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Abstract

In this paper, uncertain dynamic network flow problems (UDNFPs) are formulated, and
an algorithm is proposed to solve them by noting that arc capacities are uncertain
(may vary with time or not), and flow varies over time in each arc. Here, uncertainty
refers to nondeterministic states, in which some factors are uncertain and cannot be
determined by the probability theory. Since the uncertainty theory seems to be well
applicable in these cases, thus, it is applied for the UDNFPs in this paper. Although
some papers have studied uncertain network flow problems in the static case, but in
the best of our knowledge, this paper is the first one about the UDNFPs.

Keywords: Dynamic network flows, Uncertain capacities, Optimization, Uncertainty
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Introduction
Network flow problems (NFPs) appear in different areas such as electrical and power net-
works, highway systems, manufacturing and distribution networks, computer networks,
neural networks, and water supply systems. Based on different methodologies of their
solutions, NFPs could be categorized into three classes: static, dynamic, and uncertain.
For a good overview of static NFPs, see Ahuja [1]. Dynamic NFPs are introduced by Ford
and Fulkerson [14] and developed by other researchers [2, 12, 13, 37]. Nondeterministic
NFPs are usually studied by using the probability theory [2, 8, 11, 17, 31, 32, 34, 35]. It is
obvious that the probability theory can be applied to the known sample data, which are
not true in many real-life situations such as problems arising from urban traffic networks.
Although fuzzy theory is applicable to these problems, but because of some theoretical
drawbacks, it cannot handle them efficiently [26]. Liu [26] introduced the uncertainty
theory to solve some kinds of uncertain problems where probabilistic and fuzzy
theories do not work properly. This theory is well applicable to many problems,
especially for uncertain static NFPs [10, 15, 18, 25, 30, 44]. These results motivate us to
use the uncertainty theory to solve UDNFPs.
Some materials about dynamic network flow problems and stochastic network flow

optimization are noted in this section. In view of [13, 18, 33, 36, 37], we extend the
formulations of simple cases to the more complicated ones.

Dynamic Network Flow Problems

Ford and Fulkerson [14] introduced the maximal dynamic flow problem. The problem is
defined on a dynamic network N = (V ,E,u, τ , {s, t}): a set of nodes V, a set of directed
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edges E with a non-negative integral capacity function u and transit times τ , a subset S of
nodes, a source s, and a sink t. The goal is to find a dynamic flow that sends as much flow
as possible from the source to the sink in a given time horizon T. In the Ford-Fulkerson
model, time is measured in discrete steps so that if one unit of flow leaves node i at time
θ on arc (i, j), one unit of flow arrives at node j at time θ + τij, where τij is the transit time
of arc (i, j). The model also allows storage at any node in the network.

Discrete and Continuous Time Dynamic Network Flows

To handle dynamic network flow problems, we can either (1) model time in discrete time
steps or (2) model time continuously. To produce theoretically or practically efficient
algorithms, the time-expanded network is used in the case one either explicitly in
algorithms or implicitly in proofs. To prove the existence of optimal solutions and
generalize the model, networks with time-varying capacities and costs are considered in
the case two.
A discrete dynamic flow is a function g that assigns a flow to each arc at each time step.

It must also obey capacity constraints 0 ≤ g(θ) ≤ u for all time steps θ .
A continuous dynamic flow is a function x that defines the rate of flow (per unit time)

entering each arc at each moment of time. The capacity constraints are now flow rate
constraints.
L. Fleischer and E. Tardos [13] extended the discrete time dynamic flow algorithms to

solve the analogous continuous-time dynamic flow problems. Based on [13], we study
UDNFPs just in the discrete time mode.

Dynamic Network Flows and Network Flows Over Time Most of the dynamic
network flow problems are treated in a purely static environment in which the input data
is given in advance and assumed to be independent of time, and only the flow changes
over time. L. Fleischer and M. Skutella [12] point out that the term dynamic is more
consistent for problems in which the data changes over time. Thus, they use the term
network flows over time instead of dynamic network flows to express that only the
movement of flow through the network over time is considered.
Since in the UDNFPs considered here, arc capacities are uncertain and may vary with

time, moreover, flows vary with time; thus, by the above discussion, the term dynamic is
appropriate for them.

Stochastic Network Optimization Problem

Many real-life networks behave stochastically, for example in communication systems,
production systems, and logistics systems. In practical problems, different types of
uncertainty arise which should be taken into account.
Some researchers address the nondeterministic variables as random variables

[2, 8, 11, 17, 31, 32, 34, 35] or fuzzy variables [3, 4, 19, 20, 38]. Such researchers use the
probability theory developed by Kolmogorov [21] or fuzzy mathematics introduced by
Zadeh [43] to model frequencies or fuzzy quantities. They mainly use stochastic opti-
mization, chance constrained programming, robust optimization, and fuzzy techniques
to solve some flow problems in uncertain networks. Some others consider the nondeter-
ministic variables under uncertainty theory [10, 15, 18, 25, 30, 44] in which the concept of
belief degree introduced by Liu [25] is used.
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To deal with some uncertain phenomena, Liu proposed the uncertainty theory in 2007
[25] and refined it in 2010. Uncertainty theory that has become a branch of mathematics
for modeling human uncertainty is different from probability theory and fuzzy mathe-
matics. Details about the similarities and differences between Liu’s uncertainty concept
and standard probabilistic concept, as well as fuzzy concept can be found in [26, 27].
It has shown theoretically and practically that uncertainty theory is an efficient tool in
dealing with nondeterministic information, especially expert data and subjective
estimation. From theoretical point of view, uncertain process [22, 41], uncertain
differential equation [5, 42], and uncertain logic [29] have been established. From
practical point of view, uncertain programming [15, 16, 24, 40], uncertain calculus [7, 23],
and uncertain risk analysis [28] have been developed quickly.
It is interesting to know when the uncertainty theory should be used for network

problems. When sample data corresponding to nondeterministic variables of a network
is not enough, we ask some experts to express their belief degrees. Based on these belief
degrees, the uncertainty theory is used to solve the problems.
In this paper, we study the UDNFPs where the word uncertainty refers to nondeter-

ministic situations with poor sample data. In these problems, arc capacities are uncertain
and independent from each other, and flow varies through the network over time. Our
contribution is to solve some kinds of UDNFPs by uncertainty theory. In fact, UDNFPs
can be transformed to DNFPs by using of the uncertainty theory under some conditions.
Especially, the uncertain network, which leads to these problems, can be transformed to
the equivalent certain network by an algorithm under some conditions.
The rest of the paper is organized as follows. In the “Preliminaries” section, some

basic information about the dynamic network flow problems and the uncertainty the-
ory is reviewed. In the “Formulations” section, the formulation of UDNFPs is surveyed.
The main algorithm is presented in the “The Main Algorithm of Solving the UDNFPs”
section to solve the UDNFPs, and applied to a simple example in the “Numerical Example”
section. Finally, the conclusion and future works are given in the “Conclusion and Future
Works” section, and declarations are given in the last section.

Preliminaries
Dynamic Network Flow Problems

Let G = (V ,E) be a network (directed graph) with a source node s ∈ V and a sink node
t ∈ V . Each arc e ∈ E has an associated capacity ue and a transit time (or length) τe ≥ 0. In
the setting with costs, each arc e also has a cost coefficient ce, which determines the cost
of sending one unit of flow through the arc. An arc e from node v to node w is sometimes
also denoted (v,w); in this case, we write head(e) = w and tail(e) = v. To avoid confusion,
we assume without loss of generality that there is at most one arc between any pair of
nodes in G and that there are no loops.
Since the UDNFPs comprise of different problems with different shapes, it seems to be

better to survey each of them individually. Fortunately, uncertainty theory is applicable for
all of them with a same manner (in the case that just capacities are uncertain). Therefore,
we just study UncertainMaximumDynamic Network Flow problem (UMDNFP) in which
the flow varies with time and capacities are uncertain (may vary with time or not). In
addition, this problem is regarded just in the discrete timemode because the results could
be adopted for continuous time mode according to [13].
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Maximum Flows Over Time Problem (MFOTP)

It can be seen that UMDNFPwith no uncertain factors turns toMFOTP, thus, wemention
some properties of MFOTP. Here, we consider flows over time with a fixed time horizon
T ≥ 0.

Definition 1 (Flow over time). A flow over time f with time horizon T consists of a
Lebesgue integrable function fe :[0,T) → R≥0 for each arc e ∈ E, moreover fe(θ) = 0must
hold for θ ≥ T − τe. To simplify notation, we sometimes consider fe as a function with
domain R. In this case, we set fe(θ) := 0 for all θ /∈[0,T).

We say that fe(θ) is the rate of flow (i.e., amount of flow per time unit) entering arc e at
time θ . The flow particles entering arc e at its tail at time θ arrive at the head of e exactly
τe time units later. In particular, the outflow rate at the head of arc e at time θ is equal
to fe(θ − τe). Definition 1 ensures that all flow has left arc e at time T as fe(θ) = 0 for
θ ≥ T − τe.

Definition 2 (Capacity, excess, flow conservation, s − t-flow over time). Let f be a flow
over time with time horizon T.

(a) The flow over time f fulfills the capacity constraints (and is called feasible) if
fe(θ) ≤ ue for each e ∈ E and all θ ∈ [0,T).

(b) For v ∈ V , the excess at node v and time θ is the amount of flow that enters node v
up to time θ , that is,

exf (v, θ) :=
∑

e∈δ−(v)

∫ θ−τe

0
fe(ξ)dξ −

∑

e∈δ+(v)

∫ θ

0
fe(ξ)dξ .

(c) The flow over time f fulfills the weak flow conservation constraints if exf (θ) ≤ 0
for each v ∈ V\{s, t} and all θ ∈ [0,T). Moreover, exf (T) = 0must hold for each
v ∈ V\{s, t}.

(d) A flow over time satisfying the weak flow conservation constraints is an s − t-flow
over time. The value of an s − t-flow over time with time horizon T is
|f | := exf (t,T).

(e) An s − t-flow over time f fulfills the strict flow conservation constraints if
exf (v, θ) = 0 for all v ∈ V\{s, t} and θ ∈ [0,T]. The strict flow conservation
constraints say that flow must not be stored at intermediate nodes.

By the definition of exf (v, θ), we can formulate the MFOTP as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
fe(θ)

|f | := |exf (v,T)|
subject to :

fe(θ) ≤ ue,∀e ∈ E, θ ∈ [0,T),

exf (v, θ) = 0,∀v ∈ V\{s, t}, θ ∈ [0,T).

(1)

Uncertainty

Here, some basic concepts are recalled from [26] which required in the sequel.
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Definition 3 Let L be a σ -algebra on a nonempty set �. A set functionM : L →[0, 1] is
called an uncertain measure if it satisfies the following axioms:

Axiom 1 (Normality Axiom)M{�} = 1 for the universal set �;
Axiom 2 (Duality Axiom)M{�} + M{�c} = 1 for any event � ∈ L;
Axiom 3 (Subadditivity Axiom) For every countable sequence of events �1,�2, . . ., we

have

M
{ ∞⋃

i=1
�i

}
≤

∞∑

i=1
M{�i}.

In the uncertainty theory, the triplet (�,L,M) is called an uncertainty space,
and the product uncertain measure on the product algebra defined by Liu [25] via
the following product axiom:

Axiom 4 (Product Axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, . . . . The
product uncertain measureM is an uncertain measure satisfying

M
{ ∞∏

k=1
�k

}
=

∞∧

k=1
M{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . . respectively.

An uncertain variable ξ is a measurable function from an uncertainty space to the set
of real numbers. In order to describe an uncertain variable in practice, Liu [25] defined a
concept of uncertainty distribution as follows.

Definition 4 The uncertainty distribution 	 of an uncertain variable ξ is defined by

	(x) = M{ξ ≤ x}

for any real number x.

Definition 5 An uncertainty distribution	(x) is said to be regular if its inverse function
	−1(α) exists for each α ∈ (0, 1).

In this paper, we always assume that uncertainty distributions are regular. Otherwise,
we may give the uncertainty distribution a small perturbation to become regular [26].

Definition 6 The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M
{ n⋂

i=1
(ξi ∈ Bi)

}
=

n∧

i=1
M{ξi ∈ Bi}

for any Borel sets B1,B2, . . . ,Bn of real numbers.

Definition 7 Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E [ξ ]=
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.
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Theorem 1 (Liu [27]) Let ξ be an uncertain variable with regular uncertainty distribu-
tion 	. Then

E[ ξ ]=
∫ 1

0
	−1(α)dα.

Theorem 2 (Liu [27]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regu-
lar uncertainty distributions 	1,	2, . . . ,	n respectively. If the function f (ξ1, ξ2, . . . , ξn)
is strictly increasing with respect to ξ1, ξ2, . . . , ξm and strictly decreasing with respect to
ξm+1, ξm+2, . . . , ξn, then

ξξξ = f (ξ1, ξ2, . . . , ξn)

is an uncertain variable with inverse uncertainty distribution

�−1(α) = f (	−1
1 (α), . . . ,	−1

m (α),	−1
m+1(1 − α), . . . ,	−1

n (1 − α))

where � is the uncertainty function of ξξξ .

Uncertain Programming

Uncertain programming is a type of mathematical programming involving uncertain vari-
ables. Assume that xxx is a decision vector, and ξξξ is an uncertain vector. Since an uncertain
objective function f (xxx,ξξξ) cannot be minimized directly, we may minimize its expected
value, i.e.,

min
x

E[ f (xxx,ξξξ)] .

In addition, since the uncertain constraints gj(xxx,ξξξ) ≤ 0, j = 1, 2, . . . , p, do not define
a certain feasible set, it is naturally desired that the uncertain constraints hold with
confidence levels α1,α2, .., ,αp. Then we have a set of chance constraints,

M{gj(xxx,ξξξ) ≤ 0} ≥ αj, j = 1, 2, . . . , p. (2)

Theorem 3 (Liu [26]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with reg-
ular uncertainty distributions 	1,	2, . . . ,	n respectively. If the constraint function
g(xxx, ξ1, ξ2, . . . , ξn) is strictly increasing with respect to ξ1, ξ2, . . . , ξk and strictly decreasing
with respect to ξk+1, ξk+2, . . . , ξk, then The chance constraint

M{g(xxx, ξ1, ξ2, . . . , ξn) ≤ 0} ≥ α

holds if and only if

g(xxx,	−1
1 (α), . . . ,	−1

k (α),	−1
k+1(1 − α), . . . ,	−1

n (1 − α)) ≤ 0.

In order to make a decision with minimum expected objective value subject to a set of
chance constraints, Liu [24] proposed the following uncertain programming model,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
xxx

E[ f (xxx,ξξξ)]

subject to:
M{gj(xxx,ξξξ) ≤ 0} ≥ αj, j = 1, 2, . . . , p,
xxx ∈ D.

Since there is no algorithm to solve this uncertain model directly, we transform it to an
equivalent certain model that can be solved by existing algorithms of certain programming.
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By Theorem 2, the equivalent certain model becomes
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
xxx

∫ 1
0 	−1

f (xxx,α)dα

subject to :
�−1

gj (xxx,α) ≤ 0, j = 1, 2, . . . , p,
xxx ∈ D.

where 	−1
f and �−1

gj are the inverse of f (xxx,ξξξ) and gj(xxx,ξξξ) respectively.

Formulations
Applying different kinds of criteria (i.e., expected values, belief degrees, etc.) leads to dif-
ferent formulations for a specific problem each of which may have a different solution.
Therefore, a suitable criterion is needed to obtain the best possible solution. For more
details see [26].
Now, we review the chance constraint that is the keystone of the uncertain program-

ming. For the uncertainty capacity ue of an arc e ∈ E with uncertainty distribution 	e,
and the amount of flow fe(θ) in e at time θ ∈ [0,T), briefly, we have fe(θ) ≤ ue. Let
g(f ,ue) = fe(θ) − ue. Then in the standard formulation of a problem we will have

g(f ,ue) ≤ 0, ∀e ∈ E, θ ∈ [0,T). (3)

Since there is no algorithm to deal with this uncertain constraint, we have to use a chance
constraint to transfer (3) to a certain constraint (a constraint including no uncertain vari-
able). From the chance constraint (2) for g(f ,ue) we have M{fe(θ) ≤ ue} ≥ αe. This
implies that whenever fe(θ) gets lower values, we have higher levels of confidence about
the satisfaction of fe(θ) ≤ ue and vice versa. In other words, the value of fe(θ) is propor-
tional to 1 − αe. This chance constraint is suitable for those problems that require lower
fe(θ) such as uncertain minimum cost flow problem (see [9]). According to Theorem 3,
by applying the chance constraint (2) for g(f ,ue) we will have

fe(θ) ≤ 	−1
e (1 − αe);

that is, whenever the lower amounts of flows are desirable, we can replace the uncertain
capacities with 	−1

e (1 − α) to obtain a certain model of the problems.
On the other side, we need to reach the higher amounts of flows in many problems.

Consequently, the chance constraint (2) is not suitable for these problems. Thus, we need
another chance constraint to assure the higher values of fe(θ). An example of such prob-
lem is the uncertain maximum flow problem for sending large amounts of flows through
the arcs as much as possible. In this case, we can apply the following chance constraint

M{g(f ,ue) ≤ 0} ≥ 1 − αe (4)

Or

M{g(f ,ue) ≥ 0} ≤ αe. (5)

Let check the suitability of this chance constraint for these kinds of problems. By
applying it to g(f ,ue) = fe(θ) − ue we will have

M{fe(θ) ≤ ue} ≥ 1 − αe.

BY continuing the above discussion and taking 1−αe instead of αe, we see that the amount
of flow fe(θ) is proportional to αe. In other words, by the confidence level αe we know that



Alipour and Mirnia Journal of Uncertainty Analysis and Applications  (2017) 5:4 Page 8 of 13

fe(θ) reaches to its highest value, showing that why this chance constraint is suitable for
the latter case.

Lemma 1 Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regular uncertainty
distributions 	1,	2, . . . ,	n respectively. If the constraint function g(xxx, ξ1, ξ2, . . . , ξn) is
strictly increasing with respect to ξ1, ξ2, . . . , ξk and strictly decreasing with respect to
ξk+1, ξk+2, . . . , ξk, then we will have

M{g(xxx, ξ1, ξ2, . . . , ξn) ≤ 0} ≥ 1 − α

if and only if

g(xxx,	−1
1 (1 − α), . . . ,	−1

k (1 − α),	−1
k+1(α), . . . ,	−1

n (α)) ≤ 0.

Proof It is enough to replace α by 1 − α in Theorem 3.

According to Lemma 1, for the second kind of problems we will have

fe(θ) ≤ 	−1
e (αe).

Thus, we can replace the uncertain capacities with 	−1
e (αe) to obtain certain models for

these kinds of problems (See [10]).
Now, we are ready to formulate the main problem. Suppose that the capacities ue, e ∈ E

in the model (1) are uncertain variables with the uncertainty distribution functions 	e.
By the uncertainty theory, the UMDNFP can be formulated as follows.

UMDNFP (Discrete TimeMode)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
fe(θ)

E(F)

subjectto :
F = |exf (t,T)|
exf (v, θ) = 0,∀v ∈ V\{s, t}, θ ∈ [0,T)

M{fe(θ) ≤ ue} ≥ 1 − αe, ∀e ∈ E, θ ∈ [0,T).

(6)

By lemma 1 we can write M{fe(θ) ≤ ue} ≤ 1 − αe as fe(θ) ≤ 	−1
e (αe). Also, since the

uncertain variables do not appear in the objective function F, then we use just the function
F here (For the case that uncertain variables appear in the objective function, see [36]).
Hence, the model (6) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
fe(θ)

F

subject to:
F = |exf (t,T)|
exf (v, θ) = 0,∀v ∈ V\{s, t}, θ ∈ [0,T)

fe(θ) ≤ 	−1
e (αe), ∀e ∈ E, θ ∈ [0,T)

(7)

which is the certain model of (6) and has the same shape of MFOTP. In other words, this
is a deterministic MFOTP with certain capacities ce = 	−1

e (αe).
The uncertainty distribution functions and their inverses play an essential rule in

uncertainty programming. Thus we remind some materials about them in the following.
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Uncertainty Distributions

In [26], we can find the way of obtaining belief degrees to define distribution functions.
Liu [27] suggested the principle of least squares to estimate the unknown parameters of
uncertainty distribution. Wang et al. [39] applied the Delphi method to determine the
uncertainty distribution based on expertise. Chen and Ralescu [6] used B-spline method
to estimate the uncertainty distribution.
Some uncertainty distributions are:
Linear Uncertainty Distribution

	(x) =

⎧
⎪⎨

⎪⎩

0, ifx ≤ a
(x − a)/(b − a), ifa ≤ x ≤ b
1, ifx ≥ b

denoted by L(a, b) where a and b are real numbers with a < b.
Zigzag Uncertainty Distribution

	(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x ≤ a
(x − a)/[ 2(b − a)] if a ≤ x ≤ b
(x + c − 2b)/[ 2(c − b)] if b ≤ x ≤ c
1, if x ≥ c

denoted by Z(a, b, c) where a, b, c are real numbers with a < b < c.

Computing Inverse Uncertainty Distribution Functions

Computing inverse uncertainty distribution functions appeared in certain mode may
be impractical, thus, we have to apply some approximations. Liu [27] proposed the
99-method to this end. Together with some search algorithms such as binary search algo-
rithm or genetic algorithm to obtain the optimal value for α, it leads to some Hybrid
algorithms [23, 36].

Remarks 1 The uncertain capacities of the max dynamic flow problem considered
here might vary with time, but their corresponding uncertainty distributions be indepen-
dent of time. Thus, this problem can be transformed to a certain max flow over time
model. Therefore, formulation in this case of uncertainty is also straightforward for all
of the dynamic network flow problems such as Earliest Arrival Flows, Minimum Cost
Flows, Multi-Commodity Flows, and so on. For other problems that cannot be formulated
in this straightforward manner, more care should be taken in using uncertainty theory.
Complicated cases are left as future works.

TheMain Algorithm of Solving the UDNFPs
As noted above, when just capacities are uncertain in the UDNFP, the uncertain problem
can be transformed to a certain one with the same shape as the original problem. That is,
an uncertain problem such as the UMDNFP with uncertain capacities is transformable to
a certain problem such as the MDNFP with capacities equal to 	−1

e (αe)s.
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It is stressed again that to transfer an uncertain problem to a certain equivalent one
under the circumstances considered here, the uncertain capacities must be replaced with
some values carefully. If the higher amounts of flows are desirable, the uncertain capaci-
ties can be replaced by 	−1

e (αe), else if the lower amounts of flows are desirable, then the
uncertain capacities can be replaced by 	−1

e (1 − αe).
Note that αe, e ∈ E guarantees the satisfaction of the corresponding constraints. Any

value of αe is determined by the importance of the corresponding constraint. Thus, if all
constraints have the same importance, then we set all these values equal to a fixed value
α [10].
The algorithm of transforming the UDNFPs to the DNFPs
Given an UDNFP,

Step 1 Detect suitable uncertain variables;
Step 2 Define the corresponding uncertainty distribution functions;
Step 3 Model the main problem by appropriate uncertainty criteria;
Step 4 Transform the uncertain model to an equivalent certain model;
Step 5 Solve the final model by an appropriate algorithm.

This algorithm implies that to solve UDNFPs considered here, it is sufficient to replace
the uncertainty capacities with αe or 1 − αe appropriately, then deal with the UDNFPs
such as certain problems.

Numerical Example
By a simple example presented here, we illustrate the way of dealing with UDNFPs by the
proposed algorithm.
Consider the network in Fig. 1. We want to find a feasible s − t-flow over time f with

time horizon T = 9 and maximum value | f |.
Now, suppose that we have obtained the same uncertainty distribution function	(x) =

Z(0.5, 1, 2.25) for all arc capacities based on the expertise information.
For a given confidence level α = 0.9 (determined by the decision maker), we have

	−1(0.9) = 2.

Fig. 1 A network consisting of arcs with uncertain capacities Cij , i, j ∈ {s, 1, 2, 3, 4, t}, i �= j. The arcs are all
directed from left to right towards the sink t. The numbers at arcs indicate transit times
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By replacing the uncertain capacities in the original network with 	−1(0.9), we obtain
the equivalent certain network (for this problem) with two-unit capacities. Thus, we will
have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
fe(θ)

F

subject to:
F = |exf (t, 9)|
exf (v, θ) = 0,∀vi, i ∈ {1, 2, 3, 4}, θ ∈[ 0, 9)
fe(θ) ≤ 2, ∀e ∈ {

(i, j)|i, j ∈ {s, 1, 2, 3, 4, t}, i �= j
}
, θ ∈[ 0, 9)

(8)

This problem can be solved easily by Ford-Fulkerson repeated temporary flow algo-
rithm [14, 37], which returns the optimal value f = 6. The schematic solution of this
problem in the equivalent certain network with the Ford-Fulkerson algorithm is shown in
Fig. 2.

Conclusion and FutureWorks
Uncertain dynamic network flow problems have been studied here. The UMDNFP has
been formulated and then transformed to a certain MFOTP. It is true that the problems
have been studied just in the discrete timemode, but, the problems in the continuous time
mode can be solved easily by adopting the results for them according to [13]. Moreover, by
using [26, 27], an algorithm has been presented to solve UDNFPs under some conditions.
The presented algorithm can be applied for any UDNFP with independent uncertain

factors. It is worth to note that this algorithm cannot be applied easily for prob-
lems with correlated uncertain factors or time-dependent distribution functions. These
complicated cases as well as the following works are left for future:

• Applying this algorithm to real world problems,
• Defining appropriate distribution functions for uncertain factors,

Fig. 2 Snapshots of a feasible s − t-flow over time with time horizon T = 9 and value 6 in the equivalent
certain network. In order to distinguish flow units traveling one after another along an arc, different shadings
are used for the flow units
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• Finding efficient algorithms to solve uncertain problems directly (without
transforming uncertain models to certain ones), and

• Designing some software and providing some libraries for these problems.
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