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Abstract

In this paper, the authors use the idea of βFL -admissible mappings to prove some
L-fuzzy fixed point theorems for a generalized contractive L-fuzzy mappings. Some
examples and applications to L-fuzzy fixed points for L-fuzzy mappings in partially
ordered metric spaces are also given, to support main findings.
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Introduction
Solving real-world problems becomes apparently easier with the introduction of fuzzy
set theory in 1965 by L. A Zadeh [1], as it helps in making the description of vagueness
and imprecision clear and more precise. Later in 1967, Goguen [2] extended this idea to
L-fuzzy set theory by replacing the interval [0, 1] with a completely distributive lattice L.
In 1981, Heilpern [3] gave a fuzzy extension of Banach contraction principle [4] and

Nadler’s [5] fixed point theorems by introducing the concept of fuzzy contraction map-
pings and established a fixed point theorem for fuzzy contraction mappings in a complete
metric linear spaces. Frigon and Regan [6] generalized the Heilpern theorem under a con-
tractive condition for 1-level sets of a fuzzy contraction on a completemetric space, where
the 1-level sets need not be convex and compact. Subsequently, various generalizations
of result in [6] were obtained (see [7–12]). While in 2001, Estruch and Vidal [13] estab-
lished the existence of a fixed fuzzy point for fuzzy contractionmappings (in the Helpern’s
sense) on a complete metric space. Afterwards, several authors [11, 14–17] among others
studied and generalized the result in [13].
On the other hand, the concept of β-admissible mapping was introduced by Samet

et al. [18] for a single-valued mappings and proved the existence of fixed point theorems
via this concept, while Asl et al. [19] extended the notion to α−ψ-multi-valuedmappings.
Afterwards, Mohammadi et al. [20] established the notion of β-admissible mapping for
the multi-valued mappings (different from the β∗-admissible mapping provided in [19]).
Recently, Phiangsungnoen et al. [21] use the concept of β-admissible defined by

Mohammadi et al. [20] to proved some fuzzy fixed point theorems. In 2014, Rashid
et al. [22] introduced the notion of βFL-admissible for a pair of L-fuzzy mappings and uti-
lized it to proved a common L-fuzzy fixed point theorem. The notions of d∞

L -metric and
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Hausdorff distances for L-fuzzy sets were introduced by Rashid et al. [23], they presented
some fixed point theorems for L-fuzzy set valued-mappings and coincidence theorems
for a crisp mapping and a sequence of L-fuzzy mappings. Many researchers have studied
fixed point theory in the fuzzy context of metric spaces and normed spaces (see [24–27]
and [28–30], respectively).
In thismanuscript, the authors developed a new L-fuzzy fixed point theorems on a com-

plete metric space via βFL-admissble mapping in sense of Mohammadi et al. [20] which
is a generalization of main result of Phiangsungnoen et al. [21]. We also construct some
examples to support our results and infer as an application, the existence of L-fuzzy fixed
points in a complete partially ordered metric space.

Preliminaries
In this section we present some basic definitions and preliminary results which we
will used throughout this paper. Let (X, d) be a metric space, CB(X) = {A :
A is closed and bounded subsets of X} and C(X) = {A : A is nonempty compact
subsets of X}.
Let A,B ∈ CB(X) and define

d(x,A) = inf
y∈A

d(x, y),

d(A,B) = inf
x∈A,y∈B

d(x, y),

pαL(x,A) = inf
y∈AαL

d(x, y),

pαL(A,B) = inf
x∈AαL ,y∈BαL

d(x, y),

p(A,B) = sup
αL

pαL(A,B),

H
(
AαL ,BαL

) = max
{

sup
x∈AαL

d
(
x,BαL

)
, sup
y∈BαL

d
(
y,AαL

) }
,

DαL(A,B) = H
(
AαL ,BαL

)
,

d∞
αL(A,B) = sup

αL
DαL(A,B).

Definition 1 A fuzzy set in X is a function with domain X and range in [0, 1]. i.e A is a
fuzzy set if A : X −→[0, 1].

Let F(X) denotes the collection of all fuzzy subsets of X. If A is a fuzzy set and x ∈ X,
then A(x) is called the grade of membership of x in A. The α-level set of A is denoted by
[A]α and is defined as below:

[A]α = {x ∈ X : A(x) ≥ α}, for α ∈ (0, 1],
[A]0 = closure of the set {x ∈ X : A(x) > 0}.

Definition 2 A partially ordered set (L,�L) is called

i a lattice; if a ∨ b ∈ L, a ∧ b ∈ L for any a, b ∈ L,
ii a complete lattice; if

∨
A ∈ L,

∧
A ∈ L for any A ⊆ L,

iii a distributive lattice; if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for any a, b, c ∈ L,
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iv a complete distributive lattice; if a ∨ (
∧

bi) = ∧
i(a ∧ bi),

a ∧ (
∨

i bi) = ∨
i(a ∧ bi) for any a, bi ∈ L,

v a bounded lattice; if it is a lattice and additionally has a top element 1L and a
bottom element 0L, which satisfy 0L �L x �L 1L for every x ∈ L.

Definition 3 An L-fuzzy set A on a nonempty set X is a function A : X −→ L, where L is
bounded complete distributive lattice with 1L and 0L.

Definition 4 (Goguen [2]). Let L be a lattice, the top and bottom elements of L are 1L
and 0L respectively, and if a, b ∈ L, a∨b = 1L and a∧b = 0L then b is a unique complement
of a denoted by á.

Remark 1 If L =[0, 1], then the L-fuzzy set is the special case of fuzzy sets in the original
sense of Zadeh [1], which shows that L-fuzzy set is larger.

LetFL(X) denotes the class of all L-fuzzy subsets ofX. DefineQL(X) ⊂ FL(X) as below:

QL(X) = {A ∈ FL(X) : AαL is nonempty and compact, αL ∈ L\{0L}}.
The αL-level set of an L-fuzzy set A is denoted by AαL and define as below:

AαL = {x ∈ X : αL �L A(x)} for αL ∈ L\{0L},
A0L = {x ∈ X : 0L �L A(x)}.

Where B denotes the closure of the set B (Crisp).
For A,B ∈ FL(X), A ⊂ B if and only if A(x) �L B(x) for all x ∈ X. If there exists an

αL ∈ L\{0L} such that AαL ,BαL ∈ CB(X), then we define

DαL(A,B) = H(AαL ,BαL).

If AαL ,BαL ∈ CB(X) for each αL ∈ L\{0L}, then we define

d∞
L (A,B) = sup

αL
DαL(A,B).

We note that d∞
L is a metric on FL(X) and the completeness of (X, d) implies that

(C(X),H) and (FL(X), d∞
L ) are complete.

Definition 5 Let X be an arbitrary set, Y be a metric space. A mapping T is called L-
fuzzy mapping, if T is a mapping from X to FL(Y )(i.e class of L-fuzzy subsets of Y). An
L-fuzzy mapping T is an L-fuzzy subset on X × Y with membership function T(x)(y). The
function T(x)(y) is the grade of membership of y in T(x).

Definition 6 Let X be a nonempty set. For x ∈ X, we write {x} the characteristic function
of the ordinary subset {x} of X. The characteristic function of an L-fuzzy set A, is denoted
by χLA and define as below:

χLA =
{
0L if x /∈ A;
1L if x ∈ A.

Definition 7 Let (X, d) be a metric space and T : X −→ FL(X). A point z ∈ X is said to
be an L-fuzzy fixed point of T if z ∈ [Tz]αL , for some αL ∈ L\{0L}.
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Remark 2 If αL = 1L, then it is called a fixed point of the L-fuzzy mapping T.

Definition 8 (Asl et al. [19]). Let X be a nonempty set. T : X −→ 2X , where 2X is
a collection of nonempty subsets of X and β : X × X −→[0,∞). We say that T is β∗-
admissible if

for x, y ∈ X,β(x, y) ≥ 1 =⇒ β∗(Tx,Ty) ≥ 1,

where

β∗(Tx,Ty) := inf {β(a, b) : a ∈ Tx and b ∈ Ty}.

Definition 9 (Mohammadi et al. [20]). Let X be a nonempty set. T : X −→ 2X , where
2X is a collection of nonempty subsets of X and β : X × X −→[0,∞). We say that T is β-
admissible whenever for each x ∈ X and y ∈ Tx with β(x, y) ≥ 1, we have β(y, z) ≥ 1 for
all z ∈ Ty.

Remark 3 If T is β∗-admissible mapping, then T is also β-admissible mapping.

Example 1 Let X =[0,∞) and d(x, y) = |x−y|. Define T : X −→ 2X and β : X×X −→
[0,∞) by

T(x) =
{ [

0, x3
]
, if 0 ≤ x ≤ 1;

[
x2 , ∞) , if x > 1.

and

β(x, y) =
{
1, if x, y ∈ [0, 1];
0, otherwise.

Then, T is β-admissible.

Main Result
L-fuzzy Fixed Point Theorems
Now, we recall some well known results and definitions to be used in the sequel.

Lemma 1 Let x ∈ X,A ∈ WL(X), and {x} be an L-fuzzy set with membership function
equal to characteristic function of set {x}. If {x} ⊂ A, then pαL(x,A) = 0 for αL ∈ L\{0L}.

Lemma 2 (Nadler [5]). Let (X, d) be a metric space and A,B ∈ CB(X). Then for any
a ∈ A there exists b ∈ B such that d(a, b) ≤ H(A,B).

Definition 10 Let � be the family of non-decreasing functions ψ :[0,∞) −→[0,∞)

such that
∑∞

n=1 ψn(t) < ∞ for all t > 0 where ψn is the nth iterate of ψ . It is known that
ψ(t) < t for all t > 0 and ψ(0) = 0.

Below, we introduce the concept of β-admissible in the sense of Mohammadi et al. [20]
for L-fuzzy mappings.

Definition 11 Let (X, d) be a metric space, β : X × X −→[0,∞) and T : X −→ FL(X).
A mapping T is said to be βFL-admissible whenever for each x ∈ X and y ∈ [Tx]αL with
β(x, y) ≥ 1, we have β(y, z) ≥ 1 for all z ∈ [Ty]αL , where αL ∈ L\{0L}.
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Here, the existence of an L-fuzzy fixed point theorem for some generalized type of
contraction L-fuzzy mappings in complete metric spaces is presented.

Theorem 1 Let (X, d) be a complete metric space, αL ∈ L\{0L} and T : X −→ QL(X)

be an L-fuzzy mapping. Suppose that there exist ψ ∈ � and β : X × X −→[0,∞) such
that for all x, y ∈ X,

β(x, y)DαL(Tx,Ty) ≤ ψ(�(x, y)) + K min
{
pαL(x,Tx), pαL(y,Ty), pαL(x,Ty), pαL(y,Tx)

}
,

(1)

where K ≥ 0 and

�(x, y) = max
{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

}
.

If the following conditions hold,

i. if {xn} is a sequence in X so that β(xn, xn+1) ≥ 1 and xn → b(n → ∞), then
β(xn, b) ≥ 1,

ii. there exists x0 ∈ X and x1 ∈ [Tx0]αL so that β(x0, x1) ≥ 1,
iii. T is βFL-admissible,
iv. ψ is continuous.

Then T has atleast an L-fuzzy fixed point.

Proof For x0 ∈ X and x1 ∈ [Tx0]αL by condition (ii) we have β(x0, x1) ≥ 1. Since [Tx0]αL
is nonempty and compact, then there exists x2 ∈ [Tx1]αL , such that

d(x1, x2) = pαL(x1,Tx1) ≤ DαL(Tx0,Tx1). (2)

By (2) and the fact that β(x0, x1) ≥ 1, we have

d(x1, x2) ≤ DαL(Tx0,Tx1)

≤ β(x0, x1)DαL(Tx0,Tx1)

≤ ψ(�(x0, x1)) + K min
{
pαL(x0,Tx0), pαL(x1,Tx1),

pαL(x0,Tx1), pαL(x1,Tx0)
}

≤ ψ(�(x0, x1)) + K min
{
pαL(x0, x1), pαL(x1, x2), pαL(x0, x2), 0

}

= ψ(�(x0, x1)).

Similarly, For x2 ∈ X, we have [Tx2]αL which is nonempty and compact subset of X, then
there exists x3 ∈ [Tx2]αL , such that

d(x2, x3) = pαL(x2,Tx2) ≤ DαL(Tx1,Tx2). (3)
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For x0 ∈ X and x1 ∈ [Tx0]αL with β(x0, x1) ≥ 1, by condition (iii) we have β(x1, x2) ≥ 1.
From (1), (2) and the fact that β(x1, x2) ≥ 1, we have

d(x2, x3) ≤ DαL(Tx1,Tx2)

≤ β(x1, x2)DαL(Tx1,Tx2)

≤ ψ(�(x1, x2)) + K min
{
pαL(x1,Tx1), pαL(x2,Tx2),

pαL(x1,Tx2), pαL(x2,Tx1)
}

≤ ψ(�(x1, x2)) + K min
{
pαL(x1, x2), pαL(x2, x3), pαL(x1, x3), 0

}

= ψ(�(x1, x2)).

Continuing in this pattern, a sequence {xn} is obtained such that, for each n ∈ N, xn ∈
[Txn−1]αL with β(xn−1, xn) ≥ 1, we have

d (xn, xn+1) ≤ ψ (� (xn−1, xn)) ,

where

� (xn−1, xn) = max
{
d (xn−1, xn) , pαL (xn−1,Txn−1) ,

pαL (xn,Txn) ,
pαL (xn−1,Txn) + pαL (xn,Txn−1)

2

}

≤ max
{
d (xn−1, xn) , d (xn, xn+1) ,

d (xn−1, xn+1)

2

}

= max{d (xn−1, xn) , d (xn, xn+1)}.

Hence,

d (xn, xn+1) ≤ ψ (max {d (xn−1, xn) , d (xn, xn+1)}) , (4)

for all n ∈ N. Now, if there exists n∗ ∈ N such that pαL(xn∗ ,Txn∗) = 0 then by Lemma 1,
we have {xn∗ } ⊂ Txn∗ , that is xn∗ ∈ [Txn∗ ]αL implying that xn∗ is an L-fuzzy fixed point of
T. So, we suppose that for each n ∈ N, pαL(xn,Txn) > 0, implying that d(xn−1, xn) > 0 for
all n ∈ N. Thus, if d(xn, xn+1) > d(xn−1, xn) for some n ∈ N, then by (4) and Definition 10,
we have

d(xn, xn+1) ≤ ψ(d(xn, xn+1)) < d(xn, xn+1),

which is a contradiction. Thus, we have

d (xn, xn+1) ≤ ψ (d (xn−1, xn))

≤ ψ (ψ (d (xn−2, xn−1))

...

≤ ψnd (x0, x1) .

(5)

Next we show that, {xn} is a Cauchy sequence in X. Since ψ ∈ � and continuous, then
there exist ε > 0 and a positive integer h = h(ε) such that

∑

n≥h
ψnd (x0, x1) < ε. (6)
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Letm > n > h. By triangular inequality, (5) and (6), we have

d (xn, xm) ≤
m−1∑

k=n
d

(
xk , xk+1

)

≤
m−1∑

k=n
ψkd (x0, x1)

≤
∑

n≥h
ψnd (x0, x1) < ε.

Thus, {xn} is Cauchy sequence and since X is complete therefore we have b ∈ X so that
xn → b as n → ∞. Now, we show that b ∈[Tb]αL . Let us assume the contrary and consider

d(b, [Tb]αL ) ≤ d(b, xn+1) + d
(
xn+1, [Tb]αL

)

≤ d(b, xn+1) + H
(
[Txn]αL , [Tb]αL

)

≤ d(b, xn+1) + DαL (Txn,Tb)

≤ d(b, xn+1) + β(xn, b)DαL(Txn,Tb)

≤ ψ(�(xn, b)) + K min
{
pαL(xn,Txn), pαL(b,Tb), pαL(xn,Tb), pαL(b,Txn)

}

≤ ψ

(
max

{
d(xn, b), pαL(xn,Txn), pαL(b,Tb),

pαL(xn,Tb) + pαL(b,Txn)
2

})

+ K min
{
pαL(xn,Txn), pαL(b,Tb), pαL(xn,Tb), pαL(b,Txn)

}

= ψ(pαL(b,Tb)).
(7)

Letting n → ∞ in (7), we have

d
(
b, [Tb]αL

) ≤ ψ
(
pαL(b,Tb)

)

< pαL(b,Tb)

= d
(
b, [Tb]αL

)
,

a contraction. Hence,

b ∈ [Tb]αL , αL ∈ L\{0L}.

Next, we give an example to support the validity of our result.

Example 2 Let X =[0, 1], d(x, y) = |x−y| for all x, y ∈ X, then (X, d) is a complete metric
space. Let L = {η, κ ,ω, τ } with η �L κ �L τ , and η �L ω �L τ , where κ and ω are not
comparable, therefore (L,�L) is a complete distributive lattice. Define T : X −→ QL(X)

as below:

T(x)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ , if 0 ≤ t ≤ x
6 ;

κ , if x6 < t ≤ x
4 ;

η, if x4 < t ≤ x
2 ;

ω, if x2 < t ≤ 1.
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For every x ∈ X, αL = τ exists for which

[Tx]τ =
[
0,

x
6

]
.

Define β : X × X −→[0,∞) as below:

β(x, y) =
{
1, if x = y;
x + 1, if x �= y.

Then, it is easy to see that T is βFL-admissible. For each x, y ∈ X we have

β(x, y)DαL(Tx,Ty) = β(x, y)H
(
[Tx]αL , [Ty]αL

)

= β(x, y)H
([

0,
x
6

]
,
[
0,

y
6

])

= 1
6
β(x, y)|x − y|

= 1
6
β(x, y)d(x, y)

<
1
3
d(x, y)

≤ ψ(�(x, y))

+ K min
{
pαL(x,Tx), pαL(y,Ty), pαL(x,Ty), pαL(y,Tx)

}
.

Where ψ(t) = t
3 for all t > 0 and K ≥ 0. Conditions (ii) and (iii) of Theorem 1 holds

obviously. Thus, all the conditions of Theorem 1 are satisfied. Hence, there exists a 0 ∈ X
such that 0 ∈ [T0]τ .

Below, we introduce the concept of β∗-admissible for L-fuzzy mappings in the sense of
Asl et al. [19].

Definition 12 Let (X, d) be a metric space, β : X × X −→[0,∞) and T : X −→ FL(X).
A mapping T is said to be β∗

FL-admissible if

for x, y ∈ X,αL ∈ L\{0L},β(x, y) ≥ 1 =⇒ β∗ (
[Tx]αL , [Ty]αL

) ≥ 1,

where

β∗ (
[Tx]αL , [Ty]αL

)
:= inf

{
β(a, b) : a ∈ [Tx]αL and b ∈ [Ty]αL

}
.

Theorem 2 Let (X, d) be a complete metric space, αL ∈ L\{0L} and T : X −→ QL(X)

be an L-fuzzy mapping. Suppose that there exist ψ ∈ � and β : X × X −→[0,∞) such
that for all x, y ∈ X,

β(x, y)DαL(Tx,Ty) ≤ ψ(�(x, y))

+ K min
{
pαL(x,Tx), pαL(y,Ty), pαL(x,Ty), pαL(y,Tx)

}
,

where K ≥ 0 and

�(x, y) = max
{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

}
.

If the following conditions hold,

i. if {xn} is a sequence in X such that β(xn, xn+1) ≥ 1 and xn → u as n → ∞, then
β(xn,u) ≥ 1,

ii. there exist x0 ∈ X and x1 ∈ [Tx0]αL such that β(x0, x1) ≥ 1,
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iii. T is β∗
FL-admissible,

iv. ψ is continuous.

Then, T has atleast an L-fuzzy fixed point.

Proof By Remark 3 and Theorem 1 the result follows immediately.

Taking K = 0 in Theorem 1 and 2, we obtain the following corollary.

Corollary 1 Let (X, d) be a complete metric space, αL ∈ L\{0L} and T : X −→ QL(X)

be an L-fuzzy mapping. Suppose that there exist ψ ∈ � and β : X × X −→[0,∞) such
that for all x, y ∈ X,

β(x, y)DαL(Tx,Ty) ≤ ψ

(
max

{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

} )
.

If the following conditions hold,

i. if {xn} is a sequence in X such that β(xn, xn+1) ≥ 1 and xn → u as n → ∞, then
β(xn,u) ≥ 1,

ii. there exist x0 ∈ X and x1 ∈ [Tx0]αL such that β(x0, x1) ≥ 1,
iii. T is βFL-admissible (or β∗

FL-admissible),
iv. ψ is continuous.

Then, T has atleast an L-fuzzy fixed point.

If β(x, y) = 1 for all x, y ∈ X. Theorem 1 or 2 will reduce to the following result.

Corollary 2 Let (X, d) be a complete metric space, αL ∈ L\{0L} and T : X −→ QL(X)

be an L-fuzzy mapping. Suppose that there exist ψ ∈ � such that for all x, y ∈ X,

DαL(Tx,Ty) ≤ ψ(�(x, y)) + K min
{
pαL(x,Tx), pαL(y,Ty), pαL(x,Ty), pαL(y,Tx)

}
,

where K ≥ 0 and

�(x, y) = max
{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

}
.

Then, T has atleast an L-fuzzy fixed point.

By taking K = 0 and β(x, y) = 1 for all x, y ∈ X in Theorem 1 or 2, Corollary 1 or 2, we
have the following.

Corollary 3 Let (X, d) be a complete metric space, αL ∈ L\{0L} and T : X −→ QL(X)

be an L-fuzzy mapping. Suppose that there exist ψ ∈ � such that for all x, y ∈ X,

DαL(Tx,Ty)

≤ ψ

(
max

{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

})
.

Then, T has atleast an L-fuzzy fixed point.
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Remark 4

i If we consider L = [0, 1] in Theorem 1 and 2, Corollary 1, 2 and 3 we get Theorem
1, 2 Corollary 2, 4 and 5 of [21] respectively;

ii If αL = 1L in Theorem 1 and 2, Corollary 1, 2 and 3, then by Remark 2 the L-fuzzy
mappings T has atleast a fixed point.

Applications
In this section, we establish as an application the existence of an L-fuzzy fixed point
theorems in complete partially ordered metric spaces.
Below, we present some results which are essential in the remaining part of our work.

Definition 13 Let X be a nonempty set. Then, (X, d,�) is said to be an ordered metric
space if (X, d) is a metric space and (X,�) is a partially ordered set.

Definition 14 Let (X,�) be a partially ordered set. Then, x, y ∈ X are said to be
comparable if x � y or y � x holds.

For a partially ordered set (X,�), we define

� := {
(x, y) ∈ X × X : x � y or y � x

}
.

Definition 15 A partially ordered set (X,�) is said to satisfy the ordered sequential
limit property if (xn, x) ∈ � for all n ∈ N, whenever a sequence xn → x as x → ∞ and
(xn, xn+1) ∈ � for all n ∈ N.

Definition 16 Let (X,�) be a partially ordered set and αL ∈ L\{0L}. An L-fuzzy map-
ping T : X −→ QL(X) is said to be comparative, if for each x ∈ X and y ∈ [Tx]αL with
(x, y) ∈ �, we have (y, z) ∈ � for all z ∈ [Ty]αL .

Now, the existence of an L-fuzzy fixed point theorem for L-fuzzy mappings in complete
partially ordered metric spaces is presented.

Theorem 3 Let (X, d,�) be a complete partially ordered metric space, αL ∈ L\{0L} and
T : X −→ QL(X) be an L-fuzzy mapping. Suppose that there exist ψ ∈ � such that for all
(x, y) ∈ �,

DαL(Tx,Ty) ≤ ψ(�(x, y)) + K min{pαL(x,Tx), pαL(y,Ty), pαL(x,Ty), pαL(y,Tx)}, (8)

where K ≥ 0 and

�(x, y) = max
{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

}
.

If the following conditions hold,

I. X satisfies the order sequential limit property,
II. there exist x0 ∈ X and x1 ∈ [Tx0]αL such that (x0, x1) ∈ �,
III. T is comparative L-fuzzy mapping,
IV. ψ is continuous.

Then, T has atleast an L-fuzzy fixed point.
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Proof Let β : X × X −→[0,∞) be defined as:

β(x, y) =
{
1 if (x, y) ∈ �;
0 if (x, y) /∈ �.

Now by condition (II), we have β(x0, x1) ≥ 1 which implies that condition (ii) of
Theorem 1 holds. And since T is comparative L-fuzzy mapping, then condition (iii) of
Theorem 1 follows. By (8) and for all x, y ∈ X, we have

β(x, y)DαL(Tx,Ty)

≤ ψ(�(x, y)) + K min
{
pαL(x,Tx), pαL(y,Ty), pαL(x,Ty), pαL(y,Tx)

}
.

(9)

Condition (i) of Theorem 1 also holds by condition (I). Now that all the hypothesis
of Theorem 1 are fulfilled, hence the existence of the L-fuzzy fixed point for L-fuzzy
mapping T follows.

Applying similar technique in the proof of Theorem 3 with Corollary 1, we arrive at the
following result.

Corollary 4 Let (X, d,�) be a complete partially ordered metric space, αL ∈ L\{0L} and
T : X −→ QL(X) be an L-fuzzy mapping. Suppose that there exist ψ ∈ � such that for all
(x, y) ∈ �,

DαL(Tx,Ty) ≤ ψ

(
max

{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

})
.

If the following conditions hold,

I. X satisfies the order sequential limit property,
II. there exist x0 ∈ X and x1 ∈ [Tx0]αL such that (x0, x1) ∈ �,
III. T is comparative L-fuzzy mapping,
IV. ψ is continuous.

Then, T has at least an L-fuzzy fixed point.

Setting β(x, y) = 1 for all (x, y) ∈ � and using similar argument in the proof of
Theorem 3 with Corollary 2 and 3 we get the followings, respectively.

Corollary 5 Let (X, d,�) be a complete partially ordered metric space, αL ∈ L\{0L} and
T : X −→ QL(X) be an L-fuzzy mapping. Suppose that there exist ψ ∈ � such that for all
(x, y) ∈ �,

DαL(Tx,Ty) ≤ ψ(�(x, y)) + K min
{
pαL(x,Tx), pαL(y,Ty), pαL(x,Ty), pαL(y,Tx)

}
,

where K ≥ 0 and

�(x, y) = max
{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

}
.

Then, T has at least an L-fuzzy fixed point.

Corollary 6 Let (X, d,�) be a complete partially ordered metric space, αL ∈ L\{0L} and
T : X −→ QL(X) be an L-fuzzy mapping. Suppose that there exist ψ ∈ � such that for all
(x, y) ∈ �,
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DαL(Tx,Ty) ≤ ψ

(
max

{
d(x, y), pαL(x,Tx), pαL(y,Ty),

pαL(x,Ty) + pαL(y,Tx)
2

})
.

Then, T has at least an L-fuzzy fixed point.

Remark 5

i. If we consider L = [0, 1] in Theorem 3 and Corollary 4 above, we get Theorem 3
and Corollary 7 of [21], respectively;

ii. If αL = 1L in Theorem 3, Corollary 4, 5 and 6, then by Remark 2 the L-fuzzy
mappings T has at least a fixed point.
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