RESEARCH Open Access

L-fuzzy Fixed Point Theorems for L-fuzzy Mappings via β_{F_l} -admissible with Applications

Muhammad Sirajo Abdullahi^{1*} • and Akbar Azam²

*Correspondence: abdullahi.sirajo@udusok.edu.ng ¹Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria Full list of author information is available at the end of the article

Abstract

In this paper, the authors use the idea of β_{F_L} -admissible mappings to prove some L-fuzzy fixed point theorems for a generalized contractive L-fuzzy mappings. Some examples and applications to L-fuzzy fixed points for L-fuzzy mappings in partially ordered metric spaces are also given, to support main findings.

Keywords: *L*-fuzzy sets, *L*-fuzzy fixed points, *L*-fuzzy mappings, β_{F_L} -admissible

mappings

AMS Subject Classification: Primary 46S40, Secondary 47H10, 54H25

Introduction

Solving real-world problems becomes apparently easier with the introduction of fuzzy set theory in 1965 by L. A Zadeh [1], as it helps in making the description of vagueness and imprecision clear and more precise. Later in 1967, Goguen [2] extended this idea to L-fuzzy set theory by replacing the interval [0, 1] with a completely distributive lattice L.

In 1981, Heilpern [3] gave a fuzzy extension of Banach contraction principle [4] and Nadler's [5] fixed point theorems by introducing the concept of fuzzy contraction mappings and established a fixed point theorem for fuzzy contraction mappings in a complete metric linear spaces. Frigon and Regan [6] generalized the Heilpern theorem under a contractive condition for 1-level sets of a fuzzy contraction on a complete metric space, where the 1-level sets need not be convex and compact. Subsequently, various generalizations of result in [6] were obtained (see [7–12]). While in 2001, Estruch and Vidal [13] established the existence of a fixed fuzzy point for fuzzy contraction mappings (in the Helpern's sense) on a complete metric space. Afterwards, several authors [11, 14–17] among others studied and generalized the result in [13].

On the other hand, the concept of β -admissible mapping was introduced by Samet et al. [18] for a single-valued mappings and proved the existence of fixed point theorems via this concept, while Asl et al. [19] extended the notion to $\alpha - \psi$ -multi-valued mappings. Afterwards, Mohammadi et al. [20] established the notion of β -admissible mapping for the multi-valued mappings (different from the β *-admissible mapping provided in [19]).

Recently, Phiangsungnoen et al. [21] use the concept of β -admissible defined by Mohammadi et al. [20] to proved some fuzzy fixed point theorems. In 2014, Rashid et al. [22] introduced the notion of β_{F_L} -admissible for a pair of L-fuzzy mappings and utilized it to proved a common L-fuzzy fixed point theorem. The notions of d_L^{∞} -metric and

Hausdorff distances for L-fuzzy sets were introduced by Rashid et al. [23], they presented some fixed point theorems for L-fuzzy set valued-mappings and coincidence theorems for a crisp mapping and a sequence of L-fuzzy mappings. Many researchers have studied fixed point theory in the fuzzy context of metric spaces and normed spaces (see [24–27] and [28–30], respectively).

In this manuscript, the authors developed a new L-fuzzy fixed point theorems on a complete metric space via β_{F_L} -admissble mapping in sense of Mohammadi et al. [20] which is a generalization of main result of Phiangsungnoen et al. [21]. We also construct some examples to support our results and infer as an application, the existence of L-fuzzy fixed points in a complete partially ordered metric space.

Preliminaries

In this section we present some basic definitions and preliminary results which we will used throughout this paper. Let (X,d) be a metric space, $CB(X) = \{A : A \text{ is nonempty compact subsets of } X\}$ and $C(X) = \{A : A \text{ is nonempty compact subsets of } X\}$.

Let $A, B \in CB(X)$ and define

$$d(x,A) = \inf_{y \in A} d(x,y),$$

$$d(A,B) = \inf_{x \in A, y \in B} d(x,y),$$

$$p_{\alpha_L}(x,A) = \inf_{y \in A_{\alpha_L}} d(x,y),$$

$$p_{\alpha_L}(A,B) = \inf_{x \in A_{\alpha_L}, y \in B_{\alpha_L}} d(x,y),$$

$$p(A,B) = \sup_{\alpha_L} p_{\alpha_L}(A,B),$$

$$H\left(A_{\alpha_L}, B_{\alpha_L}\right) = \max \left\{ \sup_{x \in A_{\alpha_L}} d\left(x, B_{\alpha_L}\right), \sup_{y \in B_{\alpha_L}} d\left(y, A_{\alpha_L}\right) \right\},$$

$$D_{\alpha_L}(A,B) = H\left(A_{\alpha_L}, B_{\alpha_L}\right),$$

$$d_{\alpha_L}^{\infty}(A,B) = \sup_{\alpha_L} D_{\alpha_L}(A,B).$$

Definition 1 A fuzzy set in X is a function with domain X and range in [0,1]. i.e A is a fuzzy set if $A: X \longrightarrow [0,1]$.

Let $\mathcal{F}(X)$ denotes the collection of all fuzzy subsets of X. If A is a fuzzy set and $x \in X$, then A(x) is called the grade of membership of x in A. The α -level set of A is denoted by $[A]_{\alpha}$ and is defined as below:

$$[A]_{\alpha} = \{x \in X : A(x) \ge \alpha\}, \text{ for } \alpha \in (0, 1],$$

$$[A]_{0} = \text{closure of the set } \{x \in X : A(x) > 0\}.$$

Definition 2 A partially ordered set (L, \leq_L) is called

```
i a lattice; if a \lor b \in L, a \land b \in L for any a, b \in L,

ii a complete lattice; if \bigvee A \in L, \bigwedge A \in L for any A \subseteq L,

iii a distributive lattice; if a \lor (b \land c) = (a \lor b) \land (a \lor c),

a \land (b \lor c) = (a \land b) \lor (a \land c) for any a, b, c \in L,
```

- iv a complete distributive lattice; if $a \vee (\bigwedge b_i) = \bigwedge_i (a \wedge b_i)$, $a \wedge (\bigvee_i b_i) = \bigvee_i (a \wedge b_i)$ for any $a, b_i \in L$,
- v a bounded lattice; if it is a lattice and additionally has a top element 1_L and a bottom element 0_L , which satisfy $0_L \leq_L x \leq_L 1_L$ for every $x \in L$.

Definition 3 An L-fuzzy set A on a nonempty set X is a function $A: X \longrightarrow L$, where L is bounded complete distributive lattice with 1_L and 0_L .

Definition 4 (Goguen [2]). Let L be a lattice, the top and bottom elements of L are 1_L and 0_L respectively, and if $a, b \in L$, $a \lor b = 1_L$ and $a \land b = 0_L$ then b is a unique complement of a denoted by \acute{a} .

Remark 1 If L = [0, 1], then the L-fuzzy set is the special case of fuzzy sets in the original sense of Zadeh [1], which shows that L-fuzzy set is larger.

Let $\mathcal{F}_L(X)$ denotes the class of all L-fuzzy subsets of X. Define $\mathcal{Q}_L(X) \subset \mathcal{F}_L(X)$ as below:

$$Q_L(X) = \{A \in \mathcal{F}_L(X) : A_{\alpha_L} \text{ is nonempty and compact, } \alpha_L \in L \setminus \{0_L\}\}.$$

The α_L -level set of an L-fuzzy set A is denoted by A_{α_L} and define as below:

$$A_{\alpha_L} = \{ x \in X : \alpha_L \leq_L A(x) \} \text{ for } \alpha_L \in L \setminus \{0_L\},$$

$$A_{0_L} = \{ x \in X : 0_L \leq_L A(x) \}.$$

Where \overline{B} denotes the closure of the set B (Crisp).

For $A, B \in \mathcal{F}_L(X)$, $A \subset B$ if and only if $A(x) \leq_L B(x)$ for all $x \in X$. If there exists an $\alpha_L \in L \setminus \{0_L\}$ such that $A_{\alpha_L}, B_{\alpha_L} \in CB(X)$, then we define

$$D_{\alpha_L}(A, B) = H(A_{\alpha_L}, B_{\alpha_L}).$$

If A_{α_L} , $B_{\alpha_L} \in CB(X)$ for each $\alpha_L \in L \setminus \{0_L\}$, then we define

$$d_L^{\infty}(A,B) = \sup_{\alpha_L} D_{\alpha_L}(A,B).$$

We note that d_L^{∞} is a metric on $\mathcal{F}_L(X)$ and the completeness of (X,d) implies that (C(X),H) and $(\mathcal{F}_L(X),d_L^{\infty})$ are complete.

Definition 5 Let X be an arbitrary set, Y be a metric space. A mapping T is called L-fuzzy mapping, if T is a mapping from X to $\mathcal{F}_L(Y)$ (i.e class of L-fuzzy subsets of Y). An L-fuzzy mapping T is an L-fuzzy subset on $X \times Y$ with membership function T(x)(y). The function T(x)(y) is the grade of membership of Y in Y.

Definition 6 Let X be a nonempty set. For $x \in X$, we write $\{x\}$ the characteristic function of the ordinary subset $\{x\}$ of X. The characteristic function of an L-fuzzy set A, is denoted by χ_{L_A} and define as below:

$$\chi_{L_A} = \begin{cases} 0_L & \text{if } x \notin A; \\ 1_L & \text{if } x \in A. \end{cases}$$

Definition 7 Let (X, d) be a metric space and $T: X \longrightarrow \mathcal{F}_L(X)$. A point $z \in X$ is said to be an L-fuzzy fixed point of T if $z \in [Tz]_{\alpha_L}$, for some $\alpha_L \in L \setminus \{0_L\}$.

Remark 2 If $\alpha_L = 1_L$, then it is called a fixed point of the L-fuzzy mapping T.

Definition 8 (Asl et al. [19]). Let X be a nonempty set. $T: X \longrightarrow 2^X$, where 2^X is a collection of nonempty subsets of X and $\beta: X \times X \longrightarrow [0, \infty)$. We say that T is β_* -admissible if

for
$$x, y \in X$$
, $\beta(x, y) \ge 1 \Longrightarrow \beta_*(Tx, Ty) \ge 1$,

where

$$\beta_*(Tx, Ty) := \inf \{ \beta(a, b) : a \in Tx \text{ and } b \in Ty \}.$$

Definition 9 (Mohammadi et al. [20]). Let X be a nonempty set. $T: X \longrightarrow 2^X$, where 2^X is a collection of nonempty subsets of X and $\beta: X \times X \longrightarrow [0, \infty)$. We say that T is β -admissible whenever for each $x \in X$ and $y \in Tx$ with $\beta(x,y) \ge 1$, we have $\beta(y,z) \ge 1$ for all $z \in Ty$.

Remark 3 *If T is* β_* -admissible mapping, then T is also β -admissible mapping.

Example 1 Let $X = [0, \infty)$ and d(x, y) = |x - y|. Define $T : X \longrightarrow 2^X$ and $\beta : X \times X \longrightarrow [0, \infty)$ by

$$T(x) = \begin{cases} \left[0, \frac{x}{3}\right], & if \ 0 \le x \le 1; \\ \left[x^2, \infty\right), & if \ x > 1. \end{cases}$$

and

$$\beta(x,y) = \begin{cases} 1, & \text{if } x, y \in [0,1]; \\ 0, & \text{otherwise.} \end{cases}$$

Then, T is β -admissible.

Main Result

L-fuzzy Fixed Point Theorems

Now, we recall some well known results and definitions to be used in the sequel.

Lemma 1 Let $x \in X$, $A \in W_L(X)$, and $\{x\}$ be an L-fuzzy set with membership function equal to characteristic function of set $\{x\}$. If $\{x\} \subset A$, then $p_{\alpha_L}(x,A) = 0$ for $\alpha_L \in L \setminus \{0_L\}$.

Lemma 2 (Nadler [5]). Let (X,d) be a metric space and $A,B \in CB(X)$. Then for any $a \in A$ there exists $b \in B$ such that $d(a,b) \leq H(A,B)$.

Definition 10 Let Ψ be the family of non-decreasing functions $\psi:[0,\infty)\longrightarrow [0,\infty)$ such that $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all t > 0 where ψ^n is the nth iterate of ψ . It is known that $\psi(t) < t$ for all t > 0 and $\psi(0) = 0$.

Below, we introduce the concept of β -admissible in the sense of Mohammadi et al. [20] for *L*-fuzzy mappings.

Definition 11 Let (X, d) be a metric space, $\beta: X \times X \longrightarrow [0, \infty)$ and $T: X \longrightarrow F_L(X)$. A mapping T is said to be β_{F_L} -admissible whenever for each $x \in X$ and $y \in [Tx]_{\alpha_L}$ with $\beta(x, y) \ge 1$, we have $\beta(y, z) \ge 1$ for all $z \in [Ty]_{\alpha_L}$, where $\alpha_L \in L \setminus \{0_L\}$.

Here, the existence of an L-fuzzy fixed point theorem for some generalized type of contraction L-fuzzy mappings in complete metric spaces is presented.

Theorem 1 Let (X,d) be a complete metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ and $\beta: X \times X \longrightarrow [0,\infty)$ such that for all $x,y \in X$,

$$\beta(x,y)D_{\alpha_L}(Tx,Ty) \leq \psi(\Omega(x,y)) + K \min \left\{ p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), p_{\alpha_L}(x,Ty), p_{\alpha_L}(y,Tx) \right\},$$
(1)

where $K \geq 0$ and

$$\Omega(x,y) = \max \left\{ d(x,y), p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), \frac{p_{\alpha_L}(x,Ty) + p_{\alpha_L}(y,Tx)}{2} \right\}.$$

If the following conditions hold,

- i. if $\{x_n\}$ is a sequence in X so that $\beta(x_n, x_{n+1}) \ge 1$ and $x_n \to b(n \to \infty)$, then $\beta(x_n, b) \ge 1$,
- ii. there exists $x_0 \in X$ and $x_1 \in [Tx_0]_{\alpha_L}$ so that $\beta(x_0, x_1) \ge 1$,
- iii. T is β_{F_L} -admissible,
- iv. ψ is continuous.

Then T has atleast an L-fuzzy fixed point.

Proof For $x_0 \in X$ and $x_1 \in [Tx_0]_{\alpha_L}$ by condition (ii) we have $\beta(x_0, x_1) \ge 1$. Since $[Tx_0]_{\alpha_L}$ is nonempty and compact, then there exists $x_2 \in [Tx_1]_{\alpha_L}$, such that

$$d(x_1, x_2) = p_{\alpha_I}(x_1, Tx_1) \le D_{\alpha_I}(Tx_0, Tx_1). \tag{2}$$

By (2) and the fact that $\beta(x_0, x_1) \ge 1$, we have

$$\begin{split} d(x_1, x_2) &\leq D_{\alpha_L}(Tx_0, Tx_1) \\ &\leq \beta(x_0, x_1) D_{\alpha_L}(Tx_0, Tx_1) \\ &\leq \psi(\Omega(x_0, x_1)) + K \min \left\{ p_{\alpha_L}(x_0, Tx_0), p_{\alpha_L}(x_1, Tx_1), \right. \\ &\left. p_{\alpha_L}(x_0, Tx_1), p_{\alpha_L}(x_1, Tx_0) \right\} \\ &\leq \psi(\Omega(x_0, x_1)) + K \min \left\{ p_{\alpha_L}(x_0, x_1), p_{\alpha_L}(x_1, x_2), p_{\alpha_L}(x_0, x_2), 0 \right\} \\ &= \psi(\Omega(x_0, x_1)). \end{split}$$

Similarly, For $x_2 \in X$, we have $[Tx_2]_{\alpha_L}$ which is nonempty and compact subset of X, then there exists $x_3 \in [Tx_2]_{\alpha_L}$, such that

$$d(x_2, x_3) = p_{\alpha_L}(x_2, Tx_2) \le D_{\alpha_L}(Tx_1, Tx_2). \tag{3}$$

For $x_0 \in X$ and $x_1 \in [Tx_0]_{\alpha_L}$ with $\beta(x_0, x_1) \ge 1$, by condition (iii) we have $\beta(x_1, x_2) \ge 1$. From (1), (2) and the fact that $\beta(x_1, x_2) \ge 1$, we have

$$\begin{split} d(x_2, x_3) &\leq D_{\alpha_L}(Tx_1, Tx_2) \\ &\leq \beta(x_1, x_2) D_{\alpha_L}(Tx_1, Tx_2) \\ &\leq \psi(\Omega(x_1, x_2)) + K \min\left\{p_{\alpha_L}(x_1, Tx_1), p_{\alpha_L}(x_2, Tx_2), \\ &p_{\alpha_L}(x_1, Tx_2), p_{\alpha_L}(x_2, Tx_1)\right\} \\ &\leq \psi(\Omega(x_1, x_2)) + K \min\left\{p_{\alpha_L}(x_1, x_2), p_{\alpha_L}(x_2, x_3), p_{\alpha_L}(x_1, x_3), 0\right\} \\ &= \psi(\Omega(x_1, x_2)). \end{split}$$

Continuing in this pattern, a sequence $\{x_n\}$ is obtained such that, for each $n \in \mathbb{N}$, $x_n \in [Tx_{n-1}]_{\alpha_L}$ with $\beta(x_{n-1},x_n) \geq 1$, we have

$$d(x_n, x_{n+1}) < \psi(\Omega(x_{n-1}, x_n)),$$

where

$$\Omega(x_{n-1}, x_n) = \max \left\{ d(x_{n-1}, x_n), p_{\alpha_L}(x_{n-1}, Tx_{n-1}), \\ p_{\alpha_L}(x_n, Tx_n), \frac{p_{\alpha_L}(x_{n-1}, Tx_n) + p_{\alpha_L}(x_n, Tx_{n-1})}{2} \right\} \\ \leq \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x_{n+1})}{2} \right\} \\ = \max \{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \}.$$

Hence,

$$d(x_n, x_{n+1}) \le \psi(\max\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\}), \tag{4}$$

for all $n \in \mathbb{N}$. Now, if there exists $n^* \in \mathbb{N}$ such that $p_{\alpha_L}(x_{n^*}, Tx_{n^*}) = 0$ then by Lemma 1, we have $\{x_{n^*}\} \subset Tx_{n^*}$, that is $x_{n^*} \in [Tx_{n^*}]_{\alpha_L}$ implying that x_{n^*} is an L-fuzzy fixed point of T. So, we suppose that for each $n \in \mathbb{N}$, $p_{\alpha_L}(x_n, Tx_n) > 0$, implying that $d(x_{n-1}, x_n) > 0$ for all $n \in \mathbb{N}$. Thus, if $d(x_n, x_{n+1}) > d(x_{n-1}, x_n)$ for some $n \in \mathbb{N}$, then by (4) and Definition 10, we have

$$d(x_n, x_{n+1}) \le \psi(d(x_n, x_{n+1})) < d(x_n, x_{n+1}),$$

which is a contradiction. Thus, we have

$$d(x_{n}, x_{n+1}) \leq \psi(d(x_{n-1}, x_{n}))$$

$$\leq \psi(\psi(d(x_{n-2}, x_{n-1})))$$

$$\vdots$$

$$\leq \psi^{n} d(x_{0}, x_{1}).$$
(5)

Next we show that, $\{x_n\}$ is a Cauchy sequence in X. Since $\psi \in \Psi$ and continuous, then there exist $\epsilon > 0$ and a positive integer $h = h(\epsilon)$ such that

$$\sum_{n>h} \psi^n d(x_0, x_1) < \epsilon. \tag{6}$$

Let m > n > h. By triangular inequality, (5) and (6), we have

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d(x_k, x_{k+1})$$

$$\le \sum_{k=n}^{m-1} \psi^k d(x_0, x_1)$$

$$\le \sum_{n>h} \psi^n d(x_0, x_1) < \epsilon.$$

Thus, $\{x_n\}$ is Cauchy sequence and since X is complete therefore we have $b \in X$ so that $x_n \to b$ as $n \to \infty$. Now, we show that $b \in [Tb]_{\alpha_L}$. Let us assume the contrary and consider

$$d(b, [Tb]_{\alpha_{L}}) \leq d(b, x_{n+1}) + d\left(x_{n+1}, [Tb]_{\alpha_{L}}\right)$$

$$\leq d(b, x_{n+1}) + H\left([Tx_{n}]_{\alpha_{L}}, [Tb]_{\alpha_{L}}\right)$$

$$\leq d(b, x_{n+1}) + D_{\alpha_{L}}(Tx_{n}, Tb)$$

$$\leq d(b, x_{n+1}) + \beta(x_{n}, b)D_{\alpha_{L}}(Tx_{n}, Tb)$$

$$\leq \psi\left(\Omega(x_{n}, b)\right) + K \min\left\{p_{\alpha_{L}}(x_{n}, Tx_{n}), p_{\alpha_{L}}(b, Tb), p_{\alpha_{L}}(x_{n}, Tb), p_{\alpha_{L}}(b, Tx_{n})\right\}$$

$$\leq \psi\left(\max\left\{d(x_{n}, b), p_{\alpha_{L}}(x_{n}, Tx_{n}), p_{\alpha_{L}}(b, Tb), \frac{p_{\alpha_{L}}(x_{n}, Tb) + p_{\alpha_{L}}(b, Tx_{n})}{2}\right\}\right)$$

$$+ K \min\left\{p_{\alpha_{L}}(x_{n}, Tx_{n}), p_{\alpha_{L}}(b, Tb), p_{\alpha_{L}}(x_{n}, Tb), p_{\alpha_{L}}(b, Tx_{n})\right\}$$

$$= \psi(p_{\alpha_{L}}(b, Tb)).$$
(7)

Letting $n \to \infty$ in (7), we have

$$d\left(b, [Tb]_{\alpha_L}\right) \le \psi\left(p_{\alpha_L}(b, Tb)\right)$$

$$< p_{\alpha_L}(b, Tb)$$

$$= d\left(b, [Tb]_{\alpha_L}\right),$$

a contraction. Hence,

$$b \in [Tb]_{\alpha_L}$$
, $\alpha_L \in L \setminus \{0_L\}$.

Next, we give an example to support the validity of our result.

Example 2 Let X = [0, 1], d(x, y) = |x - y| for all $x, y \in X$, then (X, d) is a complete metric space. Let $L = \{\eta, \kappa, \omega, \tau\}$ with $\eta \leq_L \kappa \leq_L \tau$, and $\eta \leq_L \omega \leq_L \tau$, where κ and ω are not comparable, therefore (L, \leq_L) is a complete distributive lattice. Define $T: X \longrightarrow \mathcal{Q}_L(X)$ as below:

$$T(x)(t) = \begin{cases} \tau, & if 0 \le t \le \frac{\kappa}{6}; \\ \kappa, & if \frac{\kappa}{6} < t \le \frac{\kappa}{4}; \\ \eta, & if \frac{\kappa}{4} < t \le \frac{\kappa}{2}; \\ \omega, & if \frac{\kappa}{2} < t \le 1. \end{cases}$$

For every $x \in X$, $\alpha_L = \tau$ exists for which

$$[Tx]_{\tau} = \left[0, \frac{x}{6}\right].$$

Define $\beta: X \times X \longrightarrow [0, \infty)$ as below:

$$\beta(x,y) = \begin{cases} 1, & if x = y; \\ x+1, & if x \neq y. \end{cases}$$

Then, it is easy to see that T is β_{F_L} -admissible. For each $x, y \in X$ we have

$$\begin{split} \beta(x,y)D_{\alpha_L}(Tx,Ty) &= \beta(x,y)H\left([Tx]_{\alpha_L},[Ty]_{\alpha_L}\right) \\ &= \beta(x,y)H\left(\left[0,\frac{x}{6}\right],\left[0,\frac{y}{6}\right]\right) \\ &= \frac{1}{6}\beta(x,y)|x-y| \\ &= \frac{1}{6}\beta(x,y)d(x,y) \\ &< \frac{1}{3}d(x,y) \\ &\leq \psi(\Omega(x,y)) \\ &+ K\min\left\{p_{\alpha_L}(x,Tx),p_{\alpha_L}(y,Ty),p_{\alpha_L}(x,Ty),p_{\alpha_L}(y,Tx)\right\}. \end{split}$$

Where $\psi(t) = \frac{t}{3}$ for all t > 0 and $K \ge 0$. Conditions (ii) and (iii) of Theorem 1 holds obviously. Thus, all the conditions of Theorem 1 are satisfied. Hence, there exists a $0 \in X$ such that $0 \in [T0]_T$.

Below, we introduce the concept of β_* -admissible for L-fuzzy mappings in the sense of Asl et al. [19].

Definition 12 Let (X, d) be a metric space, $\beta : X \times X \longrightarrow [0, \infty)$ and $T : X \longrightarrow F_L(X)$. A mapping T is said to be $\beta_{F_1}^*$ -admissible if

for
$$x, y \in X, \alpha_L \in L \setminus \{0_L\}, \beta(x, y) \ge 1 \Longrightarrow \beta^* ([Tx]_{\alpha_L}, [Ty]_{\alpha_L}) \ge 1$$
,

where

$$\beta^* \left([Tx]_{\alpha_L}, [Ty]_{\alpha_L} \right) := \inf \left\{ \beta(a, b) : a \in [Tx]_{\alpha_L} \text{ and } b \in [Ty]_{\alpha_L} \right\}.$$

Theorem 2 Let (X,d) be a complete metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ and $\beta: X \times X \longrightarrow [0,\infty)$ such that for all $x,y \in X$,

$$\beta(x,y)D_{\alpha_L}(Tx,Ty) \leq \psi(\Omega(x,y)) + K \min \left\{ p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), p_{\alpha_L}(x,Ty), p_{\alpha_L}(y,Tx) \right\},$$

where $K \geq 0$ and

$$\Omega(x,y) = \max \left\{ d(x,y), p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), \frac{p_{\alpha_L}(x,Ty) + p_{\alpha_L}(y,Tx)}{2} \right\}.$$

If the following conditions hold,

- i. if $\{x_n\}$ is a sequence in X such that $\beta(x_n, x_{n+1}) \ge 1$ and $x_n \to u$ as $n \to \infty$, then $\beta(x_n, u) \ge 1$,
- ii. there exist $x_0 \in X$ and $x_1 \in [Tx_0]_{\alpha_L}$ such that $\beta(x_0, x_1) \ge 1$,

iii. T is $\beta_{F_I}^*$ -admissible,

iv. ψ is continuous.

Then, T has atleast an L-fuzzy fixed point.

Proof By Remark 3 and Theorem 1 the result follows immediately.

Taking K = 0 in Theorem 1 and 2, we obtain the following corollary.

Corollary 1 Let (X,d) be a complete metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ and $\beta: X \times X \longrightarrow [0,\infty)$ such that for all $x,y \in X$,

$$\beta(x,y)D_{\alpha_L}(Tx,Ty) \leq \psi \left(\max \left\{ d(x,y), p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), \frac{p_{\alpha_L}(x,Ty) + p_{\alpha_L}(y,Tx)}{2} \right\} \right).$$

If the following conditions hold,

- i. if $\{x_n\}$ is a sequence in X such that $\beta(x_n, x_{n+1}) \ge 1$ and $x_n \to u$ as $n \to \infty$, then $\beta(x_n, u) \ge 1$,
- ii. there exist $x_0 \in X$ and $x_1 \in [Tx_0]_{\alpha_L}$ such that $\beta(x_0, x_1) \ge 1$,
- iii. T is β_{F_L} -admissible (or $\beta_{F_I}^*$ -admissible),
- iv. ψ is continuous.

Then, T has atleast an L-fuzzy fixed point.

If $\beta(x, y) = 1$ for all $x, y \in X$. Theorem 1 or 2 will reduce to the following result.

Corollary 2 Let (X, d) be a complete metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ such that for all $x, y \in X$,

$$D_{\alpha_I}(Tx, Ty) \leq \psi(\Omega(x, y)) + K \min \left\{ p_{\alpha_I}(x, Tx), p_{\alpha_I}(y, Ty), p_{\alpha_I}(x, Ty), p_{\alpha_I}(y, Tx) \right\},$$

where $K \ge 0$ and

$$\Omega(x,y) = \max \left\{ d(x,y), p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), \frac{p_{\alpha_L}(x,Ty) + p_{\alpha_L}(y,Tx)}{2} \right\}.$$

Then, T has atleast an L-fuzzy fixed point.

By taking K = 0 and $\beta(x, y) = 1$ for all $x, y \in X$ in Theorem 1 or 2, Corollary 1 or 2, we have the following.

Corollary 3 Let (X, d) be a complete metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ such that for all $x, y \in X$,

$$D_{\alpha_L}(Tx, Ty) \le \psi \left(\max \left\{ d(x, y), p_{\alpha_L}(x, Tx), p_{\alpha_L}(y, Ty), \frac{p_{\alpha_L}(x, Ty) + p_{\alpha_L}(y, Tx)}{2} \right\} \right).$$

Then, T has atleast an L-fuzzy fixed point.

Remark 4

- i If we consider L = [0, 1] in Theorem 1 and 2, Corollary 1, 2 and 3 we get Theorem 1, 2 Corollary 2, 4 and 5 of [21] respectively;
- ii If $\alpha_L = 1_L$ in Theorem 1 and 2, Corollary 1, 2 and 3, then by Remark 2 the L-fuzzy mappings T has at least a fixed point.

Applications

In this section, we establish as an application the existence of an *L*-fuzzy fixed point theorems in complete partially ordered metric spaces.

Below, we present some results which are essential in the remaining part of our work.

Definition 13 Let X be a nonempty set. Then, (X, d, \preceq) is said to be an ordered metric space if (X, d) is a metric space and (X, \preceq) is a partially ordered set.

Definition 14 Let (X, \leq) be a partially ordered set. Then, $x, y \in X$ are said to be comparable if $x \leq y$ or $y \leq x$ holds.

For a partially ordered set (X, \leq) , we define

$$\bar{\wedge} := \{(x, y) \in X \times X : x \leq y \text{ or } y \leq x\}.$$

Definition 15 A partially ordered set (X, \preceq) is said to satisfy the ordered sequential limit property if $(x_n, x) \in \overline{\wedge}$ for all $n \in \mathbb{N}$, whenever a sequence $x_n \to x$ as $x \to \infty$ and $(x_n, x_{n+1}) \in \overline{\wedge}$ for all $n \in \mathbb{N}$.

Definition 16 Let (X, \preceq) be a partially ordered set and $\alpha_L \in L \setminus \{0_L\}$. An L-fuzzy mapping $T: X \longrightarrow \mathcal{Q}_L(X)$ is said to be comparative, if for each $x \in X$ and $y \in [Tx]_{\alpha_L}$ with $(x,y) \in \overline{\wedge}$, we have $(y,z) \in \overline{\wedge}$ for all $z \in [Ty]_{\alpha_L}$.

Now, the existence of an *L*-fuzzy fixed point theorem for *L*-fuzzy mappings in complete partially ordered metric spaces is presented.

Theorem 3 Let (X, d, \preceq) be a complete partially ordered metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ such that for all $(x,y) \in \overline{\wedge}$,

$$D_{\alpha_L}(Tx, Ty) \le \psi(\Omega(x, y)) + K \min\{p_{\alpha_L}(x, Tx), p_{\alpha_L}(y, Ty), p_{\alpha_L}(x, Ty), p_{\alpha_L}(y, Tx)\}, \quad (8)$$

where K > 0 and

$$\Omega(x,y) = \max \left\{ d(x,y), p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), \frac{p_{\alpha_L}(x,Ty) + p_{\alpha_L}(y,Tx)}{2} \right\}.$$

If the following conditions hold,

- I. X satisfies the order sequential limit property,
- II. there exist $x_0 \in X$ and $x_1 \in [Tx_0]_{\alpha_L}$ such that $(x_0, x_1) \in \overline{\wedge}$,
- III. T is comparative L-fuzzy mapping,
- IV. ψ is continuous.

Then, T has atleast an L-fuzzy fixed point.

Proof Let $\beta: X \times X \longrightarrow [0, \infty)$ be defined as:

$$\beta(x,y) = \begin{cases} 1 & \text{if } (x,y) \in \bar{\wedge}; \\ 0 & \text{if } (x,y) \notin \bar{\wedge}. \end{cases}$$

Now by condition (II), we have $\beta(x_0, x_1) \ge 1$ which implies that condition (ii) of Theorem 1 holds. And since T is comparative L-fuzzy mapping, then condition (iii) of Theorem 1 follows. By (8) and for all $x, y \in X$, we have

$$\beta(x, y)D_{\alpha_L}(Tx, Ty)$$

$$\leq \psi(\Omega(x, y)) + K \min \left\{ p_{\alpha_L}(x, Tx), p_{\alpha_L}(y, Ty), p_{\alpha_L}(x, Ty), p_{\alpha_L}(y, Tx) \right\}.$$

$$(9)$$

Condition (i) of Theorem 1 also holds by condition (I). Now that all the hypothesis of Theorem 1 are fulfilled, hence the existence of the L-fuzzy fixed point for L-fuzzy mapping T follows.

Applying similar technique in the proof of Theorem 3 with Corollary 1, we arrive at the following result.

Corollary 4 Let (X, d, \preceq) be a complete partially ordered metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ such that for all $(x, y) \in \overline{\wedge}$,

$$D_{\alpha_L}(Tx, Ty) \leq \psi \left(\max \left\{ d(x, y), p_{\alpha_L}(x, Tx), p_{\alpha_L}(y, Ty), \frac{p_{\alpha_L}(x, Ty) + p_{\alpha_L}(y, Tx)}{2} \right\} \right).$$

If the following conditions hold,

- I. X satisfies the order sequential limit property,
- II. there exist $x_0 \in X$ and $x_1 \in [Tx_0]_{\alpha_L}$ such that $(x_0, x_1) \in \overline{\wedge}$,
- III. T is comparative L-fuzzy mapping,
- IV. ψ is continuous.

Then, T has at least an L-fuzzy fixed point.

Setting $\beta(x,y) = 1$ for all $(x,y) \in \overline{\wedge}$ and using similar argument in the proof of Theorem 3 with Corollary 2 and 3 we get the followings, respectively.

Corollary 5 Let (X, d, \preceq) be a complete partially ordered metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ such that for all $(x, y) \in \overline{\wedge}$,

$$D_{\alpha_L}(Tx, Ty) \leq \psi(\Omega(x, y)) + K \min \left\{ p_{\alpha_L}(x, Tx), p_{\alpha_L}(y, Ty), p_{\alpha_L}(x, Ty), p_{\alpha_L}(y, Tx) \right\},$$

where K > 0 and

$$\Omega(x,y) = \max \left\{ d(x,y), p_{\alpha_L}(x,Tx), p_{\alpha_L}(y,Ty), \frac{p_{\alpha_L}(x,Ty) + p_{\alpha_L}(y,Tx)}{2} \right\}.$$

Then, T has at least an L-fuzzy fixed point.

Corollary 6 Let (X, d, \preceq) be a complete partially ordered metric space, $\alpha_L \in L \setminus \{0_L\}$ and $T: X \longrightarrow \mathcal{Q}_L(X)$ be an L-fuzzy mapping. Suppose that there exist $\psi \in \Psi$ such that for all $(x, y) \in \overline{\wedge}$,

$$D_{\alpha_L}(Tx, Ty) \leq \psi\left(\max\left\{d(x, y), p_{\alpha_L}(x, Tx), p_{\alpha_L}(y, Ty), \frac{p_{\alpha_L}(x, Ty) + p_{\alpha_L}(y, Tx)}{2}\right\}\right).$$

Then, T has at least an L-fuzzy fixed point.

Remark 5

- i. If we consider L = [0, 1] in Theorem 3 and Corollary 4 above, we get Theorem 3 and Corollary 7 of [21], respectively;
- ii. If $\alpha_L = 1_L$ in Theorem 3, Corollary 4, 5 and 6, then by Remark 2 the L-fuzzy mappings T has at least a fixed point.

Acknowledgements

The authors thank the Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan for providing excellent research facilities.

Authors' contributions

Both authors contributed to the writing of this paper. Both authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details

¹ Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria. ² Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan.

Received: 9 September 2016 Accepted: 8 February 2017

Published online: 20 February 2017

References

- 1. Zadeh LA: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)
- 2. Goguen JA: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)
- 3. Heilpern S: Fuzzy mappings and fixed point theorems. J. Math. Anal. Appl. 83(2), 566–569 (1981)
- 4. Banach S: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. **3**(1), 133–181 (1922)
- 5. Nadler Jr SB: Multi-valued contraction mappings. Pac. J. Math. **30**(2), 475–488 (1969)
- 6. Frigon M, O'Regan D: Fuzzy contractive maps and fuzzy fixed points. Fuzzy Sets Syst. 129(1), 39–45 (2002)
- Azam A, Arshad M: A note on "fixed point theorems for fuzzy mappings" by p. vijayaraju and m. marudai. Fuzzy Sets Syst. 161(8), 1145–1149 (2010)
- 8. Azam A, Beg I: Common fuzzy fixed points for fuzzy mappings. Fixed Point Theorem Appl. 2013(14), 1–11 (2013)
- 9. Bose RK, Sahani D: Fuzzy mappings and fixed point theorems. Fuzzy Sets Syst. 21, 53–58 (1987)
- 10. Latif A, Roldán A, Sintunaravat W: On common α -fuzzy fixed points with applications. Fixed Point Theory Appl. **2014**(234), 1–22 (2014)
- 11. Phiangsungnoen S, Sintunavarat W, Kumam P: Common α -fuzzy fixed point theorems for fuzzy mappings via β_F -admissible pair. Journal of Intelligent and Fuzzy Systems. **27**(5), 2463–2472 (2014)
- 12. Vijayaraju P, Marudai M: Fixed point theorems for fuzzy mappings. Fuzzy Sets Syst. **135**(3), 401–408 (2003)
- 13. Estruch VD, Vidal A: A note on fixed fuzzy points for fuzzy mappings. Rend. Istit. Mat. Univ. Trieste. 32, 39–45 (2001)
- 14. Azam A, Beg I: Common fixed points of fuzzy maps. Math. Comput. Model. 49(7), 1331–1336 (2009)
- Sedghi S, Shobe N, Altun I: A fixed fuzzy point for fuzzy mappings in complete metric spaces. Math. Commun. 13(2), 289–294 (2008)
- Phiangsungnoen S, Sintunavarat W, Kumam P: Fuzzy fixed point theorems in Hausdorff fuzzy metric spaces. J. Inequalities Appl. 2014(201), 1–10 (2014)
- Turkoglu D, Rhoades B: A fixed fuzzy point for fuzzy mapping in complete metric spaces. Math. Commun. 10(2), 115–121 (2005)
- 18. Samet B, Vetro C, Vetro P: Fixed point theorems for α - ψ -contractive type mappings. Nonlinear Anal. Theory Methods Appl. **75**(4), 2154–2165 (2012)
- Asl JH, Rezapour S, Shahzad N: On fixed points of α-ψ-contractive multifunctions. Fixed Point Theory Appl. 2012(212), 1–6 (2012)
- 20. Mohammadi B, Rezapour S, Shahzad N: Some results on fixed points of α - ψ -ciric generalized multifunctions. Fixed Point Theory Appl. **2013**(24), 1–10 (2013)
- 21. Phiangsungnoen S, Sintunavarat W, Kumam P: Fuzzy fixed point theorems for fuzzy mappings via β -admissible with applications. J. Uncertain. Anal. Appl. **2**(20), 1–11 (2014)
- 22. Rashid M, Azam A, Mehmood N: L-fuzzy fixed points theorems for L-fuzzy mappings via β_{F_L} -admissible pair. Sci. World J. **2014**, 1–8 (2014)
- Rashid M, Kutbi MA, Azam A: Coincidence theorems via alpha cuts of L-fuzzy sets with applications. Fixed Point Theory Appl. 2014(212), 1–16 (2014)

- 24. Chauhan S, Alamgir Khan M, Sintunavarat W: Common fixed point theorems in fuzzy metric spaces satisfying φ-contractive condition with common limit range property. Abstr. Appl. Anal. **2013**, 1–14 (2013)
- 25. Qiu D, Lu C, Zhang W, Mo Y: On common fixed point theorems in the stationary fuzzy metric space of the bounded closed sets. Abstr. Appl. Anal. **2013**, 1–11 (2013)
- Roldán A, Sintunavarat W: Common fixed point theorems in fuzzy metric spaces using the CLRg property. Fuzzy Sets Syst. 282, 131–142 (2016)
- Saadati R, Razani A, Adibi H: A common fixed point theorem in L-fuzzy metric spaces. Chaos, Solitons Fractals. 33(2), 358–363 (2007)
- 28. Abbas M, Ali B, Sintunavarat W, Kumam P: Tripled fixed point and tripled coincidence point theorems in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. **2012**(187), 1–16 (2012)
- 29. Kumam P, Martínez-Moreno J, Roldán A, Roldán C: Berinde-Borcut tripled fixed point theorem in partially ordered (intuitionistic) fuzzy normed spaces. J. Inequalities Appl. **2014**(47), 1–7 (2014)
- 30. Martinez-Moreno J, Kumam P: Tripled fixed point theorems for contractions in partially ordered *L*-fuzzy normed spaces. J. Nonlinear Sci. Appl. **9**(5), 3197–3202 (2016)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com