity list π , an executing order of activities, the completion time of

activity i can be calculated as follows:

fi(π ,d) = si(π ,d) + d̃i.

Without resource constraint, the starting time of activity i can be computed considering
precedence relationship as follows:

si(π ,d) = max
(j,i)∈A

fj(π ,d).

However, the formula cannot always hold with resource constraint. Some activity is fea-
sible in precedence relationship logic if all of its predecessors have been finished. In such
a case, it can be sometimes infeasible for lack of available resources. In other words, an
activity has predecessors in precedence relationship logic as well as in resource logic. To
produce feasible schedule effectively, resource flow network was presented by Artigues
and Roubellat [29]. If there is a resource flow, extra relation is added into the original
network between activities without precedence relationship. Thus an extended prece-
dence relationship set A∗ is developed. Combined with the side constraint proposed by
Ma et al. [30], the starting time of activity i can be calculated by

si(π ,d) = max
πm<πi

sm(π ,d) ∨ max
(j,i)∈A∗ fj(π ,d)

where πi is the position of activity i in activity list π .
Therefore, si(π ,d) is strictly increasing with respect to d, then si(π ,d) + d̃i is also

strictly increasing with respect to d, and Npv(π ,d) = ∑ n+1
i=2 CF

i rfi must be strictly
decreasing with respect to d and s. Thus, we can have
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Theorem 1 Provided that the duration of activity i has a regular distribution �i(x) and
an inverse uncertainty distribution �−1

i (α), si(π) has an inverse uncertainty distribution
	−1

i (π ,α), and Npv(π) has an inverse uncertainty distribution ϒ−1(π ,α), α ∈ (0, 1], we
can get

	−1
n+2(π ,α) = max

πm<πn+2
	−1

m (π ,α) ∨ max
(j,n+2)∈A∗

(
	−1

j (π ,α) + �−1
j (α)

)
,

ϒ−1(π ,α) = ∑ n+1
i=2 CF

i r
max

πm<πi
	−1
m (π ,1−α)∨ max

(j,i)∈A∗
(
	−1
j (π ,1−α)+�−1

j (1−α)
)
+	−1

i (π ,1−α)

.

Theorem 2 The expected makespan and the expected NPV can be obtained as follows:

E[ sn+2]=
∫ 1

0
	−1

n+2(π ,α)dα, E[Npv]=
∫ 1

0
ϒ−1(π ,α)dα.

Chance-Constrained Model

The chance-constrained model applies chance-constrained programming [31] to maxi-
mize the NPV of cash flow received on each activity’s completion time. For risk-averse
decision makers, this model realizes the maximization of NPV with a relatively high belief
degree. Meanwhile, a due date constraint is also taken into account. In other words,
we aim to obtain a financial optimal solution with a due date constraint. The model is
proposed as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max Npv
subject to:
M

{∑ n+1
i=2 CF

i rsi+d̃i ≥ Npv
}

≥ α

M{sn+2 ≤ δ} ≥ β

where α,β are belief degrees.
In the above model, the objective function is to maximize the NPV with belief degree

α, enforced in the first constraint. The second constraint ensures the makespan cannot
exceed the deadline with belief degree β .
Since M

{
Npv ≥ Npv

} ≥ α can be transformed as 1 − ϒ(π ,Npv) ≥ α, we have
ϒ−1(π , 1 − α) ≥ Npv. Therefore, the objective value of Npv can be calculated as follows:

ϒ−1(π , 1 − α) =
n+1∑
i=2

CF
i r

max
πm<πi

	−1
m (π ,α)∨ max

(j,i)∈A∗
(
	−1
j (π ,α)+�−1

j (α)
)
+	−1

i (π ,α)

.

Accordingly, the uncertain model can be transformed as follows:⎧⎪⎨
⎪⎩
maxϒ−1(π , 1 − α)

subject to:
	−1

n+2(π ,β) ≤ δ.

Expected Value Model

The expected value model aims at maximizing the expected NPV of cash flow received
on each activity’s completion time. The model is proposed as follows:⎧⎪⎨

⎪⎩
max E[Npv]
subject to:
E[ sn+2]≤ δ.
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The equivalent form of the uncertain model is shown as follows:

⎧⎪⎨
⎪⎩
max

∫ 1
0 ϒ−1(π ,α)dα

subject to:∫ 1
0 	−1

n+2(π ,α)dα ≤ δ.

With the crisp-form of the expected value model, 99-method can be applied to make
approximation of the expected NPV:

⎧⎪⎨
⎪⎩
max

∑99
m=1 ϒ−1(π ,m/100)/99

subject to:∑99
m=1 	−1

n+2(π ,m/100)/99 ≤ δ.

Chance Maximization Model

Dependent-chance programming (DCP), initiated by Liu [32], is to optimize the chance
of a certain event and we apply DCP to solve the project scheduling problem. Readers
who are interested in DCP may refer to Liu and Iwamura [33] and Liu [34–36]. In this
paper, the goal is given in advance as that the uncertainty of the NPV overrunning the
goal should be as large as possible. The constraint is that the belief degree of finishing the
project before the due date should be larger than or equal to a predetermined confidence
level β . Hence, we can build the following chance maximization model:

⎧⎪⎨
⎪⎩
max M{Npv ≥ Npv}
subject to:
M{sn+2 ≤ δ} ≥ β

where β is a belief degree.
The equivalent form of the uncertain model is shown as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max (1 − α)

subject to:
ϒ−1(π , 1 − α) ≥ Npv
	−1

n+2(π ,β) ≤ δ.

With the crisp-form of the chance maximization model, 99-method can be applied to
make approximation of the uncertainty:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max 1 − m/100
subject to:

ϒ−1(π , 1 − m/100) ≥ Npv
	−1

n+2(π ,β) ≤ δ.

Revised EDA
Since deterministic RCPSP is NP-hard in the strong sense, URCPSPDC, an extension of
RCPSP, needs to be solved by heuristic or meta-heuristic algorithm. In this section, a
revised intelligent heuristic algorithm is designed by applying NPV criterion to uncertain
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serial schedule generation scheme (US-SGS) in EDA. For more details about EDA for
RCPSP, readers may refer to [4, 5].

Revised Uncertain Serial Schedule Generation Scheme

As discussed by Kolish andHartmann [37], there are several types of feasible solution rep-
resentations for project scheduling. A former work byMa et al. [30] designed an uncertain
serial SGS (US-SGS) for uncertain RCPSP. For URCPSPDC in this paper, we choose the
solution representation activity list π , which represents the executing order of activities.
The US-SGS can be described as follows.

Chance-ConstrainedModel

0:Given a network G(N ,A). π := activity list; d:= duration time; W := underway activity
set;U := unscheduled activity set; s:= starting time; F := finishing time; T := time point; n:=
number of the activities; Npv:= net present value.
1:W = ∅, U =[1, 2, · · · , n + 2],

F =[inf , inf , · · · , inf ] , s = [0, 0, · · · , 0],
d = (0,�−1

2 (α),�−1
3 (α), · · · ,�−1

n+1(α), 0)
2:im = 1, T = 0
3: While isempty (U) = 0
4: sπim = max

i<im
sπi ∨ max

(j,πim)∈A
Fj

5: if
∑
i∈W

rik + rimk ≤ ak , k = 1, 2 · · · K & sπim ≤ T

6: Fπim = T + dπim

7: Npvim = CF
imr

Fπim

8: Put πim intoW
9: im = im + 1
10: else
11: T = min

i∈W (Fi)
12: Take out i fromW and U if: Fi ≤ T , i ∈ W
13: end
14: end
15:Return

∑ n+1
im=2Npvim, sn+2.

It is worth mentioning that a realized makespan with confidence level β must be subject
to the due date constraint and if not, the corresponding activity list has to be abandoned.

Expected ValueModel

Compared with the chance-constrained model, the expected value model gen-
erates dm1 , d

m
2 , . . . , d

m
n+2 according to the uncertainty distributions of activities’

durations �1,�2, . . . ,�n+2. Denote dm = (0,�−1
2 (m/100),�−1

3 (m/100), · · · ,�−1
n+1

(m/100), 0),m = 1, 2, . . . , 99, respectively. Next, by using the decoding scheme concerned
above, smn+2 and Npvm can be obtained. Finally we can get E[Npv]= ∑99

m=1Npvm/99.
Note that an expected makespan E[sn+2]= ∑99

m=1 smn+2/99 must be subject to the due
date constraint and if not, the corresponding activity list has to be abandoned.

ChanceMaximizationModel

Compared with the above two models, for each activity list π , this model first obtains
a realized makespan with confidence level β and a series of Npvm,m = 1, 2, . . . , 99. In
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the condition of Npvm ≥ Npv, we choose the largest m among the feasible solution set.
Note that the realized makespan with confidence level β must be subject to the due date
constraint and if not, the corresponding activity list has to be abandoned.

Revised EDA

In this section, the US-SGS is embedded into EDA. By this step, we employ the US-SGS
to decode the activity lists and to approximate the fitness of each solution by uncer-
tain simulation based on 99-method, initiated by liu [28] and successfully applied in
project scheduling by Zhang and Chen [26]. In contrast to genetic algorithm (GA), EDA
does not directly generate new solutions by crossover of parent solutions and muta-
tions but by sampling from a probability distribution. The latter depicts the features of
a selected set of feasible solutions of the problem. The outline of EDA is presented in
Fig. 1.
In this paper, to revise the EDA, here are the steps. First, NP solutions are generated

according to the initial probability matrix as the initial population and we update prob-
ability matrix according to the initial population. Each solution is an activity list, where
one activity can only be assigned if all of its predecessors have been finished. Second, the
US-SGS is utilized to generate schedules according to activity lists, to filter infeasible solu-
tions when realized makespan exceeds the deadline and to evaluate each solution. After

Fig. 1 The outline of EDA
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evaluating the population, P < NP best individuals are selected from the population
to form the elite set. And, the elite set is chosen to update probability matrix. Then,
the new probability matrix is employed to sample population of the next generation.
After a certain number of generations, the solution with best fitness value is reported as
quasi-optimal solution.

Numerical Examples
A project with 30 activities and 4 renewable resources is taken as an example in this
section. Some specific information about the project is shown in Table 1, including activ-
ity durations, resource requirements, successors, and cash flows. All the activity dura-
tions are assumed to be uncertain variables and described by uncertainty distributions
estimated by experts.
Accordingly, the project structure is depicted in Fig. 2.

Table 1 Project information

Activity Duration R1 R2 R3 R4 Successors Cash flows

1 0 0 0 0 0 2, 3, 4 0

2 Z(5, 7, 8) 4 0 0 0 8, 10, 13 105

3 Z(7, 9, 10) 10 0 0 0 5, 9, 19 54

4 L(1, 3) 0 0 0 3 6, 16, 17 149

5 Z(1, 3, 4) 3 0 0 0 10, 18, 31 112

6 L(8, 10) 0 0 0 8 7, 22 128

7 Z(7, 8, 10) 4 0 0 0 28 87

8 Z(1, 3, 4) 0 1 0 0 11, 12 85

9 L(1, 3) 6 0 0 0 14, 27 115

10 Z(8, 10, 11) 0 0 0 1 30 125

11 L(7, 10) 0 5 0 0 24 143

12 Z(8, 10, 11) 0 7 0 0 15, 21 52

13 Z(1, 3, 4) 4 0 0 0 17 80

14 L(1, 3) 0 8 0 0 20 76

15 Z(3, 5, 6) 3 0 0 0 30 86

16 L(2, 4) 0 0 0 5 25 126

17 L(7, 11) 0 0 0 8 21 146

18 Z(6, 8, 9) 0 0 0 7 29 121

19 Z(2, 4, 5) 0 1 0 0 20, 23, 24 93

20 Z(7, 10, 11) 0 10 0 0 21 140

21 L(4, 6) 0 0 0 6 28 68

22 Z(2, 4, 5) 2 0 0 0 26 69

23 L(3, 5) 3 0 0 0 26 52

24 Z(3, 5, 6) 0 9 0 0 25, 29 123

25 L(6, 8) 4 0 0 0 30 78

26 Z(4, 5, 7) 0 0 4 0 28 129

27 L(1, 3) 0 0 0 7 31 137

28 Z(2, 3, 5) 0 8 0 0 31 77

29 Z(1, 2, 4) 0 7 0 0 32 125

30 Z(5, 6, 8) 0 7 0 0 32 146

31 Z(4, 6, 7) 0 0 2 0 32 58

32 0 0 0 0 0 0

Note: Activities 1 and 32 don’t consume time and resource, limits of the four resources are (12, 13, 4, 12) and the deadline is 90
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Fig. 2 The network of the project

Chance-Constrained Model

Suppose that the discount rate is 0.99 and the financial officer wants to realize the
objective value with confidence level 0.9 while the project manager prefers to determine
whether the makespan is acceptable with confidence level 0.85. The chance-constrained
model can be rewritten as:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max Npv
subject to:
M

{∑ n+1
i=2 CF

i ∗ 0.99si+d̃i ≥ Npv
}

≥ 0.9
M{s32 ≤ 90} ≥ 0.85.

In order to clarify the expression of formulas, we denote an uncertain duration vector
with a belief degreem/100 as dm =

(
0,�−1

2 (m/100),�−1
3 (m/100

)
, · · · ,�−1

n+1
(m/100), 0),m = 1, 2, . . . , 99. Then, smn+2 and Npvm represent a makespan and an
NPV with a belief degree m/100, respectively. Accordingly, the uncertain model can be
transformed as follows:⎧⎪⎨

⎪⎩
max

∑ n+1
i=2 CF

i ∗ 0.99s90i +d̃i
90

subject to:
s8532 ≤ 90.

In this paper, specially, the NPV is changeable according to the discount rate r and
belief degrees (α,β). To simplify the problem, we take (α, β) the same values (0.05, 0.05),
(0.15, 0.15),. . . , (0.95, 0.95) and consider the discount rate r as 0.99. The revised EDA runs
1000 generations with 10 times for 10 groups, respectively. Then, we list the best solution
of all 10 times for each group. The quasi-optimal solutions and NPVs are provided in
Table 2.
The result may help risk-averse decision makers from the following two aspects: First,

a financial officer can arrange the capital operation plan with NPV based on a project
manager’s makespan prediction according to their own belief degrees;. Second, a given
belief degree corresponds with an optimal schedule.
To conclude, given a fixed discount rate, a higher belief degree corresponds with a lower

realized NPV and the optimal solution varies according to different belief degrees. Also,
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Table 2 The quasi-optimal solutions for chance-constrained model

(α,β) Quasi-optimal schedule NPV Makespan

(0.05,0.05) 1,2,8,4,3,6,12,9,5,11,13,22,16,18,7,15,19,23, 3421.4 47.75

24,10,14,27,29,25,20,17,26,30,21,28,31,32

(0.15,0.15) 1,4,2,8,6,3,11,12,13,19,16,5,22,18,24,9,23,27, 3342.4 52.8

14,15,17,10,20,25,30,26,29,7,21,28,31,32

(0.25,0.25) 1,4,2,8,3,6,11,12,9,13,14,5,7,27,16,19,23,24, 3311.1 54

18,15,10,20,17,22,25,26,30,29,21,28,31,32

(0.35,0.35) 1,3,4,19,9,6,5,2,14,20,13,10,23,8,27,22,7,26, 3255.8 60.2

18,11,12,16,24,17,21,25,15,28,31,29,30,32

(0.45,0.45) 1,4,2,8,6,3,11,12,19,16,9,5,22,18,10,14,13,20, 3206.6 65.3

23,7,17,26,27,24,21,15,25,28,30,31,29,32

(0.55,0.55) 1,2,4,8,3,6,12,11,7,9,16,5,14,10,19,18,22,23, 3199.5 61.4

13,24,27,25,26,20,15,17,30,21,28,31,29,32

(0.65,0.65) 1,4,2,8,6,3,11,12,19,5,9,16,22,10,18,24,14, 3163.5 67.8

13,20,23,7,27,17,15,25,21,30,26,29,28,31,32

(0.75,0.75) 1,4,3,2,6,9,19,23,5,13,14,16,8,27,20,22,26, 3093.5 69

11,12,10,7,17,15,24,18,21,25,28,29,31,30,32

(0.85,0.85) 1,3,4,19,6,2,9,14,13,23,16,5,22,27,8,18,7,12, 3086.5 74.4

26,11,15,24,10,25,17,20,21,30,28,31,29,32

(0.95,0.95) 1,2,4,16,8,3,6,5,7,13,12,18,11,10,19,22,9,14, 3065.4 77.6

23,24,27,25,29,15,20,26,17,30,21,28,31,32

an optimal NPV solution is not necessary to reach a best makespan. Therefore, for risk-
averse decision makers, it is considerable to choose applicable belief degrees to solve this
problem.

Expected Value Model

Suppose that the discount rate is 0.99. Then the expected value model can be rewritten as:

⎧⎪⎪⎨
⎪⎪⎩
max E

[∑ n+1
i=2 CF

i ∗ 0.99si+d̃i
]

subject to:
E[ s32]≤ 90.

With the crisp-form of the expected value model, 99-method can be applied to make
approximation of the expected NPV:

⎧⎪⎪⎨
⎪⎪⎩
max

∑99
m=1

(∑ n+1
i=2 CF

i ∗ 0.99smi +d̃i
m)

/99
subject to:∑99

m=1 sm32/99 ≤ 90.

Then, we run 10 times with a discount rate 0.99 for three groups, respectively. The three
groups are different from generation and popsize. The 10 best quasi-optimal solutions
and NPVs are provided in Table 3.
According to Table 3, we can get the best NPV, the worst NPV, the average NPV, and we

can calculate the error as shown in Table 4. The result reveals that the deviation denoted
by percent error does not exceed 5%, which implies the effectiveness of the algorithm
integrating uncertain simulations. The result may help financial officers who are risk-
neutral arrange the capital operation plan with NPV.
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Table 3 The quasi-optimal solutions for expected value model

Generation and popsize Quasi-optimal schedule E[NPV] E[makespan]

150 and 30 1,3,19,4,2,9,5,14,6,20,13,8,10,22,27,23,18, 3172 65

12,11,17,15,16,7,21,24,29,26,28,31,25,30,32

500 and 30 1,4,3,19,16,2,5,9,8,13,14,27,23,6,12,11,22,7, 3182.4 65.068

18,10,15,26,24,20,25,17,30,21,28,31,29,32

500 and 30 1,2,8,3,4,6,12,9,19,13,15,22,11,27,16,5,14,23, 3144.7 71.263

17,7,26,20,21,28,18,31,24,10,29,25,30,32

500 and 30 1,3,4,19,2,9,23,6,5,14,13,10,20,8,16,22,7,11, 3147.3 69.505

27,12,18,17,24,15,21,29,26,25,28,30,31,32

150 and 50 1,4,2,16,8,3,6,22,13,7,19,17,23,12,5,11,26,10, 3148.4 63.763

9,14,20,27,24,25,15,21,28,31,18,30,29,32

150 and 50 1,2,4,8,3,6,7,22,11,12,19,5,13,23,16,26,17,9, 3180.2 60.505

24,10,14,20,18,25,15,29,21,28,27,31,30,32

150 and 50 1,3,2,9,27,14,5,4,19,8,13,23,20,16,6,10,22,12, 3151.5 68.753

17,11,7,26,21,28,15,24,18,25,31,30,29,32

150 and 50 1,2,4,16,8,3,6,11,12,5,9,19,13,24,17,7,27,25, 3156.8 62.131

14,10,20,22,18,15,23,26,21,29,30,28,31,32

150 and 50 1,2,4,8,3,6,11,12,9,19,5,10,15,23,24,22,27,14, 3232 68.258

20,7,13,26,16,17,25,21,28,30,18,29,31,32

150 and 50 1,2,4,8,3,6,12,11,13,19,16,7,22,24,5,18,9,25, 3162.6 73.288

14,15,29,27,17,23,20,10,21,30,26,28,31,32

Chance Maximization Model

Suppose that the discount rate is 0.99 and the financial officer wants to get the uncer-
tainty at which the NPV exceeds 3000 while satisfying the constraint that the makespan is
acceptable with confidence level 0.85. The chance maximization model can be rewritten
as follows:⎧⎪⎪⎨

⎪⎪⎩
max M

{∑ n+1
i=2 CF

i ∗ 0.99si+d̃i ≥ 3000
}

subject to:
M{s32 ≤ 90} ≥ 0.85.

With the crisp-form of the chance maximization model, 99-method can be applied as
follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max 1 − m/100
subject to:∑ n+1

i=2 CF
i ∗ 0.99s

100−m
i +d̃100−m

i ≥ 3000
s8532 ≤ 90.

In this paper, we take discount rate as a fixed value 0.99 and test different values forNpv.
The revised EDA runs 1000 generations for five groups, respectively. The quasi-optimal
solutions and belief degrees are provided in Table 5.

Table 4 The effectiveness of the EDA

Size The best The worst The average Error

30 3232 3077.8 3142.30 4.77%
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Table 5 The quasi-optimal solutions for chance maximization model

Npv Quasi-optimal schedule Uncertainty NPV

3000 1,4,2,16,8,3,6,22,13,9,19,11,5,7,27,23,14,17, 0.99 3021.7

10,12,20,15,18,26,24,25,29,21,28,31,30,32

3100 1,2,4,8,3,6,12,22,5,19,9,11,10,23,14,18,24,26, 0.69 3104.6

13,16,20,7,15,17,21,28,25,27,30,31,29,32

3200 1,4,2,8,6,3,11,12,5,16,22,9,19,14,23,24,18,15, 0.46 3203.7

25,27,26,7,13,17,20,21,29,10,28,31,30,32

3300 1,3,4,19,6,9,5,2,14,20,13,22,27,23,10,8,12,11, 0.27 3301.6

18,26,7,16,24,15,17,25,21,30,28,31,29,32

3400 1,2,4,16,8,3,6,11,12,19,5,15,9,10,24,23,14,18, 0.07 3403.8

13,22,29,7,25,20,17,21,26,27,28,31,30,32

According to Table 5, we can compare the results with the chance-constrained model
and the two models validate each other. The result may help financial officers from the
following two aspects. First, a financial officer can determine an uncertainty at which
a given NPV value can be reached based on a project manager’s makespan prediction
according to a belief degree. Second, a given predetermined NPV corresponds with an
optimal schedule.
To conclude, for financial officers, it is considerable to set applicable NPV goals and

constraint belief degrees to solve this problem.

Conclusion and FutureWork
In the real project, the environment for project execution is full of indeterminacies. Con-
sidering the uniqueness of a project, it is common that activities are seldom or never
executed before. As a result, it is difficult to describe activity durations by probability dis-
tributions for lack of historical data. Also, fuzzy set theory may lead to counterintuitive
results. This paper considers NPV of RCPSP with uncertain durations and a deadline con-
straint. To satisfy different demand of financial officers, three uncertain models are built.
We utilize a special SGS for our problem called US-SGS and added it into EDA. Further-
more, some numerical examples are solved with our models and algorithms.We hope our
work may provide financial criterion for financial officers. For future work, we believe
that it is worthwhile to take other factors as uncertain variables such as discount rate and
to apply NPV criterion to other uncertain types of project scheduling problems.
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