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Introduction

Solving real-world problems becomes apparently easier with the introduction of fuzzy
set theory in 1965 by L. A Zadeh [1], as it helps in making the description of vagueness
and imprecision clear and more precise. Later in 1967, Goguen [2] extended this idea to
L-fuzzy set theory by replacing the interval [0, 1] with a completely distributive lattice L.

In 1981, Heilpern [3] gave a fuzzy extension of Banach contraction principle [4] and
Nadler’s [5] fixed point theorems by introducing the concept of fuzzy contraction map-
pings and established a fixed point theorem for fuzzy contraction mappings in a complete
metric linear spaces. Frigon and Regan [6] generalized the Heilpern theorem under a con-
tractive condition for 1-level sets of a fuzzy contraction on a complete metric space, where
the 1-level sets need not be convex and compact. Subsequently, various generalizations
of result in [6] were obtained (see [7—12]). While in 2001, Estruch and Vidal [13] estab-
lished the existence of a fixed fuzzy point for fuzzy contraction mappings (in the Helpern’s
sense) on a complete metric space. Afterwards, several authors [11, 14—17] among others
studied and generalized the result in [13].

On the other hand, the concept of 8-admissible mapping was introduced by Samet
et al. [18] for a single-valued mappings and proved the existence of fixed point theorems
via this concept, while Asl et al. [19] extended the notion to o —y-multi-valued mappings.
Afterwards, Mohammadi et al. [20] established the notion of B-admissible mapping for
the multi-valued mappings (different from the S,-admissible mapping provided in [19]).

Recently, Phiangsungnoen et al. [21] use the concept of B-admissible defined by
Mohammadi et al. [20] to proved some fuzzy fixed point theorems. In 2014, Rashid
et al. [22] introduced the notion of Br, -admissible for a pair of L-fuzzy mappings and uti-
lized it to proved a common L-fuzzy fixed point theorem. The notions of d7°-metric and
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Hausdorff distances for L-fuzzy sets were introduced by Rashid et al. [23], they presented
some fixed point theorems for L-fuzzy set valued-mappings and coincidence theorems
for a crisp mapping and a sequence of L-fuzzy mappings. Many researchers have studied
fixed point theory in the fuzzy context of metric spaces and normed spaces (see [24—27]
and [28-30], respectively).

In this manuscript, the authors developed a new L-fuzzy fixed point theorems on a com-
plete metric space via Br, -admissble mapping in sense of Mohammadi et al. [20] which
is a generalization of main result of Phiangsungnoen et al. [21]. We also construct some
examples to support our results and infer as an application, the existence of L-fuzzy fixed
points in a complete partially ordered metric space.

Preliminaries
In this section we present some basic definitions and preliminary results which we

will used throughout this paper. Let (X,d) be a metric space, CB(X) = {A
A is closed and bounded subsets of X} and C(X) = {A : A is nonempty compact
subsets of X}.

Let A, B € CB(X) and define
d(x,A) = inf d(x, ),
yeA
d(A,B) = inf d(x,y),
xe€A,yeB
Pay (%, A) = inf d(x,y),
€Ay

leL (ArB) = lnf d(x;)/);

xX€Ay I ,YE€By I

P(A, B) = sup po, (4, B),
or

H (Aa;,Bay) = max{ sup d (x,By;), sup d (7, Aa;) },

xeAaL )/EBO(L
DOtL(A’B) = H (AOtL)BOtL) ’
dg; (A, B) = sup Dy, (A, B).
oL

Definition 1 A fuzzy set in X is a function with domain X and range in [0,1]. i.e A is a
fuzzy setif A : X —[0,1].

Let F(X) denotes the collection of all fuzzy subsets of X. If A is a fuzzy set and x € X,
then A(x) is called the grade of membership of x in A. The a-level set of A is denoted by
[A]y and is defined as below:

Al ={x € X : A(x) > a},fora € (0,1],
[A]o = closure of the set {x € X : A(x) > 0}.

Definition 2 A partially ordered set (L, <1) is called

i alattice;ifavbelL,anbelforanya,bel,
i acomplete lattice; if \/ A€ L, NA €L foranyA C L,
iii  adistributive lattice; ifa~ (b Ac) = (aV b) A (aV ¢),
anbVvec)y=(@nb)Vv(anc) foranya,b,c €L,
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iv acomplete distributive lattice; ifa v (/\ b;) = /\;(a A b)),
an(\/;b) =\ (anb) foranya,b; €L,

v abounded lattice; if it is a lattice and additionally has a top element 1 and a
bottom element Oy, which satisfy 0y < x <1 1; foreveryx € L.

Definition 3 An L-fuzzy set A on a nonempty set X is a function A : X —> L, where L is
bounded complete distributive lattice with 11 and Of.

Definition 4 (Goguen [2]). Let L be a lattice, the top and bottom elements of L are 11,
and 0y, respectively, and ifa,b € L,avb = 1 and anb = O then b is a unique complement
of a denoted by a.

Remark 1 IfL =[0, 1], then the L-fuzzy set is the special case of fuzzy sets in the original
sense of Zadeh [1], which shows that L-fuzzy set is larger.
Let F1(X) denotes the class of all L-fuzzy subsets of X. Define O (X) C F1(X) as below:
91(X) ={A € FL(X) : Ay, is nonempty and compact, oz € L\{0z}}.
The ay-level set of an L-fuzzy set A is denoted by Ay, and define as below:

Ay, ={x e X:ap <1 Ax)} for oy € L\{0r},
AOL = {x eX:0 <1 A(x)}

Where B denotes the closure of the set B (Crisp).
For A,B € F1(X), A C Bifandonlyif A(x) <, B(x) forall x € X. If there exists an
ar € L\{0.} such that Ay, , By, € CB(X), then we define

DDtL (A7 B) - H(AaL; BDtL)'
If Ay;, By, € CB(X) for each oy € L\{0.}, then we define

d° (A, B) = sup Dy, (A, B).
ar

We note that d7° is a metric on F7(X) and the completeness of (X,d) implies that
(C(X), H) and (F1(X), d;°) are complete.

Definition 5 Let X be an arbitrary set, Y be a metric space. A mapping T is called L-
fuzzy mapping, if T is a mapping from X to Fr(Y)(i.e class of L-fuzzy subsets of Y). An
L-fuzzy mapping T is an L-fuzzy subset on X x Y with membership function T (x)(y). The
function T (x)(y) is the grade of membership of y in T (x).

Definition 6 Let X be a nonempty set. For x € X, we write {x} the characteristic function
of the ordinary subset {x} of X. The characteristic function of an L-fuzzy set A, is denoted
by x1, and define as below:

| 0L ifx ¢ A;

Ka = 1z ifx € A.

Definition 7 Let (X, d) be a metric space and T : X —> Fr(X). A point z € X is said to
be an L-fuzzy fixed point of T if z € [1%]y,, for some oy, € L\{Or}.
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Remark 2 Ifa; = 1;, then it is called a fixed point of the L-fuzzy mapping T.

Definition 8 (Asl et al. [19]). Let X be a nonempty set. T : X —> 2%, where 2% is
a collection of nonempty subsets of X and B : X x X —>[0,00). We say that T is P,-
admissible if

forx,y € X, B(x,y) = 1= Bu(Tx, Ty) > 1,
where

B« (Tx, Ty) := inf{B(a,b) : a € Tx and b € Ty}.

Definition 9 (Mohammadi et al. [20]). Let X be a nonempty set. T : X —> 2X, where
2% is a collection of nonempty subsets of X and f : X x X —[0,00). We say that T is -
admissible whenever for each x € X andy € Tx with B(x,y) > 1, we have B(y,z) > 1 for
allz € Ty.

Remark 3 If T is B.-admissible mapping, then T is also B-admissible mapping.

Example 1 Let X =[0, 00) and d(x,y) = |x—y|. Define T : X —> 2X and B : X xX —
[0, 00) by

03], fosx=<1;
T(x)_{[xz,oo), ifx > 1.

and

1, ifx,y €0, 1];
0, otherwise.

ﬁ(x»y) = {

Then, T is B-admissible.

Main Result
L-fuzzy Fixed Point Theorems
Now, we recall some well known results and definitions to be used in the sequel.

Lemma 1 Let x € X,A € Wr(X),and {x} be an L-fuzzy set with membership function
equal to characteristic function of set {x}. If {x} C A, then p,, (x,A) = 0for oy € L\{0.}.

Lemma 2 (Nadler [5]). Let (X,d) be a metric space and A,B € CB(X). Then for any
a € A there exists b € B such that d(a,b) < H(A, B).

Definition 10 Let WV be the family of non-decreasing functions ¥ :[0,00) —>[0, 00)
such that y .-, Y"(¢) < oo forall t > O where " is the nth iterate of . It is known that
Y(t) < tforallt > 0andy(0)=0.

Below, we introduce the concept of S-admissible in the sense of Mohammadi et al. [20]

for L-fuzzy mappings.

Definition 11 Let (X, d) be a metric space, B : X x X —>[0,00) and T : X —> Fr(X).
A mapping T is said to be Br,-admissible whenever for each x € X and y € [Tx]q, with
Bx,y) = 1, we have B(y,z) > 1 for all z € [T)]y,, where af, € L\{OL}.
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Here, the existence of an L-fuzzy fixed point theorem for some generalized type of
contraction L-fuzzy mappings in complete metric spaces is presented.

Theorem 1 Let (X, d) be a complete metric space, ap € L\{Or}and T : X — Qr(X)
be an L-fuzzy mapping. Suppose that there exist € W and p : X x X —>[0,00) such
that for all x,y € X,

B(x,¥) Dy, (Tx, Ty) < ¥ (R2(x,)) + K min {pozL % Tx), pay, 0, 1Y), Pay (%, 1Y), Py (9, Tx)} ’
(1)

where K > 0 and

o (x) T; ) + o y Tx)
Qx,y) = max{d(x,y),p%(x, TX), po; (¥, Ty),p L ) : Po,(y }

If the following conditions hold,

i if{x,} is a sequence in X so that B(x,, x,+1) > 1 and x,, — b(n — 00), then
Bxu, b) > 1,
ii.  there exists xg € X and x1 € [Txo]o, so that B(xo,x1) > 1,
iii. T is BF,-admissible,
iv. 4 is continuous.

Then T has atleast an L-fuzzy fixed point.

Proof For xp € X and x1 € [Txplq; by condition (ii) we have 8(xo,x1) > 1. Since [Txo]y;
is nonempty and compact, then there exists x2 € [Tx1],,, such that

d(x1,%2) = pa; (%1, T1) < Dy, (Txo, Tx1). (2)
By (2) and the fact that B(x9,x1) > 1, we have

d(x1,%2) < Dy, (Txo, Tx1)
< B(x0,%1)Dy; (Tx0, Tx1)
< ¥ (Q(x0,%1)) + K min {pg, (x0, Txo), pa (x1, Tx1),
Poy %0, T&1), pay (%1, Txo) }
< ¥ (Q(x0,%1)) + K min {pa, (x0,%1), Pa; (1, %2), Pay (%0, %2), 0}
= ¥ (L (%0, x1)).

Similarly, For xp € X, we have [Tx>],, which is nonempty and compact subset of X, then
there exists x3 € [Tx3]q;, such that

d(xZ) x3) = Pay (xZ) Tx2) =< DOZL(TxI» sz)‘ (3)
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For xo € X and x1 € [Txolo, with B(x0,%1) > 1, by condition (iii) we have B(x1,x2) > 1.
From (1), (2) and the fact that 8(x1,x2) > 1, we have

d(x2,%3) < Dy, (Tx1, Tx2)
< B(x1,%2)Dqy; (Tx1, Tx2)
< Y(Q(x1,%2)) + K min {pa, (1, Tx1), po, (%2, Txa),

Pay (%1, Tx2), Pay (%2, Tx1) |

< Y (Q(x1,%2)) + K min {pg, (x1,%2), pa; (¥2,%3), Pay (%1,%3), 0}
= ¥ (Q2(x1,%2)).

Continuing in this pattern, a sequence {x,} is obtained such that, for eachn € N, x,, €

[Txp—1]a; with B(x,—1,%,) > 1, we have

d (Xny Xpy1) < U (Q Fn—1,%1))

where

Q (y—1,%,) = max{d (Xy—1,%,) »Pag -1, Txn—-1) ,

Pay X, Txn)

Pey ®n—1, Tx) + pay Xn, Thp—1) }
2

<max  d Xu—1,%1) ,d X, Xnt1) »

d (Xn—1,%nt1)
2

= max{d (xnfl’ xn) ’d (xn; xn+1)}'
Hence,
d (X Xp11) < W (max{d (xy—1,%n) , d X, Xnt1)}) (4)

for all #n € N. Now, if there exists n* € N such that py, (x+, Tx,+) = 0 then by Lemma 1,
we have {x,+} C Tx,», that is x,» € [Tx,+]o, implying that x,+ is an L-fuzzy fixed point of
T. So, we suppose that for each n € N, py, (x,,, Tx,,) > 0, implying that d(x,,—1,x,) > 0 for
all n € N. Thus, if d(xy, 441) > d(x,—1,%,) for some n € N, then by (4) and Definition 10,

we have

A%y Xpy1) < Y (d@ns Xn11)) < A%y Xn11)s
which is a contradiction. Thus, we have

d (Xpy Xny1) < ¥ (d (Xn—1,%n))
<Y (¥ (d ®n—2,%1-1))
(5)
=< I/fnd (x07 xl) .

Next we show that, {x,} is a Cauchy sequence in X. Since ¥ € W and continuous, then
there exist € > 0 and a positive integer & = h(¢) such that

> y'd (o, x1) < €. (6)

n>h

Page 6 of 13
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Let m > n > h. By triangular inequality, (5) and (6), we have

m—1

d(xnrxm) < Z d(xerk-f—l)

k=n

m—1

< Y vkd (xo,3)

k=n

<Y Yld@o,m) <e.

n>h

Thus, {x,} is Cauchy sequence and since X is complete therefore we have b € X so that
x*n — basn — 00.Now, we show that b €[Tb],, . Let us assume the contrary and consider

d(b,[Thla, ) < d(b,xp+1) +d (xn+1, [Thle, )
< d(b,xn11) + H ([Txulay  [Thla, )
< d(b,x4+1) + Dq; (Txy, Th)
=< d(b,%n41) + B(xn, b) Doy (Txy, T)

< Y (Q(xy, b)) 4+ K min {PaL (%5 Txn)yPaL (b, Tb),paL (Xn, Tb):paL (b, Txn)}

<y ( max{d(xm b)»PaL X Txn), Pay (b, Th), Pay (o, 1) ;—paL (b, Txn) })

+ K min {po; %n, Tén), Pay (b, TH), Py (%> T), Py (bs Ton) }
= ¥ (o, (b, TD)).

(7)
Letting n — oo in (7), we have
d (b,[Tbla; ) <V (po, (b, TD))
< Pa; (b, Th)
=d (b, [Tbly, ),
a contraction. Hence,
b e[Tb]y, , ar € L\{0r}.
O

Next, we give an example to support the validity of our result.

Example 2 Let X =[0, 1], d(x,y) = |x—y|forallx,y € X, then (X, d) is a complete metric
space. Let L = {n,k,w, Tt} withn < k < T, and n < o <[ T, where k and w are not
comparable, therefore (L, <) is a complete distributive lattice. Define T : X — Qp(X)

as below:
. x.
T, #Oftfg!
K, iff <t<%
T(x)(@) = ,f,? Y
n, l,f£<t§§;
L X

Page 7 of 13
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For every x € X, ay = t exists for which
x
[Tx]f = [O, g] .
Define B : X x X —>[0, 00) as below:
1, ifx =y
x+1, ifx #y.

Then, it is easy to see that T is Br, -admissible. For each x,y € X we have

ﬁ(x;y)DOlL(Txr Ty) = ﬂ(x’y)H ([Tx]O(L ’ [Ty]O(L )

= ﬂ(x,wH([o’Z]’ [OZD

= éﬁ(x,y)lx =l

1

ﬂ@ﬁz{

< %d(x,y)
< ¥ (Q(x)
+ K min {pa,; (x, T%), pa, 0> TV)s Pay (% T), poy, (9, T) } -

Where y (t) = %for all t > 0 and K > 0. Conditions (ii) and (iii) of Theorem 1 holds
obviously. Thus, all the conditions of Theorem 1 are satisfied. Hence, there exists a 0 € X
such that 0 € [TO],.

Below, we introduce the concept of S,-admissible for L-fuzzy mappings in the sense of
Asl et al. [19].

Definition 12 Let (X, d) be a metric space, B : X x X —>[0,00) and T : X —> Fr(X).
A mapping T is said to be By, -admissible if
for X,y € X,ap € L\{OL}’ /3(96,)’) >1= ,3* ([Tx]aL ’ [Ty]aL) >1,

where

B* ([T¥lay » []ay ) := inf{B(a,b) : a € [Tx]o, and b € [T, }.

Theorem 2 Let (X, d) be a complete metric space, af € L\{OL} and T : X — Qr(X)
be an L-fuzzy mapping. Suppose that there exist € W and B : X x X —[0,00) such
that for all x,y € X,

B, y)Dg,; (Tx, Ty) < ¥ (Q2(x,y))
+ K min {pa, (%, Tx), po, 9, TV), Pey (%, TV), poy, (9, T) }
where K > 0 and

Py (%, TY) + pa, (y, Tx) }
5 )

Q(x,y) = max {d(x, ¥ Pay (%, 1%), po; (9, Ty),
If the following conditions hold,

i if{x,} is a sequence in X such that B(x,,x,+1) > 1 andx, — u asn — 00, then

,B(xn; L{) 2 1y
ii.  there existxg € X and x1 € [Txolo, such that B(xo,x1) > 1,

Page 8 of 13
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iii. Tis ,B;_iL -admissible,
iv. i is continuous.

Then, T has atleast an L-fuzzy fixed point.
Proof By Remark 3 and Theorem 1 the result follows immediately. O
Taking K = 0 in Theorem 1 and 2, we obtain the following corollary.
Corollary 1 Let (X, d) be a complete metric space, ap € L\{Or} and T : X — Qr(X)

be an L-fuzzy mapping. Suppose that there exist f € W and B : X x X —>[0,00) such
that for all x,y € X,

B(x,y)Day (T Ty) < < max {d(x, D D (& T, pay (s T, P2 ho 0. %) } )

If the following conditions hold,

i if{xy,} is a sequence in X such that B(xy,x,+1) > 1 andx,, - u asn — oo, then
By, u) > 1,
ii.  there existxo € X and x1 € [Txo]o, such that B(xo,x1) > 1,
iii. T is Br, -admissible (or ﬁ;L -admissible),
iv. W is continuous.

Then, T has atleast an L-fuzzy fixed point.
If B(x,y) = 1forallx,y € X. Theorem 1 or 2 will reduce to the following result.

Corollary 2 Let (X,d) be a complete metric space, af € L\{O} and T : X — Q1 (X)
be an L-fuzzy mapping. Suppose that there exist v € V such that for all x,y € X,

Dy (Tx, Ty) < ¥(Q(x,9)) + K min {pq, (x, Tx), pe; 0 T); Pay (%, TY), Pay, 0, TX) }

where K > 0 and

Q(x,y) = max {d % 9)s Py %, TX), poy (95 T),

Par ® TY) + po; (9, T) }
> )

Then, T has atleast an L-fuzzy fixed point.

By taking K = 0 and B(x,y) = 1 for allx,y € X in Theorem 1 or 2, Corollary 1 or 2, we
have the following.

Corollary 3 Let (X, d) be a complete metric space, af € L\{Or} and T : X — Q1 (X)
be an L-fuzzy mapping. Suppose that there exist € V such that for all x,y € X,

Dy, (Tx, Ty)

<y ( max {d(x, ) Pay (%, T), poy, (v, Ty),

Pay % TY) + pa, (y, TX) } )
5 )

Then, T has atleast an L-fuzzy fixed point.

Page 9 of 13
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Remark 4

i Ifwe consider L = [0,1] in Theorem 1 and 2, Corollary 1, 2 and 3 we get Theorem
1, 2 Corollary 2,4 and 5 of [21] respectively;

ii  Ifar =1y in Theorem 1 and 2, Corollary 1, 2 and 3, then by Remark 2 the L-fuzzy
mappings T has atleast a fixed point.

Applications
In this section, we establish as an application the existence of an L-fuzzy fixed point
theorems in complete partially ordered metric spaces.

Below, we present some results which are essential in the remaining part of our work.

Definition 13 Let X be a nonempty set. Then, (X, d, <) is said to be an ordered metric
space if (X, d) is a metric space and (X, <) is a partially ordered set.

Definition 14 Let (X, <X) be a partially ordered set. Then, x,y € X are said to be
comparable if x < y ory < x holds.

For a partially ordered set (X, <), we define
A= {(x,y) GXXX:xﬁyoryﬁx}.
Definition 15 A partially ordered set (X, <X) is said to satisfy the ordered sequential

limit property if (x,,x) € A for all n € N, whenever a sequence x,, — x as x — 00 and
(X, Xnt1) € Aforalln € N.

Definition 16 Let (X, <) be a partially ordered set and oy € L\{0r}. An L-fuzzy map-
ping T : X — Qp(X) is said to be comparative, if for each x € X and y € [Tx],, with
(%,9) € A, we have (y,z) € A forall z € [Ty]q,.

Now, the existence of an L-fuzzy fixed point theorem for L-fuzzy mappings in complete
partially ordered metric spaces is presented.

Theorem 3 Let (X, d, <) be a complete partially ordered metric space, oy € L\{0OL} and
T :X — Qr(X) be an L-fuzzy mapping. Suppose that there exist y € WV such that for all
(xy) € A,

Dy, (Tx, Ty) = ¥(2(x,9)) + K min{pe,; (%, T%), pay (5 T¥): Pay (% T9), Pe, (v, TX)}, - (8)

where K > 0 and

Q(x,7) = max {d(x, ¥, oy (%, Tx), poy, (95 TY), Py, % TY) + Py (0, T) } .

2
If the following conditions hold,

I X satisfies the order sequential limit property,
II.  there existxop € X and %1 € [Txolq; such that (xo,%1) € A,

III. T is comparative L-fuzzy mapping,

IV. 4 is continuous.

Then, T has atleast an L-fuzzy fixed point.
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Proof Let B : X x X —>[0, 00) be defined as:

1if (x,y) en;

Py = lo if (x,7) ¢ A.

Now by condition (II), we have B(xp,x1) > 1 which implies that condition (ii) of
Theorem 1 holds. And since T is comparative L-fuzzy mapping, then condition (iii) of
Theorem 1 follows. By (8) and for all x, y € X, we have

B, y)Dy, (Tx, Ty)
< Y (Q(®, ) + K min {py, %, Tx), pe; 0 T); Pay (%, TY), Pay (0 Tx) } .

Condition (i) of Theorem 1 also holds by condition (I). Now that all the hypothesis
of Theorem 1 are fulfilled, hence the existence of the L-fuzzy fixed point for L-fuzzy
mapping T follows. O

Applying similar technique in the proof of Theorem 3 with Corollary 1, we arrive at the

following result.

Corollary 4 Let (X, d, <) be a complete partially ordered metric space, o € L\{Or} and
T :X — Qr(X) be an L-fuzzy mapping. Suppose that there exist v € V such that for all
(x,9) €A,

Dy (T, Ty) < ¥ ( max {d(x,y>, Py (6 T), pay (3, Ty, P T+ Py 0, 1) } )

2
If the following conditions hold,

I X satisties the order sequential limit property,
II.  there exist xo € X and x1 € [Txolq, such that (xo,x1) € A,
III. T is comparative L-fuzzy mapping,
IV. 4 is continuous.

Then, T has at least an L-fuzzy fixed point.

Setting B(x,y) = 1 for all (x,y) € A and using similar argument in the proof of
Theorem 3 with Corollary 2 and 3 we get the followings, respectively.

Corollary 5 Let (X, d, <) be a complete partially ordered metric space, a € L\{Or} and
T : X — Qr(X) be an L-fuzzy mapping. Suppose that there exist v € V such that for all
(x,9) € A,

Dey (T, Ty) < ¥(Q(%,)) + K min {pa,; (%, T%), pe; 0 TV), Doy % T), Pay (0, TH) }

where K > 0 and

Q(x,y) = max {”’ (5, 9) D, (5, T, g 3, Ty), 2o D)+ P00 1) } ‘

2
Then, T has at least an L-fuzzy fixed point.

Corollary 6 Let (X, d, <) be a complete partially ordered metric space, ar, € L\{Or} and
T :X — Qr(X) be an L-fuzzy mapping. Suppose that there exist v € V such that for all
) €A,
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o (% 1Y) + poy (9, T
DaL(Tx,Ty)51//(max{d(x,y),paL(x,Tx),paL(y,Ty),p @ 1Y) + P, & x)})

2

Then, T has at least an L-fuzzy fixed point.

Remark 5

i, Ifwe consider L = [0,1] in Theorem 3 and Corollary 4 above, we get Theorem 3
and Corollary 7 of [21], respectively;

ii.  Ifay =1y in Theorem 3, Corollary 4, 5 and 6, then by Remark 2 the L-fuzzy
mappings T has at least a fixed point.
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