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Abstract

In this paper, based on the concepts of credibility measure and expectation theory, we
derive the expectation formulae for the three reductions of a type-2 trapezoidal fuzzy
variable (T2TrFV), which are attained by adopting the critical value (CV) reduction
methods. We minimize the total transportation cost and the total transportation time
over a single layered distribution system consisting of vendors and customers
represented as a multi-objective solid transportationproblem. To portray the
uncertainty in a real life choice environment, we consider the unit cost of
transportation, demands, availabilities, conveyance capacities, unit transportation time
and unit loading and unloading time as T2TrFVs. The corresponding deterministic
model, which is obtained by the application of expectation formulas deduced earlier, is
converted to a single objective optimization problem using goal programming
technique and weighted summethod via the soft computing technique—generalized
reduced gradient (LINGO-14.0). A numerical experiment is finally illustrated and
corresponding graphical representations are provided.

Keywords: Fuzzy type-2 trapezoidal variables, CV reduction methods, Expected value,
Solid transportation problem, Goal programming technique, Weighted summethod

Introduction
The thought of type-2 fuzzy set (T2FS) was first introduced by Zadeh [1] as an extension
of the concept of an ordinary fuzzy set or a type-1 fuzzy set (T1FS). Much work has
been done from then on based on type-2 fuzzy set theory. For examples, Karnik et al. [2]
introduced a type-2 fuzzy logic system, which takes care of rule uncertainties; Liang and
Mendel [3] presented the theory and design of interval type-2 fuzzy logic systems; Karnik
andMendel [4] discussed set operations on T2FSs; Chen and Chang [5] studied fuzzy rule
interpolation based on the ratio of fuzziness of interval type-2 fuzzy sets; Abdullah and
Najib [6] used linguistic variables in interval type-2 fuzzy sets (IT2FSs) and a rank value
method to normalize upper and lower memberships of IT2FS.
Zadeh [7] gave the definition of type-1 fuzzy sets (T1FSs), and later in Zadeh [1] elabo-

rated on the fact that in fuzzy logic everything is allowed to be a matter of degree (where
the degree could be fuzzy) which led to the introduction of T2FS. But it is quite difficult
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to deal with a type-2 fuzzy variable (T2FV) more than a type-1 fuzzy variable (T1FV)
since T2FV has the possibility of taking a crisp value and the possibility is again a fuzzy
number in [ 0, 1], i.e, due to the fuzzy membership function of a type-2 fuzzy number,
the computation complexity is very high in practical applications. To overcome this diffi-
culty, few reduction methods have been used in the literature, where T2FV are reduced
to T1FV and then defuzzification of T1FV is carried out. Karnik and Mendel [8] intro-
duced a method for type reduction via the concept of a centroid of a T2FS; Coupland [9]
presented the geometric defuzzification for generalized T2FSs; Liu [10] employed a cen-
troid type reduction strategy for a general type-2 fuzzy logic system; to defuzzify T2 fuzzy
variable, Qin et al. [11] presented three types of CV reduction methods for the T2 fuzzy
variable; Chen [12] deduced the generalized expectation for three reductions of type-2
triangular fuzzy variable (T2TFV). In this paper, we deduce the expectation formulas of
the reductions for type-2 trapezoidal fuzzy variable using CV reduction methods, which
will be useful in solving some optimization problems with T2 fuzzy coefficients.
The solid transportation problem (STP) was first proposed by Haley [13]. The STP is an
extension of the classical transportation problem (TP), as the addition of multiple con-
veyances. Since the introduction of STP, researchers have been using different solution
procedures to solve STPs, when formulated under fuzzy environment. Chanas et al. [14]
formulated and solved TPs under fuzzy environment. Some recent works in this context
are Sakawa [15], who applied fuzzy goal programming method for solving multi-objective
nonlinear programming problem; Ojha et al. [16] presented a STP for item with fixed
charge, vehicle cost and price discounted varying charge using genetic algorithm; Fegad
et al. [17] used interval and triangular membership functions in a TP. A few recent works
in the field of TP and STP are that of Zavardehi et al. [18], Figueroa-Garc and Hernandez
[19], Kaur and Kumar [20], Jana et al. [21], Tao and Xu [22], Kundu et al. [23], Sadeghi
et al. [24], Liu et al. [25] etc. Yang et al. [26] applied methods of reduction for type-2 fuzzy
variables to STP. Jana et al. [27] presented application of CV and mean reduction meth-
ods on T2FS to a multilevel profit TP. In this paper, we have for the first time, solved a
STP under type-2 trapezoidal fuzzy (T2TrF) environment using CV reduction method
and expectation formulas of the reductions via Goal Programming Technique (GPT).
During transportation activities, some important parameters of a STP, such as demands

at the destinations, the supply capacities at the origins, the capacities of the conveyances,
the time of transportation, loading and unloading time at the origins and destinations
respectively, etc., can be considered to be fuzzy variables, depending on real life requi-
ments. In such situations, it becomes more reasonable to use fuzzy optimization methods
to find the solution of the STP. As a result, to fit the demands of an uncertain environment,
we introduce type-2 trapezoidal fuzzy variable in STP.
In this paper, we have two motivations. First, to deduce the expectation formulas of the

reductions of a T2TrFV, employing the CV reduction method, which can later be uti-
lized in solving problems involving trapezoidal type reduction. Second, to study the STP
problem involving type-2 trapezoidal fuzzy variables, use of which is quite practical keep-
ing real life uncertain situations in mind. Working with type-2 fuzzy variables is more
difficult than type-1 fuzzy variables and hence this is where the type reduction method
becomes helpful. With these ideas in mind, we are interested in how to draw up the solid
transportation model, and then design effective algorithms to produce the optimal trans-
portation strategies. To this end, this study proposes a defuzzification method for type-2
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fuzzy variables via general expectation method. Numerical experiments are carried out
using soft computing technique Lingo-14.0.
The major objectives of the proposed research work are as follows:

• Expectations of the reductions for type-2 trapezoidal fuzzy variables have been
deduced.

• A new class of generalized expectation method has been introduced for type-2
trapezoidal fuzzy variables.

• Multi-objective optimization problems have been converted into a single objective
optimization problem using goal programming technique and weighted sum method.

• Comparative results for type-2 and type-1 trapezoidal fuzzy variables are reported
with some different optimistic levels and different weights of objective functions.

The structure of this paper is as follows. In Section “Preliminary ideas on type-2 fuzzy
sets”, we give some preliminaries about T2FS. In Section “Expected value for reduction
of a T2 trapezoidal fuzzy variable”, we intent to deduce the expectation formulas of three
reductions of T2 trapezoidal fuzzy variable. In Section “Fuzzy goal programmingmethod”,
we present the concept of Goal Programming Technique. In Section “Notations”, nota-
tions of the proposed model are presented. In Section “Formulation of type 2 fuzzy solid
transportation problem (T2FSTP)”, we formulate the model in fuzzy T2 trapezoidal envi-
ronment. In Section “Equivalent crisp problem in T2”, we present the equivalent crisp
model. A numerical experiment and solution procedure via goal programming technique
is presented in Section “Numerical experiment”. Experimental results and discussion are
presented in Section “Discussion”. The paper is concluded in Section “Conclusions”.

Preliminary ideas on type-2 fuzzy sets
The idea of type-2 fuzzy sets was first introduced by Prof. Zadeh in 1975 [1], as an exten-
sion of ordinary fuzzy sets, whose truth values are ordinary fuzzy sets in the unit interval,
i.e., fuzzy truth values. The overviews on type-2 fuzzy sets were given in [28]. Since ordi-
nary fuzzy sets and interval-valued fuzzy sets are special cases of type-2 fuzzy sets, Takc
[29] described that type-2 fuzzy sets are very useful in circumstances where there is need
to handle more uncertainties than it is possible using ordinary fuzzy sets or interval-
valued fuzzy sets. Recently, Karnik et al. [2] proposed type-2 fuzzy logic systems from the
view of type reduction and centroid method. A type-2 fuzzy set (Jana et al. [30]) expresses
the non-deterministic truth degree with imprecision and uncertainty for an element that
belongs to a set.
A type-2 fuzzy set denoted by ˜̃A, is characterized by a type-2 membership function

μÃ(x,u) where x ∈ X, ∀u ∈ Jux ⊆[ 0, 1] and 0 ≤ μÃ(x,u) ≤ 1 defined in Eq. (1).

˜̃A = {(x,u,μÃ(x,u))|x ∈ X, ∀u ∈ Jux ⊆[ 0, 1] } (1)

If ˜̃A is fuzzy type-2 (FT2) continuous variable, it is denoted in Eq. (2)

˜̃A =

⎧
⎪⎨

⎪⎩

∫

x∈X

⎡

⎢
⎣

∫

u∈Jux
fx(u)/u

⎤

⎥
⎦ /x

⎫
⎪⎬

⎪⎭
(2)
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where
∫ ∫

denotes the union of x and u. If ˜̃A is FT2 discrete, then it is denoted by Eq. (3)

˜̃A =
{
∑

x∈X
μ ˜̃A(x)/x

}

=
{ N∑

i=1

[ Mi∑

k=1
fxi(uk)/uik

]

/xi

}

(3)

where
∑∑

denotes the union of x and u.
If fx(u) = 1,∀u ∈[ Jux , J

u
x ]⊆[ 0, 1], the type-2 membership function μÃ(x,u) is expressed

by one type-1 inferior membership function, Jux = μA(x) and one type-1 superior, Jux =
μA(x), then it is called an interval type-2 fuzzy set, denoted by Eqs. (4) and (5).

˜̃A =
{
(x,u, 1)|∀x ∈ X, ∀u ∈[μA(x),μA(x)]⊆[ 0, 1]

}
(4)

or

˜̃A =

⎧
⎪⎪⎨

⎪⎪⎩

∫

x∈X

⎡

⎢
⎢
⎣

∫

u∈[Jux ,J
u
x ]⊆[0,1]

1/u

⎤

⎥
⎥
⎦ /x

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎨

⎪⎩

∫

x∈X

⎡

⎢
⎣

∫

u∈[μA(x),μA(x)]⊆[0,1]

1/u

⎤

⎥
⎦ /x

⎫
⎪⎬

⎪⎭
(5)

Definition 1 [25] A type-2 trapezoidal fuzzy variable ˜̃
ξ is denoted by ˜̃

ξ =
(r1, r2, r3, r4, θr , θl), where r1, r2, r3, r4 are real values and θr , θl ∈[ 0, 1] are two parameters
characterizing the degree of uncertainty that ˜̃

ξ takes a value x.
For x ∈[ r1, r2], the secondary possibility distribution function μ̃ ˜̃

ξ
(x) of ˜̃

ξ is defined in the
form

μ̃ ˜̃
ξ
(x) =

(
x − r1
r2 − r1

+ θl min
{
x − r1
r2 − r1

,
r2 − x
r2 − r1

}

,
x − r1
r2 − r1

,
x − r1
r2 − r1

+ θr min
{
x − r1
r2 − r1

,
r2 − x
r2 − r1

})

(6)

For x ∈ (r2, r3], the secondary possibility distribution function μ̃ ˜̃
ξ
(x) of ˜̃

ξ is 1.

For x ∈ (r3, r4], the secondary possibility distribution function μ̃ ˜̃
ξ
of ˜̃

ξ is defined in the form

μ̃ ˜̃
ξ

=
(
r4 − x
r4 − r3

− θl min
{
r4 − x
r4 − r3

,
x − r3
r4 − r3

}

,
r4 − x
r4 − r3

,
r4 − x
r4 − r3

+ θr min
{
r4 − x
r4 − r3

,
x − r3
r4 − r3

})

(7)

Definition 2 [31] Let � be the universe of discourse. An ample field A on � is a class of
subsets of � that is closed under arbitrary unions, intersections, and complements in �.
Let Pos : A −→[ 0, 1] be a set function on the ample fieldA. Pos is said to be a possibility

measure if it satisfies the following conditions:
P1: Pos(�) = 0 and Pos(�) = 1.
P2: For any subclass {Ai|iεI} ofA (finite, countable or uncountable),

Pos
(
⋃

i=I
Ai

)

= sup
i=I

Pos(Ai) (8)
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The triplet (�,A, Pos) is referred to as a possibility space, in which a credibility measure
is defined as

Cr(A) = 1
2
(
1 + Pos(A) − Pos(Ac)

)
,A ∈ A (9)

Definition 3 [11] Let ξ̃ be an RFV. Then the optimistic CV of ξ̃ , denoted by CV ∗[ ξ̃ ] is
defined as

CV ∗[ ξ̃ ]= sup
α∈[0,1]

[α ∧ Pos(ξ̃ ≥ α)] , (10)

while the pessimistic CV of ξ̃ , denoted by CV∗[ ξ̃ ], is defined as

CV∗[ ξ̃ ]= sup
α∈[0,1]

[α ∧ Nec(ξ̃ ≥ α)] , (11)

The CV of ξ̃ , denoted by CV[ξ̃ ], is defined

CV [ ξ̃ ]= sup
α∈[0,1]

[α ∧ Cr(ξ̃ ≥ α)] , (12)

The formulas for CVs of a triangular RFV ξ̃ = (r1, r2, r3) are:
(i) The optimistic CV of ξ̃ is:

CV ∗[ ξ̃ ]= r3
1 + r3 − r2

(13)

(ii) The pessimistic CV of ξ̃ is:

CV∗[ ξ̃ ]= r2
1 + r2 − r1

(14)

(iii) The CV of ξ̃ is:

CV [ ξ̃ ]=
{

2r2−r1
1+2(r2−r1) , if r2 > 1

2
r3

1+2(r3−r2) , if r2 ≤ 1
2

(15)

Expected value for reduction of a T2 trapezoidal fuzzy variable
Theorem 1 Assume ξ̃1 to be the reduction of the type-2 trapezoidal fuzzy variable ˜̃

ξ =
(r1, r2, r3, r4, θl, θr), obtained by the optimistic critical value reduction method. Then

E[ ξ̃1] = r1 + r4
2

−
(r1 − r2 − r3 + r4) ln

(
1 + θr

2

)

2θr
(16)

Proof For x ∈[ r1, r2], the secondary possibility distribution function μ̃ ˜̃
ξ
(x) of ˜̃

ξ is the
triangular RFV

μ̃ ˜̃
ξ
(x) =

(
x − r1
r2 − r1

+ θl min
{
x − r1
r2 − r1

,
r2 − x
r2 − r1

}

,
x − r1
r2 − r1

,
x − r1
r2 − r1

+ θr min
{
x − r1
r2 − r1

,
r2 − x
r2 − r1

})

For x ∈ (r2, r3], the secondary possibility distribution function μ̃ ˜̃
ξ
(x) of ˜̃

ξ is 1

For x ∈ (r3, r4], the secondary possibility distribution function μ̃ ˜̃
ξ
of ˜̃

ξ is the triangular
RFV

μ̃ ˜̃
ξ

=
(
r4 − x
r4 − r3

− θl min
{
r4 − x
r4 − r3

,
x − r3
r4 − r3

}

,
r4 − x
r4 − r3

,
r4 − x
r4 − r3

+ θr min
{
r4 − x
r4 − r3

,
x − r3
r4 − r3

})
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Then, according to Eq. (14) , for a trapezoidal fuzzy variable, the possibility distribution
function ξ̃1 is given by

μξ̃1
(x) = Pos{ξ̃1 = x}

⇒ μξ̃1
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x−r1)

r2−r1
+θr min

{
x−r1
r2−r1

, r2−x
r2−r1

}

1+θr min
{

x−r1
r2−r1

, r2−x
r2−r1

} , ifx ∈[ r1, r2]
1, ifx ∈ (r2, r3]
r4−x
r4−r3

+θr min
{

r4−x
r4−r3

, x−r3
r4−r3

}

1+θr min
{

r4−x
r4−r3

, x−r3
r4−r3

} , ifx ∈ (r3, r4]

⇒ μξ̃1
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1+θr)(x−r1)
(r2−r1)+θr(x−r1) , if x ∈ [

r1, r1+r2
2

]

(1−θr)x+θrr2−r1
(r2−r1)+θr(r2−x) , if x ∈ ( r1+r2

2 , r2]
1, if x ∈ (r2, r3]
(θr−1)x−θrr3+r4
(r4−r3)+θr(x−r3) , if x ∈ (r3, r3+r4

2 ]
(1+θr)(r4−x)

(r4−r3)+θr(r4−x) , if x ∈ ( r3+r4
2 , r4]

(17)

Therefore the credibility of ξ̃1, using Eq. (10), is defined by

Cr{ξ̃1 ≥ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r < r1
1 − (1+θr)(r−r1)

2(r2−r1+θr(r−r1)) , if r ∈[ r1, r1+r2
2 ]

1 − (1−θr)r+θrr2−r1)
2(r2−r1+θr(r−r1)) , if r ∈ ( r1+r2

2 , r2]
1
2 , if r ∈ (r2, r3]
(θr−1)r−θrr3+r4
2(r4−r3+θr(r−r3)) , if r ∈ (r3, r3+r4

2 ]
(1+θr)(r4−r)

2(r4−r3+θr(r4−r)) , if r ∈ ( r3+r4
2 , r4]

0, if r > r4

(18)

and

Cr{ξ̃1 ≤ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r < r1
(1+θr)(r−r1)

2(r2−r1+θr(r−r1)) , if r ∈[ r1, r1+r2
2 ]

(1−θr)r+θrr2−r1)
2(r2−r1+θr(r2−r)) , if r ∈ ( r1+r2

2 , r2]
1
2 , if r ∈ (r2, r3]
1 − (θr−1)r−θrr3+r4

2(r4−r3+θr(r−r3)) , if r ∈ (r3, r3+r4
2 ]

1 − (1+θr)(r4−r)
2(r4−r3+θr(r4−r)) , if r ∈ ( r3+r4

2 , r4]
1, if r > r4

(19)
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If r1 ≥ 0, then we have

E[ ξ̃1] =
∫ ∞

0
Cr{ξ̃1 ≥ r}dr −

∫ 0

−∞
Cr{ξ̃1 ≤ r}dr

=
∫ r1

0
1dr +

∫ r1+r2
2

r1
1dr −

∫ r1+r2
2

r1

(1 + θr)(r − r1)
(r2 − r1) + θr(r − r1)

dr +
∫ r2

r1+r2
2

1dr

−
∫ r2

r1+r2
2

(1 − θr)r + θrr2 − r1
r2 − r1 + θr(r2 − r)

dr +
∫ r3

r2

1
2
dr +

∫ r3+r4
2

r3

(θr − 1)r − θrr3 + r4
2(r4 − r3 + θr(r − r4)

dr

+
∫ r4

r3+r4
2

(1 + θr)(r4 − r)
2(r4 − r3 + θr(r4 − r))

dr − 0

= r1 + r1 + r2
2

− r1 + r2 − r1 + r2
2

+ r3 − r2
2

− 1
2

[
(1 + θr)(r2 − r1)

2θr

+
(1 + θr)(r2 − r1) ln

(
1 + θr

2

)

θ2r
+ (θr − 1)(r2 − r1)

2θr
+

(r2 − r1) ln
(
1 + θr

2

)

θ2r

− (θr − 1)(r4 − r3)
2θr

−
(r4 − r3) ln

(
1 + θr

2

)

θ2r
− (1 + θr)(r4 − r3)

2θr
+

(1 + θr)(r4 − r3) ln
(
1 + θr

2

)

θ2r

⎤

⎦

= r1 + r4
2

−
(r1 − r2 − r3 + r4) ln

(
1 + θr

2

)

2θr
(20)

which is the expectation formula of the reduction of type-2 trapezoidal fuzzy variable
˜̃
ξ = (r1, r2, r3, r4, θl, θr) obtained by the optimistic critical value reduction method.
If r2 = r3, then

E[ ξ̃1] = r1 + r4
2

−
(r1 − 2r2 + r4) ln

(
1 + θr

2

)

2θr
(21)

which is the expectation formula of the reduction of type-2 triangular fuzzy variable ˜̃
ξ =

(r1, r2, r4, θl, θr) obtained by the optimistic critical value reduction method.
As θr → 0, the above result (21) is converted into

lim
θr→0

E[ ξ̃1] = lim
θr→0

⎡

⎣
r1 + r4

2
−

(r1 − r2 − r3 + r4) ln
(
1 + θr

2

)

2θr

⎤

⎦ = r1 + r2 + r3 + r4
4

(22)

which is the expected value of type-1 trapezoidal fuzzy variable.

Theorem 2 Assume ξ̃2 be the reduction of the type-2 trapezoidal fuzzy variable ˜̃
ξ =

(r1, r2, r3, r4, θl, θr), obtained by the pessimistic critical value reduction method. Then

E[ ξ̃2] = r2 + r3
2

+
(r1 − r2 − r3 + r4) ln

(
1 + θl

2

)

2θl
(23)
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Proof As in Theorem 1, according to Eq. (15), for a trapezoidal fuzzy variable, its
possibility distribution function ξ̃2 is given by

μξ̃2
(x) = Pos{ξ̃2 = x}

⇒ μξ̃2
(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x−r1
r2−r1

1+ x−r1
r2−r1

− x−r1
r2−r1

+θl min
{

x−r1
r2−r1

, r2−x
r2−r1

} , if x ∈[ r1, r2]
1, if x ∈ (r2, r3]

r4−x
r4−r3

1+ r4−x
r4−r3

− r4−x
r4−r3

+θl min
{

r4−x
r4−r3

, x−r3
r4−r3

} , if x ∈ (r3, r4]

⇒ μξ̃2
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x−r1
r2−r1+θl(x−r1) , if x ∈ [

r1, r1+r2
2

]

x−r1
r2−r1+θl(r2−x) , if x ∈ ( r1+r2

2 , r2]
1, ifx ∈ (r2, r3]

r4−x
r4−r3+θl(x−r3) , if x ∈ (r3, r3+r4

2 ]
r4−x

r4−r3+θl(r4−x) , if x ∈ ( r3+r4
2 , r4]

(24)

Therefore the credibility of ξ̃2 is defined by

Cr{ξ̃2 ≥ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r < r1
1 − r−r1

2(r2−r1+θl(r−r1)) , if r ∈ [
r1, r1+r2

2
]

1 − r−r1
2(r2−r1+θl(r2−r)) , if r ∈ ( r1+r2

2 , r2]
1
2 , if r ∈ (r2, r3]

r4−r
2(r4−r3+θl(r−r3)) , if r ∈ (r3, r3+r4

2 ]
r4−r

2(r4−r3+θl(r4−r)) , if r ∈ ( r3+r4
2 , r4]

0, if r > r4

(25)

and

Cr{ξ̃2 ≤ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r < r1
r−r1

2(r2−r1+θl(r−r1)) , if r ∈ [
r1, r1+r2

2
]

r−r1
2(r2−r1+θl(r2−r)) , if r ∈ ( r1+r2

2 , r2]
1
2 , if r ∈ (r2, r3]
1 − r4−r

2(r4−r3+θl(r−r3)) , if r ∈ (r3, r3+r4
2 ]

1 − r4−r
2(r4−r3+θl(r4−r)) , if r ∈ ( r3+r4

2 , r4]
1, if r > r4

(26)

If r4 ≤ 0, then we have

E[ ξ̃2] =
∫ ∞

0
Cr{ξ̃2 ≥ r}dr −

∫ 0

−∞
Cr{ξ̃2 ≤ r}dr

= −
∫ r1+r2

2

r1

r − r1
2(r2 − r1 + θl(r − r1))

dr −
∫ r2

r1+r2
2

r − r1
2(r2 − r1 + θl(r2 − r))

dr

−
∫ r3

r2

1
2
dr −

∫ r3+r4
2

r3
1dr +

∫ r3+r4
2

r3

r4 − r
2(r4 − r3 + θl(r − r3))

dr

−
∫ r4

r3+r4
2

1dr +
∫ r4

r3+r4
2

r4 − r
2(r4 − r3 + θl(r4 − r))

dr −
∫ 0

r4
1dr

= r2 + r3
2

+
(r1 − r2 − r3 + r4) ln

(
1 + θl

2

)

2θl
(27)

which is the expectation formula of the reduction of type-2 trapezoidal fuzzy variable
˜̃
ξ = (r1, r2, r3, r4, θl, θr) obtained by the pessimistic critical value reduction method.
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If r2 = r3, then

E[ ξ̃2] = r2 +
(r1 − 2r2 + r4) ln

(
1 + θl

2

)

2θl
(28)

which is the expectation formula of the reduction of type-2 triangular fuzzy variable ˜̃
ξ =

(r1, r2, r4, θl, θr) obtained by the pessimistic critical value reduction method.
As θl → 0, the above result (28) is converted into

lim
θl→0

E[ ξ̃2] = lim
θl→0

⎡

⎣
r2 + r3

2
+

(r1 − r2 − r3 + r4) ln
(
1 + θl

2

)

2θl

⎤

⎦ = r1 + r2 + r3 + r4
4

(29)

which is the expected value of type-1 trapezoidal fuzzy variable.

Theorem 3 Assume ξ̃3 to be the reduction of the type-2 trapezoidal fuzzy variable ˜̃
ξ =

(r1, r2, r3, r4, θl, θr), obtained by the critical value reduction method. Then

E[ ξ̃3]= r1 + r2 + r3 + r4
4

+ r1 − r2 − r3 + r4
8

[
1
θr

− 1
θl

− (1 + θr) ln(1 + θr)

θ2r
+

(1 + θl) ln(1 + θl)

θ2l

]

(30)

Proof From Eq. (16), we have, the possibility distribution of a trapezoidal fuzzy variable
ξ̃3 is given by

μξ̃3
(x) = Pos{ξ̃3 = x}

⇒ μξ̃3
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−r1
r2−r1

+θr min
{

x−r1
r2−r1

, r2−x
r2−r1

}

1+2
(

x−r1
r2−r1

+θr min
{

x−r1
r2−r1

, r2−x
r2−r1

}
− x−r1

r2−r1

) , if x ∈ [
r1, r1+r2

2
]

2
(

x−r1
r2−r1

)
− x−r1

r2−r1
+θl min

{
x−r1
r2−r1

, r2−x
r2−r1

}

1+2
( x−r1
r2−r1

− x−r1
r2−r1

+θl min
{

x−r1
r2−r1

, r2−x
r2−r1

} , if x ∈ ( r1+r2
2 , r2]

1, if x ∈ (r2, r3]

2
(

r4−x
r4−r3

)
− r4−x

r4−r3
+θl min

{
r4−x
r4−r3

, x−r3
r4−r3

}

1+2
( r4−x
r4−r3

− r4−x
r4−r3

+θl min
{

r4−x
r4−r3

, x−r3
r4−r3

} , if x ∈ (r3, r3+r4
2 ]

r4−x
r4−r3

+θr min
{

r4−x
r4−r3

, x−r3
r4−r3

}

1+2
(

r4−x
r4−r3

+θr min
{

r4−x
r4−r3

, x−r3
r4−r3

}
− r4−x

r4−r3

) , if x ∈ ( r3+r4
2 , r4]

⇒ μξ̃3
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1+θr)(x−r1)
r2−r1+2θr(x−r1) , if x ∈ [

r1, r1+r2
2

]

(1−θl)x+θlr2−r1
r2−r1+2θl(r2−x) , if x ∈ ( r1+r2

2 , r2]

1, if x ∈ (r2, r3]

(θl−1)x−θlr3+r4
r4−r3+2θl(x−r3) , if x ∈ (r3, r3+r4

2 ]

(1+θr)(r4−x)
r4−r3+2θr(r4−x) , if x ∈ ( r3+r4

2 , r4]

(31)



Dutta and Jana Journal of Uncertainty Analysis and Applications  (2017) 5:3 Page 10 of 21

Therefore the credibility of ξ̃3 is defined by

Cr{ξ̃3 ≥ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r < r1
1 − (1+θr)(r−r1)

2(r2−r1+2θr(r−r1)) , if r ∈[ r1, r1+r2
2 ]

1 − (1−θl)r+θlr2−r1
2(r2−r1+2θl(r2−r)) , if r ∈ ( r1+r2

2 , r2]
1
2 , if r ∈ (r2, r3]

(θl−1)r−θlr3+r4
2(r4−r3+2θl(r−r3)) , if r ∈ (r3, r3+r4

2 ]
(1+θr)(r4−r)

2(r4−r3+2θr(r4−r)) , if r ∈ ( r3+r4
2 , r4]

0, if r > r4

(32)

and

Cr{ξ̃3 ≤ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r < r1
(1+θr)(r−r1)

2(r2−r1+2θr(r−r1)) , if r ∈[ r1, r1+r2
2 ]

(1−θl)r+θlr2−r1
2(r2−r1+2θl(r2−r)) , if r ∈ ( r1+r2

2 , r2]
1
2 , if r ∈ (r2, r3]
1 − (θl−1)r−θlr3+r4

2(r4−r3+2θl(r−r3)) , if r ∈ (r3, r3+r4
2 ]

1 − (1+θr)(r4−r)
2(r4−r3+2θr(r4−r)) , if r ∈ ( r3+r4

2 , r4]
1, if r > r4

(33)

If r1 ≤ 0 ≤ r1+r2
2 , then we have

E[ ξ̃3] =
∫ ∞

0
Cr{ξ̃3 ≥ r}dr −

∫ 0

−∞
Cr{ξ̃3 ≤ r}dr

=
∫ r1+r2

2

0
1dr −

∫ r1+r2
2

0

(1 + θr)(r − r1)
2(r2 − r1 + 2θr(r − r1))

dr +
∫ r2

r1+r2
2

1dr −
∫ r2

r1+r2
2

(1 − θl)r + θlr2 − r1
2(r2 − r1 + 2θl(r2 − r))

dr

+
∫ r3

r2

1
2
dr −

∫ r3+r4
2

r3

(θl − 1)r − θlr3 + r4
2(r4 − r3 + 2θl(r − r3))

dr +
∫ r4

r3+r4
2

(1 + θr)(r4 − r)
2(r4 − r3 + 2θr(r4 − r))

dr

−
∫ 0

r1

(1 + θr)(r − r1)
2(r2 − r1 + 2θr(r − r1))

dr

= r1 + r2 + r3 + r4
4

+ r1 − r2 − r3 + r4
8

[
1
θr

− 1
θl

− (1 + θr) ln(1 + θr)

θ2r
+ (1 + θl) ln(1 + θl)

θ2l

]

(34)

which is the expectation formula of the reduction of type-2 triangular fuzzy variable ˜̃
ξ =

(r1, r2, r3, r4, θl, θr) obtained by the critical value reduction method.
If r2 = r3, then

E[ ξ̃3] = r1 + 2r2 + r4
4

+ r1 − 2r2 + r4
8

[
1
θr

− 1
θl

− (1 + θr) ln(1 + θr)

θ2r
+ (1 + θl) ln(1 + θl)

θ2l

]

(35)

which is the expectation formula of the reduction of type-2 triangular fuzzy variable ˜̃
ξ =

(r1, r2, r4, θl, θr) obtained by the critical value reduction method.
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As θl and θr → 0, the above Eq. (35) is converted into

lim
θl ,θr→0

E
[
ξ̃3

]
= lim

θl ,θr→0

r1 + 2r2 + r3
4

+ r1 + 2r2 + r3
8

×
[
1
θr

− 1
θl

− (1 + θr) ln(1 + θr)

θ2r
+ (1 + θl) ln(1 + θl)

θ2l

]

≈ r1 + r2 + r3 + r4
4

(36)

which is the expected value of type-1 trapezoidal fuzzy variable.

Example 1 Let ˜̃
ξ = (1, 3, 5, 6, 0.5, 1) be a T2 trapezoidal fuzzy variable, ξ̃1 be the reduc-

tion of ˜̃
ξ with the optimistic critical value reduction method, ξ̃2 be the reduction of ˜̃

ξ with
the pessimistic critical value reductionmethod and ξ̃3 be the reduction of ˜̃

ξ with the critical
value reduction method. Then,

E[ ξ̃1] = 7
2

+ 1
2
ln

(
3
2

)

= 3.703

E[ ξ̃2] = 4 − ln
(
5
4

)

= 3.78

and E[ ξ̃3] = 31
8

+ 1
4
ln(2) − 3

4
ln

(
3
2

)

= 3.74

Fuzzy goal programmingmethod
Sakawa [15] proposed the fuzzy goal programming technique (GPT) to solve linear and
nonlinear multi-objective programming problems (MOPPs). The MOPPs can be taken as

⎧
⎨

⎩

max
x

[ f1(x), f2(x), · · · , fm(x)]
{

x ∈ X.
(37)

Let us consider that decision makers have fixed the membership function μk(fk(x)) and
given the goal membership function value (k = 1, 2, · · · ,m). We assume the following
programming problem as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
x

m∑

i=1
d−
i

⎧
⎪⎨

⎪⎩

μk(fk(x)) + d+
i − d−

i = μ̄k
x ∈ X
d+
i d

−
i = 0, d+

i , d
−
i ≥ 0, k = 0, 1, 2, · · · ,m.

(38)

where d+
i , d

−
i denotes the positive and negative deviations.

The above single objective problem is then solved using soft computing technique.

Notations
In this investigation, a single stage solid transportation problem (STP) consisting of ven-
dors and customers are considered. Here, products from each vendor can be transported
to each customer by means of each conveyance. The STP is formulated as a multi-
objective optimization problem, where the objectives are minimization of transportation
cost and minimization of total time of transportation. The following notations are used:

(i) M = number of origins/vendors from which the products are shipped (indexed
i = 1, 2, · · · ,M).
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(ii) N = number of destinations/customers to which the products are shipped (indexed
j = 1, 2, · · · ,N).

(iii) K = number of conveyances (indexed k = 1, 2, · · · ,K ).
(iv) ˜̃cijk = unit transportation cost for the product from i-th manufacturer to j-th

destination by means of k-th conveyance, which are T2TrFVs in nature($/ton).
(v) xijk = the amount of product(tons) to be transported from i-th origin to j-th

destination by means of k-th conveyance (decision variables)
(vi) ˜̃ai = availability at i-th origin, which are T2TrFVs in nature (tons).
(vii) ˜̃bj = demand at j-th destination, which are T2TrFVs in nature(tons).
(viii) ˜̃ek = capacity at k-th conveyance, which are T2TrFVs in nature(tons).
(ix) ˜̃tijk = unit transportation time from i-th origin to j-th destination by means of k-th

conveyance, which are T2TrFVs in nature(hrs/ton)
(x) yijk are binary variables, defined by

yijk =
{
1, xijk = 0
0, xijk = 0

(xi) ˜̃dijk = unit loading and unloading time at i-th origin and j-th destination,
respectively, when transported by means of k-th conveyance, which are T2TrFVs in
nature(hrs/ton)

(xii) ˜̃f1 = total transportation cost of the problem ($).
(x) ˜̃f2 = total transportation time of the problem (h).

Formulation of type 2 fuzzy solid transportation problem (T2FSTP)

In this model, we minimize total transportation cost ˜̃f1 and the total transportation
time ˜̃f2 over a distribution system consisting of vendors and customers. The T2FSTP is
formulated as

min ˜̃f1 =
M∑

i=1

N∑

j=1

K∑

k=1

{
˜̃cijk · xijk

}
(39)

min ˜̃f2 =
M∑

i=1

N∑

j=1

K∑

k=1

{˜̃tijk · yijk + ˜̃dijk · xijk
}

(40)

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j=1

K∑

k=1
xijk ≤ ˜̃ai, i = 1, 2, 3 · · · ,M

M∑

i=1

K∑

k=1
xijk ≥ ˜̃bj, j = 1, 2, 3 · · · ,N

M∑

i=1

N∑

j=1
xijk ≤ ˜̃ek , k = 1, 2, 3 · · · ,K

xijk ≥ 0, ∀ i, j, k

(41)

For the objective function ˜̃f1, we have, unit transportation costs, ˜̃cijk =
(
c1ijk , c

2
ijk , c

3
ijk , c

4
ijk , c

θl
ijk , c

θr
ijk

)
, and for the objective function ˜̃f2, we have, unit transportation
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time ˜̃tijk =
(
t1ijk , t

2
ijk , t

3
ijk , t

4
ijk , t

θl
ijk , t

θr
ijk

)
, unit loading and unloading time ˜̃dijk =

(
d1ijk , d

2
ijk , d

3
ijk , d

4
ijk , d

θl
ijk , d

θr
ijk

)
and for the constraints we have, availability of product ˜̃ai =

(
a1i , a2i , a3i , a4i , a

θl
i , a

θr
i

)
, demand of product ˜̃bj =

(
b1j , b2j , b3j , b4j , b

θl
j , b

θr
j

)
,

capacity of conveyance ˜̃ek =
(
e1k , e

2
k , e

3
k , e

4
k , e

θl
k , e

θr
k

)
,

Equivalent crisp problem in T2
The STP under T2TrFV environment is now being reduced to an STP in non-fuzzy
environment by applying the expectation formulas.

Optimistic value

Using Theorem 1, and the Eqs. (40)-(42), we have obtained the equivalent crisp problem
for optimistic values as

min f1 =
M∑

i=1

N∑

j=1

K∑

k=1

⎡

⎢
⎢
⎣

⎧
⎪⎪⎨

⎪⎪⎩

c1ijk + c4ijk
2

−

(
c1ijk − c2ijk − c3ijk + c4ijk

)
ln

(

1 + cθrijk
2

)

2cθrijk

⎫
⎪⎪⎬

⎪⎪⎭

· xijk

⎤

⎥
⎥
⎦

(42)

min f2 =
M∑

i=1

N∑

j=1

K∑

k=1

⎡

⎢
⎢
⎣

⎧
⎪⎪⎨

⎪⎪⎩

t1ijk + t4ijk
2

−

(
t1ijk − t2ijk − t3ijk + t4ijk

)
ln

(

1 + tθrijk
2

)

2tθrijk

⎫
⎪⎪⎬

⎪⎪⎭

· yijk

+

⎧
⎪⎪⎨

⎪⎪⎩

d1ijk + d4ijk
2

−

(
d1ijk − d2ijk − d3ijk + d4ijk

)
ln

(

1 + dθr
ijk
2

)

2dθr
ijk

⎫
⎪⎪⎬

⎪⎪⎭

· xijk

⎤

⎥
⎥
⎦ (43)

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j=1

K∑

k=1
xijk ≤

⎡

⎢
⎢
⎣

a1i +a4i
2 −

(
a1i −a2i −a3i +a4i

)
ln

(

1+ aθri
2

)

2aθr
i

⎤

⎥
⎥
⎦ , ∀ i = 1, 2, · · · ,M

M∑

i=1

K∑

k=1
xijk ≥

⎡

⎢
⎢
⎣

b1j +b4j
2 −

(
b1j −b2j −b3j +b4j

)
ln

(

1+ bθrj
2

)

2bθr
j

⎤

⎥
⎥
⎦ , ∀ j = 1, 2, · · · ,N

M∑

i=1

N∑

j=1
xijk ≤

⎡

⎢
⎢
⎣

e1k+e4k
2 −

(e1k−e2k−e3k+e4k) ln
(

1+ eθrk
2

)

2eθrk

⎤

⎥
⎥
⎦ , ∀ k = 1, 2, · · · ,K

xijk ≥ 0, ∀ i, j, k

(44)
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Pessimistic value

Using Theorem 2, and the Eqs. (40)-(42), we have obtained the equivalent crisp problem
for pessimistic values as

min f1 =
M∑

i=1

N∑

j=1

K∑

k=1

⎡

⎢
⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c2ijk + c3ijk
2

+

(
c1ijk − c2ijk − c3ijk + c4ijk

)
ln

(

1 + cθlijk
2

)

2cθlijk

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

· xijk

⎤

⎥
⎥
⎥
⎥
⎦

(45)

min f2 =
M∑

i=1

N∑

j=1

K∑

k=1

⎡

⎢
⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t2ijk + t3ijk
2

+

(
t1ijk − t2ijk − t3ijk + t4ijk

)
ln

(

1 + tθlijk
2

)

2tθlijk

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

· yijk

+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2ijk + d3ijk
2

+

(
d1ijk − d2ijk − d3ijk + d4ijk

)
ln

(

1 + dθl
ijk
2

)

2dθl
ijk

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

· xijk

⎤

⎥
⎥
⎥
⎥
⎦

(46)

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j=1

K∑

k=1
xijk ≤

⎡

⎢
⎢
⎣

a2i +a3i
2 +

(a1i −a2i −a3i +a4i )ln
(

1+ a
θl
i
2

)

2aθl
i

⎤

⎥
⎥
⎦ , ∀ i = 1, 2, · · · ,M

M∑

i=1

K∑

k=1
xijk ≥

⎡

⎢
⎢
⎢
⎣

b2j +b3j
2 +

(
b1j −b2j −b3j +b4j

)
ln

⎛

⎝1+ b
θl
j
2

⎞

⎠

2bθl
j

⎤

⎥
⎥
⎥
⎦
, ∀ j = 1, 2, · · · ,N

M∑

i=1

N∑

j=1
xijk ≤

⎡

⎢
⎢
⎣

e2k+e3k
2 +

(
e1k−e2k−e3k+e4k

)
ln

(

1+ e
θl
k
2

)

2eθlk

⎤

⎥
⎥
⎦ , ∀ k = 1, 2, · · · ,K

xijk ≥ 0, ∀ i, j, k

(47)

CV value

Using Theorem 3, and the Eqs. (40)-(42), we have obtained the equivalent crisp problem
for CV values as:

min f1 =
M∑

i=1

N∑

j=1

K∑

k=1

[{
c1ijk + c2ijk + c3ijk + c4ijk

4
+

c1ijk − c2ijk − c3ijk + c4ijk
8

⎧
⎪⎨

⎪⎩

1
cθrijk

− 1
cθlijk

−
(
1 + cθrijk

)
ln

(
1 + cθrijk

)

cθ
2
r
ijk

+
(
1 + cθlijk

)
ln

(
1 + cθlijk

)

cθ
2
l
ijk

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
· xijk

⎤

⎥
⎦

(48)
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min f2 =
M∑

i=1

N∑

j=1

K∑

k=1

⎡

⎣

⎧
⎨

⎩

t1ijk + t2ijk + t3ijk + t4ijk
4

+
t1ijk − t2ijk + t3ijk + t4ijk

8

⎡

⎣
1
tθrijk

− 1
tθlijk

−
(
1 + tθrijk

)
ln

(
1 + tθrijk

)

tθ
2
r
ijk

+
(
1 + tθlijk

)
ln

(
1 + tθlijk

)

tθ
2
l
ijk

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
· yijk +

⎧
⎨

⎩

t1ijk + t2ijk + t3ijk + t4ijk
4

+
t1ijk − t2ijk + t3ijk + t4ijk

8

⎡

⎣
1
tθrijk

− 1
tθlijk

−
(
1 + tθrijk

)
ln

(
1 + tθrijk

)

tθ
2
r
ijk

+
(
1 + tθlijk

)
ln

(
1 + tθlijk

)

tθ
2
l
ijk

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
· xijk

⎤

⎥
⎦

(49)

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j=1

K∑

k=1
xijk ≤

[
a1i +a2i +a3i +a4i

4 + a1i −a2i +a3i +a4i
8

{

1
aθr
i

− 1
aθl
i

−
(
1+aθr

i

)
ln

(
1+aθr

i

)

aθ2r
i

+
(
1+aθl

i

)
ln

(
1+aθl

i

)

a
θ2l
i

}]

, ∀ i = 1, 2, · · · ,M
M∑

i=1

K∑

k=1
xijk ≥

[
b1j +b2j +b3j +b4j

4 + b1j −b2j −b3j +b4j
8

{

1
bθr
j

− 1
bθl
j

−
(
1+bθr

j

)
ln

(
1+bθr

j

)

bθ2r
j

+
(
1+bθl

j

)
ln

(
1+bθl

j

)

b
θ2l
j

⎫
⎬

⎭

⎤

⎦ , ∀ j = 1, 2, · · · ,N

M∑

i=1

N∑

j=1
xijk ≤

[
e1k+e2k+e3k+e4k

4 + e1k−e2k−e3k+e4k
8

{

1
eθrk

− 1
eθlk

−
(
1+eθrk

)
ln

(
1+eθrk

)

eθ
2r

k

+
(
1+eθlk

)
ln

(
1+eθlk

)

e
θ2l
k

}]

, ∀ k = 1, 2, · · · ,K

xijk ≥ 0, ∀ i, j, k

(50)

Equivalent crisp problem in T1

If the input parameters are in type-1 trapezoidal fuzzy in nature, then using Eq. (23)
of Theorem-1 and Eqs. (40)-(42), we have obtained the equivalent crisp problem for
expected value as

min f1 =
M∑

i=1

N∑

j=1

K∑

k=1

[{
c1ijk + c2ijk + c3ijk + c4ijk

4

}

· xijk
]

(51)

min f2 =
M∑

i=1

N∑

j=1

K∑

k=1

[{
t1ijk + t2ijk + t3ijk + t4ijk

4

}

· yijk +
{
d1ijk + d2ijk + d3ijk + d4ijk

4

}

· xijk
]

(52)

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j=1

K∑

k=1
xijk ≤

[
a1i +a2i +a3i +a4i

4

]

, ∀ i = 1, 2, · · · ,M
M∑

i=1

K∑

k=1
xijk ≥

[
b1j +b2j +b3j +b4j

4

]

, ∀ j = 1, 2, · · · ,N
M∑

i=1

N∑

j=1
xijk ≤

[
e1k+e2k+e3k+e4k

4

]

, ∀ k = 1, 2, · · · ,K
xijk ≥ 0, ∀ i, j, k

(53)
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Table 1 Input data for this problem
˜̃a1 (28.8, 30.4, 34.5, 37.9, 0.5, 1) ˜̃b1 (12.8, 14.8, 16.8, 17.8, 0.5, 1)
˜̃a2 (30.9, 33.9, 36.9, 40, 0.5, 1) ˜̃b2 (14.4, 16.8, 18.6, 21, 0.5, 1)
˜̃c111 (7, 9, 11, 12, 0.5, 1) ˜̃c112 (5, 7, 9, 10, 0.5, 1)
˜̃c121 (6, 7, 10, 12, 0.5, 1) ˜̃c122 (5, 8, 12, 14, 0.5, 1)
˜̃c211 (6.9, 8.9, 10.9, 10, 0.5, 1) ˜̃c212 (4.9, 6.9, 8.9, 10, 0.5, 1)
˜̃c221 (6.9, 7.9, 10.9, 10, 0.5, 1) ˜̃c222 (5.9, 8.9, 12.9, 10, 0.5, 1)
˜̃t111 (4, 5, 7, 8, 0.5, 1) ˜̃t112 (6, 8, 10, 12, 0.5, 1)
˜̃t121 (3, 4, 6, 7, 0.5, 1) ˜̃t122 (5, 6, 8, 9, 0.5, 1)
˜̃t211 (4.9, 5.9, 7.9, 8.9, 0.5, 1) ˜̃t212 (6.9, 8.9, 10.9, 12.9, 0.5, 1)
˜̃t221 (3.9, 4.9, 6.9, 7.9, 0.5, 1) ˜̃t222 (5.9, 6.9, 8.9, 9.9, 0.5, 1)
˜̃d111 (0.8, 1, 2, 2.5, 0.5, 1) ˜̃d112 (1, 2, 4, 5, 0.5, 1)
˜̃d121 (1, 1.5, 3.5, 6, 0.5, 1) ˜̃d122 (0.8, 1.9, 3, 4.9, 0.5, 1)
˜̃d211 (0.8, 1.9, 2.9, 2.5, 0.5, 1) ˜̃d212 (1.9, 2, 4.9, 5.9, 0.5, 1)
˜̃d221 (1.9, 1.5, 3.5, 6, 0.5, 1) ˜̃d222 (0.8, 1, 3, 4, 0.5, 1)
˜̃e1 (51, 55, 50, 52, 0.5, 1) ˜̃e2 (56, 52, 54, 56, 0.5, 1)

Numerical experiment
Input data

In the experiment, assume that there are two vendors M = 2, two customers N = 2
and two conveyances K = 2. Let unit transportation costs, availabilities of product,
demands of product, capacities of conveyances, unit transportation time and unit load-
ing and unloading times are type-2 trapezoidal fuzzy in nature and these are given in
Table 1.

Optimum results

With the above input data from Table 1, the objective equations together with crisp con-
straints are separately solved using GRG technique and we have listed the values of f 0i and
f 1i , (i = 1, 2). Then these values are given as follows.
For optimum value ξ1:

f 01 = 286.9234 f 11 = 342.6957 f 02 = 127.3053 f 12 = 78.14594
So, we formulate the membership functions for f1 and f2 as follows

μ1(f1(x)) =

⎧
⎪⎨

⎪⎩

1, for f1(x) < 286.9234
342.6957−f1(x)

342.6957−286.9234 , for 286.9234 ≤ f1(x) ≤ 342.6957
0, for f1(x) > 342.6957

(54)

Table 2 Optimistic value (ξ1) of f1 and f2 via GPT

μ1 μ2 f1 f2

0.1 0.1 337.1185 151.4548

0.5 337.1185 151.5363

0.9 340.49 122.5435

0.5 0.1 325.6547 137.1486

0.5 325.6446 137.1561

0.9 327.1125 115.3108

0.9 0.1 296.1603 173.051

0.5 299.6982 150.2512

0.9 330.7623 119.9491
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Table 3 Pessimistic value (ξ2) of f1 and f2 via GPT

μ1 μ2 f1 f2

0.1 0.1 338.8941 149.8294

0.5 338.8941 149.8435

0.9 338.8941 131.8406

0.5 0.1 316.2694 152.1988

0.5 320.0879 149.1702

0.9 334.962 120.2972

0.9 0.1 326.0772 177.8517

0.5 306.0398 146.1588

0.9 332.1073 121.1518

μ2(f2(x)) =

⎧
⎪⎨

⎪⎩

1, for f2(x) < 78.14594
127.3053−f2(x)

127.3053−78.14594 , for 78.14594 ≤ f2(x) ≤ 127.3053
0, for f2(x) > 127.3053

(55)

For pessimistic value ξ2:
f 01 = 286.2006 f 11 = 344.7489 f 02 = 123.9177 f 12 = 76.86776

So we formulate the membership functions for f1 and f2 as follows

μ1(f1(x)) =

⎧
⎪⎨

⎪⎩

1, for f1(x) < 286.2006
344.7489−f1(x)

344.7489−286.2006 , for 286.2006 ≤ f1(x) ≤ 344.7489
0, for f1(x) > 344.7489

(56)

μ2(f2(x)) =

⎧
⎪⎨

⎪⎩

1, for f2(x) < 76.86776
123.9177−f2(x)

123.9177−76.86776 , for 76.86776 ≤ f2(x) ≤ 123.9177
0, for f2(x) > 123.9177

(57)

For CV value ξ3:
f 01 = 277.7770 f 11 = 343.8440 f 02 = 125.4119 f 12 = 77.43150

Table 4 CV value (ξ3) of f1 and f2 via GPT

μ1 μ2 f1 f2

0.1 0.1 337.2373 163.3666

0.5 337.2373 140.0457

0.9 340.6428 122.9292

0.5 0.1 310.8105 166.2521

0.5 324.3868 136.0942

0.9 316.5124 141.5057

0.9 0.1 294.8195 170.5921

0.5 297.6135 142.1535

0.9 314.6268 134.4193
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Table 5 Optimistic value (ξ1) of f1 and f2 via WSM

w1 w2 f1 f2

0 1 342.6957 78.14594

1 0 286.9234 127.3053

0.1 0.9 342.6957 78.14594

0.3 0.7 342.6957 78.14594

0.5 0.5 288.1229 121.9538

0.7 0.3 287.6876 125.3376

0.9 0.1 287.6876 125.3376

So we formulate the membership functions for f1 and f2 as follows

μ1(f1(x)) =

⎧
⎪⎨

⎪⎩

1, for f1(x) < 277.7770
343.8440−f1(x)

343.8440−277.7770 , for 277.7770 ≤ f1(x) ≤ 343.8440
0, for f1(x) > 343.8440

(58)

μ2(f2(x)) =

⎧
⎪⎨

⎪⎩

1, for f2(x) < 77.43150
125.4119−f2(x)

125.4119−77.43150 , for 77.43150 ≤ f2(x) ≤ 125.4119
0, for f2(x) > 125.4119

(59)

Then, we formulate the following model with the help of interactive goal programming
technique (for CV):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
x

[ d−
1 + d−

2 ]

s.t

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

343.8440−f1(x)
343.8440−277.7770 + d+

1 − d−
1 = μ1

125.4119−f2(x)
125.4119−77.43150 + d+

2 − d−
2 = μ2

and (51)
d+
i d

−
i = 0, d+

i , d
−
i ≥ 0, i = 1, 2.

(60)

The above single objective function has been solved using LINGO-14.0. The optimal
results are reported in Tables 2, 3, and 4. Again using weighted sum method, the prob-
lem has been solved using LINGO-14.0 and the optimum results has been tabulated in
Tables 5, 6, and 7, by which decision maker choose their expected results by choosing
different weights.

Discussion
From experiments, we determined compromise solutions using goal programming tech-
nique and weighted sum method for different optimistic levels μ1,μ2 and different
spreads θl, θr . In order to validate the results, we obtained a sensitivity analysis with dif-
ferent spreads θl, θr . The optimum results are given in Table 8, where it is observed that
the transportation times are decreasing as optimistic levels are increased.

Table 6 Pessimistic value (ξ2) of f1 and f2 via WSM

w1 w2 f1 f2

0 1 344.7489 76.86776

1 0 286.2006 123.9177

0.1 0.9 344.7489 76.86776

0.3 0.7 344.7489 76.86776

0.5 0.5 287.8086 119.3824

0.7 0.3 286.9582 123.0566

0.9 0.1 286.9582 123.0566
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Table 7 CV value (ξ3) of f1 and f2 via WSM

w1 w2 f1 f2

0 1 343.844 77.4315

1 0 277.777 125.4119

0.1 0.9 343.844 77.4315

0.3 0.7 311.05 96.44564

0.5 0.5 279.9655 120.51

0.7 0.3 279.298 124.0653

0.9 0.1 277.777 125.4119

If the spreads, both left and right, θl, θr of T2TrFV are increased, then cost and time
decreases and if the spreads are considered as zero, then the proposed model has been
converted to type-1 fuzzy model. It shows that the presented algorithm is competent
in finding good solutions and the obtained Pareto optimal solutions set is adequate for
decision support systems. The optimistic, pessimistic, and CV values of the objective
functions f1 and f2 are shown Figs. 1 and 2, respectively, with the change of μ1, and μ2. It
is observed that CV values are best out of three values, which is expected.

Conclusions
In our analysis, we have formulated a single layered distribution system in a solid trans-
portation problem (STP) under type 2 trapezoidal fuzzy environment (T2TrF). Here the
capacities of supply at origins, demands at destinations and conveyance capacities, trans-
portation costs per unit, unit transportation time and unit loading and unloading time to
be T2TrFVs due to the demand of real life situations. Then the STP is reformulated as cost
minimization and transportation time minimization problem by the credibility measure
and expectation theory via critical value reduction method. The numerical experiments
illustrated the operation and efficiency of the suggested approaches. The corresponding
crisp model is solved using GRG (Lingo-14.0).

Table 8 Optimized values of objectives with respect to different spreads via GPT

Optimistic value (ξ1)

θl θr Fuzzy f1 f2

0.5 0.5 T2 334.4461 118.8946

0.7 0.3 T2 334.5625 119.4512

0.9 0.9 T2 327.1870 115.0227

0 0 T1 316.5965 141.4633

Pessimistic value (ξ2)

θl θr Fuzzy f1 f2

0.5 0.5 T2 334.9620 120.2972

0.7 0.3 T2 333.1573 120.4039

0.9 0.9 T2 330.3718 120.4579

0 0 T1 316.5965 141.4633

CV value (ξ3)

θl θr Fuzzy f1 f2

0.5 0.5 T2 336.5965 141.4633

0.7 0.3 T2 326.6765 141.4223

0.9 0.9 T2 316.5965 141.4633

0 0 T1 316.5965 141.4633
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Fig. 1 Different optimistic levels vs transportation cost

The major new features of the paper include the following three aspects:

(i) Expectation formulas of the reductions for type-2 trapezoidal fuzzy variables have
been deduced.
(ii) Using the proposed critical value reduction method, a new class of generalized
credibility solid transportation problem has been established.
(iii) We have introduced solid transportation problem in T2TrF environments for the
first time.

The present work can be continued to multi-item STP and multi-objective STP in two
stage distribution system. The presented models can be extended to different types of
STPs including transportation time constraints, price discount, breakable/deteriorating
items, damageable item, transportation with restriction on transported amount etc.

Fig. 2 Different optimistic levels vs transportation time
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