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Abstract

In this paper, a synchronization problem of a three-dimensional (3-D) Coullete
chaotic system using the active- and adaptive-based synchronization control
techniques is addressed. Based on the Routh-Hurwitz criterion and using the active
control algorithm, a single control function is considered and a computational study
is performed to identify the correct balance between the converging rates of the
synchronization error signals to the origin and magnitude of the linear controlling
parameters (LCPs) for the globally exponential synchronization (GES) between two
identical 3-D Coullete chaotic systems. In order to achieve the complete
synchronization (CS) objective with unknown model uncertainties, external
disturbances, and unknown time-varying parameters, a novel nonlinear adaptive
synchronous controller is proposed and suitable adaptive laws of time-varying
parameters are designed that accomplish the asymptotic synchronization between
two identical uncertain 3-D Coullete chaotic systems. The two synchronizing
controlling approaches are applied to investigate the CS phenomenon, and the
results are compared. Open research problems are also discussed. All simulations
results are carried out to validate the effectiveness of the proposed synchronization
control approaches by using Mathematica 10.0.

Keywords: Chaos synchronization, Active control, Adaptive control, Routh-Hurwitz
criterion, Lyapunov stability theory
Introduction
Chaos synchronization can be considered as the simplest types of cooperation between

chaotic systems. This cooperation can be induced by coupling or an external force.

Through a weak coupling of the chaotic systems, the difference in behaviors of the two

coupled chaotic systems under different initial conditions goes to zero when time tends

to infinity. This idea of chaos synchronization was first introduced in [1]. After the

remarkable work [1], chaos synchronization has been widely investigated in the

relevant literature [2–4]. At present, chaos synchronization has received increasing

interest in many scientific disciplines, such as chemical processes and biological

systems [5], cryptosystem [6], information processing [7], secure communications [8],

and many physical systems [9]. As a result, a variety of control methods and techniques

have been developed to study the chaos synchronization. These include the adaptive con-

trol strategy [9], projective synchronization [10], sliding mode control [11], nonlinear
The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
icense (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
rovided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
ndicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40467-017-0060-9&domain=pdf
mailto:iak_2000plus@yahoo.com
http://creativecommons.org/licenses/by/4.0/


Ahmad et al. Journal of Uncertainty Analysis and Applications  (2017) 5:6 Page 2 of 17
control techniques [12], and active control method [13], which are well-known

synchronization control techniques among others. Among these techniques, the active

control (AC) and adaptive synchronization control (ASC) strategies have attracted a great

interest in the literature concerned because of their easy implementation to practical sys-

tems [14–22]. The AC method for the chaos synchronization was first proposed in [17]

based on the active control theory [23] and further studied by many researchers [24–26]

among others. The AC strategy can be easily designed according to the given conditions

of coupled chaotic (or hyperchaotic) systems to achieve the chaotic synchronization glo-

bally exponentially. The AC technique for chaos synchronization is used when the nonlin-

earity and parameters of the coupled chaotic systems are known [17] (Additional file 1).

In practical applications, some or all of the system’s parameters are not known in

advance. These parameters change from time to time [27]. Therefore, to tackle the

analytical and computational stability complications produced by the parameter

uncertainties, the ASC approach is used. The ASC strategy is based on the Lyapunov

stability theory [28] and yields the asymptotic tracking of the closed-loop system with

all remaining signals bounded in the presence of the system uncertainties [27, 28].

Past studies of the chaos synchronization using AC strategy [13–17, 24–26] have

more concentrated on the fast convergence rates of the synchronization error signals.

For this purpose, the closed-loop stability for the CS is established by using huge con-

trol functions. This demands an extra effort on the controller design. Furthermore, it

creates two important issues in the synchronization process [27]. Firstly, these control

functions are responsible for the ineffective use of energy due to the creation of large

amplitude oscillation of the synchronized error signals. This may give birth to signal

saturations, thus resulting in the loss of synchronization stability completely. Secondly,

by just placing the poles of the linearized error system to the left half of the complex,

many possible choices are available for the construction of linear controller parameters

(LCPs). With this hypothesis, the message signal could be easily extracted from the

communications channel during the transmission because of any possible choice of the

LCPs [4]. This may lead to security problems. Moreover, there is no precise balance

between the converging rates of the synchronized error signals to the origin and

magnitude of the LCPs. Similarly, it has also been established from past studies

[13–17, 24–26] that the feedback control inputs must be applied to all states of

the error system. This places extra burdens on the controller design and complicating the

AC strategy for the chaotic synchronization. Nevertheless, chaos synchronization with

lower control signals and the correct balance between the converging rates of the

synchronization error signals to the origin and magnitude of the LCPs for the GES bear

great importance in practical applications and have received little attention in the

literature concerned.

From the literature survey, it has also been established that while using the ASC

approaches [18–22] (among others), the feedback control functions for the CS of two

coupled chaotic (or hyperchaotic) systems have been developed so that the amplitude

of the oscillation of the error signals and the synchronization transient time are large.

However, the variations in amplitude of the oscillation of the error signals cannot be

evaded during the transmission of a chaotic signal, which actually determines the

amount of energy to transmit the chaotic signals from transmitter to receiver. Likewise,

the time response is an important feature in real-time applications such as
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communication networks as they depend on the time synchronization between differ-

ent nodes [29]. Furthermore, in [18–22], the unknown parameters are assumed to be

constant and the chaotic systems are considered free of the unknown model uncertain-

ties and external disturbances. These perturbations are not integrated into the system

dynamics altogether due to the analytical and computational stability complications. In

the presence of these perturbations, the closed-loop for chaos synchronization may lose

the synchronization stability completely.

In spite of various efforts in the study of CS, a considerable attention is still required,

especially in five cases: (i) low synchronization controller cost, (ii) to determine a cor-

rect balance between the converging rates of the synchronization error signals to the

origin and magnitude of the LCPs, (iii) the quick response of the controller to converge

the synchronization error signals to the origin as soon as possible, (iv) to suppress the

amplitude of the synchronized error signals, and (v) when the uncertain parameters are

time-varying instead of real constant.

In view of the aforesaid issues, the main aim of this paper is to design such feedback

controller functions that will improve the performance of AC and ASC strategies for

the CS of chaotic (or hyperchaotic) systems. Based on the Routh-Hurwitz criterion [23]

and using the AC strategy, a single control function is proposed and a computational

study has been performed to identify the correct balance between the converging rates

of the synchronization error signals to the origin and magnitude of the LCPs so that

they establish the GES between two identical Coullete chaotic systems [30] under the

determined parameters. Since it is obvious that the active controller is based on lin-

earizing the error system, it is highly sensitive to any change in the parameters of the

system, unknown model uncertainties, and external disturbances. Therefore, to tackle

the analytical and computational stability complications produced by different types

of perturbations, a novel nonlinear controller function is constructed and suitable

adaptive laws of time-varying parameters are developed, respectively to accomplish

the robust synchronization between two identical Coullete chaotic systems in the

presence of unknown model uncertainties and external disturbances. All the time-

varying parameters with different numerical values are identified accurately. The

closed-loop is stabilized at the origin with faster synchronization speed.

As compared to the past published works in the relevant literature, the main

contributions of this study include the following: (i) identification of the correct balance

between the magnitude of the LCPs and the converging rates of the synchronized error

signals to the origin, (ii) computation of the suitable position for the LCPs in the

complex plane for the GES, (iii) less control effort and faster synchronization speed,

(iv) low amplitude of the oscillation of the error signals, and (v) designing of a novel

adaptive robust CS controller in the presence of unknown model uncertainties, external

disturbances, and unknown time-varying parameters. In terms of the synchronization

speed, rates, quality, and cost of the synchronization controller, a comparative study

has been performed between the present study in this paper with the previous results

in [16, 27, 30] to validate the performance of the proposed AC and ASC algorithm

approaches.

Since the 3-D Coullete chaotic system represents a nonlinear circuit, demonstrating

chaotic behavior, it is capable of synchronizing chaotic communications and suitable

for transmission of digital signals with minimum synchronization error in practical
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applications. The proposed algorithm approaches can be successfully applied to two

coupled Coullete chaotic systems for cryptosystem [6], information and image

processing [7], and secure communications [8] under different circumstances, where the

security of the synchronization process is of top priority.

The rest of the paper is organized as follows: In the “Complete Synchronization”

section, a description of the Coullete chaotic system is presented and the problem

statements for the CS with known and unknown parameters are formulated. In the

“Solution” section, solutions to the synchronization problem of the two identical Coullete

chaotic systems using the AC and ASC strategies are presented. Finally, the concluding

remarks are given in the “Conclusions” section, with some future research works.
Complete Synchronization
Model of the Coullete Chaotic System

The heterogeneous chaotic circuits are one of the natural systems, and it can be-

characterized by a variety of equations [31]. The chaotic attractors exhibited by

heterogeneous systems have received considerable attention of the researchers theor-

etically as well as experimentally [16, 32]. The 3-D Coullete chaotic system is one of

the heterogeneous systems, which realizes chaos and shows very rich and complex

dynamic behavior and can be useful for secure communications [31]. The Coullete

chaotic system [30] contains a single cubic term and three positive parameters. The

vector form of the Coullete chaotic system [30] is given as follows:

_x tð Þ
_y tð Þ
_z tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A x tð Þ

y tð Þ
z tð Þ

0
@

1
Aþ

0
0

x3 tð Þ

0
@

1
A ð1Þ

where [x(t), y(t), z(t)] ∈ R3 are the state variables and a, b, and c are the positive

parameters of the system (1). The Coullete system (1) exhibits a chaotic attractor for

the parameter values a = 5.5, b = 3.5, and c = 1 with initial condition x(t) = 0.145, y(t) =

0.625, and z(t) = 0.925, as shown in Fig. 1a, while Fig. 1b shows the time history of the

state variables of the Coullete chaotic system (1).
Fig. 1 a 3-D attractor of the Coullete chaotic system in XYZ space. b Time history of the state variables of
Coullete chaotic system
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Problem Statements

Synchronization Between Two Identical Coullete Chaotic Systems Using Active Control

Strategy

This subsection presents the problem formulation for the CS of two identical Coullete

chaotic systems (1). For this purpose, we consider two Coullete chaotic systems, where

the master Coullete chaotic system with three state variables denoted by the subscript

1 drives the slave Coullete chaotic system with a feedback controller having identical

equations denoted by the subscript 2. However, the initial condition of the master

Coullete system is different from that of the slave Coullete system. The two coupled

identical Coullete chaotic systems are described in a master-slave system

synchronization as follows:

Master systemð Þ
_x1 tð Þ
_y1 tð Þ
_z1 tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A x1 tð Þ

y1 tð Þ
z1 tð Þ

0
@

1
A−

0
0

x31 tð Þ

0
@

1
A

Slave systemð Þ
_x2 tð Þ
_y2 tð Þ
_z2 tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A x2 tð Þ

y2 tð Þ
z2 tð Þ

0
@

1
A−

0
0

x32 tð Þ

0
@

1
Aþ

u1 tð Þ
u2 tð Þ
u3 tð Þ

0
@

1
A

ð2Þ

where [x1(t), y1(t), z1(t)]
T ∈ R3 and [x2(t), y2(t), z2(t)]

T ∈ R3 are the states variables; a, b,
and c are the parameters of the master and slave systems (2), respectively; and u(t)

= [0, 0, u3(t)]
T is the feedback controller vector.

Robust Synchronization Between Two Identical Coullete Chaotic Systems with Unknown

Time-Varying Parameters

In this subsection, the problem statement for the robust synchronization of two

identical uncertain Coullete chaotic systems with unknown time-varying parameters,

unknown model uncertainties, and unknown external disturbances is given. Thus, the

adaptive synchronization for the two nearly identical Coullete chaotic systems coupled

in a master-slave system is formulated as follows:

Master systemð Þ
_x1 tð Þ
_y1 tð Þ
_z1 tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A x1 tð Þ

y1 tð Þ
z1 tð Þ

0
@

1
A−

0
0

x31 tð Þ

0
@

1
Aþ

f 1 x1 tð Þð Þ
f 2 y1 tð Þð Þ
f 3 z1 tð Þð Þ

0
@

1
Aþ

D1 tð Þ
D2 tð Þ
D3 tð Þ

0
@

1
A

Slave systemð Þ
_x2 tð Þ
_y2 tð Þ
_z2 tð Þ

0
@

1
A ¼

0 1 0
0 0 1

a1 tð Þ −b1 tð Þ −c1 tð Þ

0
@

1
A x2 tð Þ

y2 tð Þ
z2 tð Þ

0
@

1
A−

0
0

x32 tð Þ

0
@

1
Aþ

g1 x2 tð Þð Þ
g2 y2 tð Þð Þ
g3 z2 tð Þð Þ

0
@

1
A

þ
d1 tð Þ
d2 tð Þ
d3 tð Þ

0
@

1
Aþ

u1 tð Þ
u2 tð Þ
u3 tð Þ

0
@

1
A

ð3Þ

where [x1(t), y1(t), z1(t)]
T ∈ R3 and [x2(t), y2(t), z2(t)]

T ∈ R3 are the states variables of the

master and slave systems (3), respectively; a, b, and c are the known parameters of the

master system in (3); and a1(t), b1(t), and c1(t) are the unknown time-varying parame-

ters of the slave system in (3), which needs to be estimated. fi(.) and gi(.) for i = 1, 2, 3
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are the unknown model uncertainties and Di(.) and di(.) for i = 1, 2, 3 are the

unknown external disturbances present in the master and slave systems (3), respectively;

and u(t) = [u1(t), u2(t), u3(t)]
T is the feedback controller vector.

Solution
Solution to Problem 2.2.1

The matrix of error system for the synchronization between two nearly identical Coul-

lete chaotic systems (2) is given as follows:

_e1 tð Þ
_e2 tð Þ
_e3 tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
Aþ

0
0

x31 tð Þ−x32 tð Þ

0
@

1
Aþ

0
0

u3 tð Þ

0
@

1
A ð4Þ

where e1(t) = x2(t) − x1(t), e2(t) = y2(t) − y1(t), and e3(t) = z2(t) − z1(t) are the synchronization

errors.

Theorem 1. If the control input vector is designed such that

u1 tð Þ
u2 tð Þ
u3 tð Þ

0
@

1
A ¼

0
0

x32 tð Þ−x31 tð Þ

0
@

1
A−

v1 tð Þ
v2 tð Þ
v3 tð Þ

0
@

1
A ð5Þ

where the sub-controller matrix v(t) in Eq. (5) :

v1 tð Þ
v2 tð Þ
v3 tð Þ

0
@

1
A ¼

k11 k12 k13
k21 k22 k23
k31 k32 k33

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A ð6Þ

where kij, [i, j = 1, 2, 3] is an LCP matrix, and then, the two coupled chaotic systems (2)

are globally exponentially synchronized.

Proof of Theorem 1. Substituting Eqs. (5) and (6) into Eq. (4) gives

_e1 tð Þ
_e2 tð Þ
_e3 tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A−

k11 k12 k13
k21 k22 k23
k31 k32 k33

0
@

1
A

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A: ð7Þ

Since u1(t) = u2(t) = 0, therefore, v1(t) = v2(t) = 0 and Eq. (7) becomes
_e1 tð Þ
_e2 tð Þ
_e3 tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A−

0 0 0
0 0 0
k31 k32 k33

0
@

1
A

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A

¼
0 1 0
0 0 1

a−k31 − bþ k32ð Þ − cþ k33ð Þ

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A:

ð8Þ

Note that the obtained linearized error system (8) is in the form of _e tð Þ ¼ Ae tð Þ ,

where

A ¼
0 1 0
0 0 1

a−k31 − bþ k32ð Þ − cþ k33ð Þ

0
@

1
A: ð9Þ

Thus, the remaining problem is that the LCPs k31, k32, and k33 are chosen such that

the real parts of all eigenvalues of the matrix A ∈ R3 × 3 in (9) are negative with suitable
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positions of the LCPs in a complex plane, with fast and smooth convergence of the

synchronization error signals. In these circumstances (9), if the LCPs satisfy the follow-

ing condition:

k31 > a; k32≥0 and k32≥k33≥0; ð10Þ

then, by the Routh-Hurwitz criterion and Lyapunov stability theory, the closed-loop

system (8) is globally exponentially stable. Therefore, the two coupled chaotic systems

(2) are globally exponentially synchronized.

Remark 2. In the following subsection, this study finds numerically the correct balance

between the convergence rates of the synchronization error signals to the origin and

magnitude of the suitable LCPs.

Numerical Simulation Results and Discussion

The parameters of the Coullete chaotic system (1) are set as a = 5.5, b = 3.5, and c = 1,

while the initial values of the state vectors are taken as x1(0) = 0.145, y1(0) = 0.625, z1(0)

= 0.925 and x2(0) = 0.945, y2(0) = 0.032, z2(0) = 0.112, respectively. The corresponding

numerical results are given as follows.

Case 1: From matrix A in Eq. (9) and the condition (10), it has been observed that

the stability of the closed-loop system (8) depends on the magnitude of the LCP k31
and the magnitude of k31 depends on the magnitude of the LCPs k32 and k33. Therefore,

let us fix k32 = k33 = 3 and optimize k31.

If k31 = 5.5, then, the poles of the linearized error system (8) are {−1 ± 1.87083 i, 0}.

One can notice that one of the eigenvalues is positive. Hence, the closed-loop system

(8) is unstable, which is also confirmed from Fig. 2a.

For k31 = 5.6, 6, 9, 15, 25, 31, and 31.49, the closed-loop system (8) is globally

exponentially stable with the following corresponding poles: {−1.99 ± 1.59i, −
0.015}, {−1.96 ± 1.58i, − 0.08}, {−1.5 ± 1.12i, − 1}, {−0.56 ± 1.73i, − 2.88}, {−0.162 ±
2.298i, − 3.68}, {−0.01 ± 2.53i, − 3.98} and {−0.02 ± 2.58i, − 4.04}, respectively, which can

be confirmed from Fig. 2b–f.

If k31 = 31.5, then, the poles of the linearized error system (8) are {1.387 × 10− 15 ±

2.55i, − 4}. Hence, the closed-loop system (8) is unstable, which is also confirmed from

Fig. 2g.

Thus, for 5.5 < k31 < 31.5, the closed-loop system (8) is globally exponentially stable

and the perfect synchronization behavior is achieved at k31 = 9 after t ≈ 3 s, with under-

damped oscillation as shown in Fig. 2c.

Case 2: Let us fix k32 = k33 = 1 and optimize k31. Then, from the numerical study simi-

lar as above, it is observed that the closed-loop system (8) is globally exponentially

stable at 5.5 < k31 < 14.5 and the perfect synchronization behavior is achieved at k31 = 8

after t ≈ 6 s, with underdamped oscillation as shown in Fig. 3.

Comparative Study

The developed active synchronization controller approach has advantages over the past

studies in [16] in terms of the control effort, synchronization transient speed, and

suitable position of the LCPs in a complex plane for the GES. For example, in terms of

the control effort, only one input feedback controller (5) is utilized to accomplish the

GES, while in [16], three control functions are designed. Similarly, in this study, the



Fig. 2 Time series of the error signals when a k31 = 5.5, b k31 = 6, c k31 = 9, d k31 = 15, e k31 = 25, f k31 = 31.49,
and g k31 = 31.5
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synchronization speed is 3 s (Fig. 2c), whereas in [15], the synchronization speed is

5 s. Thus, the time difference is 2 s. Furthermore, the proposed AC approach (5)

also identifies the correct balance between the converging rates of the

synchronization error signals to the origin and magnitude of the LCPs for a fast and

smooth synchronization.

The proposed AC function (5) contains a partially nonlinear term and a feedback

term. The present study does not only improve the synchronization speed and quality

but also decreases the number of feedback controllers. This considerably reduces the

amount of energy for the chaos synchronization and establishes the GES. These

features give advantages of the current study over the past published works in the

literature concerned.



Fig. 3 Time series of the error signals when k31 = 8

Ahmad et al. Journal of Uncertainty Analysis and Applications  (2017) 5:6 Page 9 of 17
Solution to Problem 2.2.2

The matrix of the error system for the adaptive robust synchronization between two

nearly identical Coullete chaotic systems (3) is given as follows:

_e1 tð Þ
_e2 tð Þ
_e3 tð Þ

0
@

1
A ¼

0 1 0
0 0 1
a −b −c

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
Aþ

0 0 0
0 0 0

−x1 tð Þx2 tð Þ− x21 tð Þ þ x22 tð Þ� �
0 0

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A

þ
0 0 0
0 0 0

−ea tð Þ eb tð Þ ec tð Þ

0
@

1
A x2 tð Þ

y2 tð Þ
z2 tð Þ

0
@

1
Aþ

g1 x2 tð Þð Þ−f 1 x1 tð Þð Þ
g2 y2 tð Þð Þ−f 2 y1 tð Þð Þ
g3 z2 tð Þð Þ−f 3 z1 tð Þð Þ

0
@

1
Aþ

u1 tð Þ
u2 tð Þ
u3 tð Þ

0
@

1
A

ð11Þ

where e1(t) = x2(t) − x1(t), e2(t) = y2(t) − y1(t) and e3(t) = z2(t) − z1(t) are the synchronization
errors and ea(t) = a − a1(t), eb(t) = b − b1(t), and ec(t) = c − c1(t) are the estimation

of unknown time-varying parameters. Note that _ea tð Þ ¼ − _a1 tð Þ; _eb tð Þ ¼ − _b1 tð Þ ,
and _ec tð Þ ¼ − _c1 tð Þ . The adaptive synchronization of two coupled chaotic systems

(3) is accomplished in the sense that:

lim
t→∞

ei tð Þk k ¼ 0; i ¼ 1; 2; 3; ð12Þ

and the unknown time-varying parameters are estimated from the system parameters

in the sense that:

lim
t→∞

ea tð Þj j ¼ lim
t→∞

a−a1 tð Þj j ¼ 0; lim
t→∞

eb tð Þj j ¼ lim
t→∞

b−b1 tð Þj j and lim
t→∞

ec tð Þj j
¼ lim

t→∞
c−c1 tð Þj j ¼ 0 :

ð13Þ

Assumption 1 [33]. It is assumed that the unknown model uncertainties and external

disturbances are bounded. Therefore, there exist unknown positive constants Δm
i and Δs

i

such that

f i :ð Þj j≤Δm
i and gi :ð Þ

�� ��≤Δs
i ; for i ¼ 1; 2; 3:

gi :ð Þ−f i :ð Þ
�� ��≤βi; for i ¼ 1; 2; 3; ð14Þ

where β1 is any unknown positive constant such that βi ¼ Δm
i þ Δs

i .
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Assumption 2 [34]. Let B ⊂ Rn be a bounded region containing the whole attractor of

the chaotic (or hyperchaotic) system, such that no signal of the chaotic (or hyperchaotic)

system ever leaves it. Then, there exist positive constants Bx ∈ R, By ∈ R and Bz ∈ R, such
that

x tð Þj j≤Bx; y tð Þj j≤By; and z tð Þj j≤Bz: ð15Þ

Theorem 2. If the control input ui(t), i = 1, 2, 3, in (3) is designed such that
u1 tð Þ
u2 tð Þ
u3 tð Þ

0
@

1
A ¼

−k̂ 1 exp −η e1 tð Þj jð Þð Þ 0 0
0 −k̂ 2 exp −η e2 tð Þj jð Þð Þ 0

x21 tð Þ þ x22 tð Þ 0 −k̂ 3 exp −η e3 tð Þj jð Þð Þ

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A

−
β1sgn e1 tð Þð Þ
β2sgn e3 tð Þð Þ
β3sgn e3 tð Þð Þ

0
@

1
A;

ð16Þ

and the unknown time-varying parameters a1(t), b1(t) and c1(t) are estimated by the

following adaptation laws:

_a1 tð Þ ¼ −x2 tð Þe3 tð Þ; _b1 tð Þ ¼ y2 tð Þe3 tð Þ; and _c1 tð Þ ¼ z2 tð Þe3 tð Þ: ð17Þ

where η is any positive constant; exp and sgn, respectively, denote the exponential and
signum functions; and k̂ i; for i ¼ 1; 2; 3 is the estimated LCP, which is updated ac-

cording to the following adaptation algorithm:

_̂k i tð Þ ¼ −ρ exp −η ei tð Þj jð Þð Þe2i tð Þ; k̂ i 0ð Þ ¼ 0; for i ¼ 1; 2; 3; ð18Þ

where ρ is any positive real constant determining the adaptation process. Then, the two

coupled chaotic systems (3) are asymptotically synchronized.

Proof of Theorem 2. Substituting Eq. (16) into Eq. (11) gives

_e1 tð Þ
_e2 tð Þ
_e3 tð Þ

0
@

1
A ¼

−k̂ 1 exp −η e1 tð Þj jð Þð Þ 1 0
0 −k̂ 2 exp −η e2 tð Þj jð Þð Þ 1
a −b −c−k̂ 3 exp −η e3 tð Þj jð Þð Þ

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A

þ
0 0 0
0 0 0

−x1 tð Þx2 tð Þ 0 0

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
Aþ

0 0 0
0 0 0

−ea tð Þ eb tð Þ ec tð Þ

0
@

1
A x2 tð Þ

y2 tð Þ
z2 tð Þ

0
@

1
A

þ
g1 x2 tð Þð Þ−f 1 x1 tð Þð Þ
g2 y2 tð Þð Þ−f 2 y1 tð Þð Þ
g3 z2 tð Þð Þ−f 3 z1 tð Þð Þ

0
@

1
Aþ

d1 tð Þ−D1 tð Þ
d2 tð Þ−D2 tð Þ
d3 tð Þ−D3 tð Þ

0
@

1
A−

β1sgn e1 tð Þð Þ
β2sgn e3 tð Þð Þ
β3sgn e3 tð Þð Þ

0
@

1
A:

ð19Þ

Consider a Lyapunov function as follows:

V
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A ¼

e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

T

P
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
Aþ

1
2

0 0

0
1
2

0

0 0
1
2

0
BBBB@

1
CCCCA

k̂ 1 tð Þ−k1
� �2

k̂ 2 tð Þ−k2
� �2

k̂ 3 tð Þ−k3
� �2

0
BBBB@

1
CCCCAþ 1

2
e2a tð Þ þ e2b tð Þ þ e2c tð Þ� �

≥0;

ð20Þ



Ahmad et al. Journal of Uncertainty Analysis and Applications  (2017) 5:6 Page 11 of 17
where

P ¼ diag
1
2
;
b
2
;
1
2

� �
: ð21Þ

The time derivative of Eq. (20) is given as:
_V
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A ¼

e1 tð Þ 0 0
0 be2 tð Þ 0
0 0 e3 tð Þ

0
@

1
A _e1 tð Þ

_e2 tð Þ
_e3 tð Þ

0
@

1
A−

ea tð Þ 0 0
0 eb tð Þ 0
0 0 ec tð Þ

0
@

1
A _ea tð Þ

_eb tð Þ
_ec tð Þ

0
@

1
A

þ
1 0 0
0 1 0
0 0 1

0
@

1
A

k̂ 1 tð Þ−k1
� �

_̂k 1 tð Þ
k̂ 2 tð Þ−k2

� �
_̂k 2 tð Þ

k̂ 3 tð Þ−k3
� �

_̂k 3 tð Þ

0
BBBB@

1
CCCCA:

ð22Þ

Using Eq. (19) into Eq. (22) yields:
_V
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A ¼

e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

T −k̂ 1 exp −η e1 tð Þj jð Þð Þ 1
2

a− x1 tð Þj j x2 tð Þj j
2

1
2

−k̂ 2 exp −η e2 tð Þj jð Þð Þ 0

a− x1 tð Þj j x2 tð Þj j
2

0 −c−k̂ 3 exp −η e3 tð Þj jð Þð Þ

0
BBBBB@

1
CCCCCA

e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

þ
g1 x2 tð Þð Þ−f 1 x1 tð Þð Þ þ d1 tð Þ−D1 tð Þ
g2 y2 tð Þð Þ−f 2 y1 tð Þð Þ þ d2 tð Þ−D2 tð Þ
g3 z2 tð Þð Þ−f 3 z1 tð Þð Þ þ d3 tð Þ−D3 tð Þ

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A−

β1sgn e1 tð Þð Þ
β2sgn e3 tð Þð Þ
β3sgn e3 tð Þð Þ

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A

þ
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

T 0 0 0
0 0 0

−ea tð Þ eb tð Þ ec tð Þ

0
@

1
A x2 tð Þ

y2 tð Þ
z2 tð Þ

0
@

1
Aþ

1 0 0
0 1 0
0 0 1

0
@

1
A

k̂ 1 tð Þ−k1
� �

_̂k 1 tð Þ
k̂ 2 tð Þ−k2

� �
_̂k 2 tð Þ

k̂ 3 tð Þ−k3
� �

_̂k 3 tð Þ

0
BBBB@

1
CCCCA

− ea tð Þ _a1 tð Þ−eb tð Þ _b1 tð Þ− ec tð Þ _c1 tð Þ

≤
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

T −k̂ 1 exp −η e1 tð Þj jð Þð Þ 1
2

a−x1 tð Þx2 tð Þ
2

1
2

−k̂ 2 exp −η e2 tð Þj jð Þð Þ 0

a−x1 tð Þx2 tð Þ
2

0 −c−k̂ 3 exp −η e3 tð Þj jð Þð Þ

0
BBBBB@

1
CCCCCA

e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

þ
g1 x2 tð Þð Þ−f 1 x1 tð Þð Þ þ d1 tð Þ−D1 tð Þ�� ��sgn e1 tð Þð Þ−β1sgn e1 tð Þð Þ
g2 y2 tð Þð Þ−f 2 y1 tð Þð Þ þ d2 tð Þ−D2 tð Þ�� ��sgn e3 tð Þð Þ−β2sgn e3 tð Þð Þ
g3 z2 tð Þð Þ−f 3 z1 tð Þð Þ þ d3 tð Þ−D3 tð Þ�� ��sgn e3 tð Þð Þ−β3sgn e3 tð Þð Þ

0
@

1
A e1 tð Þ

e2 tð Þ
e3 tð Þ

0
@

1
A

þ
1 0 0
0 1 0
0 0 1

0
@

1
A

k̂ 1 tð Þ−k1
� �

_̂k 1 tð Þ
k̂ 2 tð Þ−k2

� �
_̂k 2 tð Þ

k̂ 3 tð Þ−k3
� �

_̂k 3 tð Þ

0
BBBB@

1
CCCCA−ea tð Þx2 tð Þe3 tð Þ þ eb tð Þy2 tð Þe3 tð Þ

þ ec tð Þz2 tð Þe3 tð Þ−ea tð Þ _a1 tð Þ−eb tð Þ _b1 tð Þ−ec tð Þ _c1 tð Þ:
ð23Þ
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Using Assumption 1 and the fact that |sgn(ei)| ≤ 1 for i = 1, 2, 3, in Eq. (23) yields:

≤
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

T −ρk̂ 1 tð Þ exp −η e1 tð Þj jð Þð Þ 1
2

a−Bx

2
1
2

−ρk̂ 2 tð Þ exp −η e2 tð Þj jð Þð Þ 0

a−Bx

2
0 −cþ ρk̂ 3 exp −η e3 tð Þj jð Þð Þ

0
BBBB@

1
CCCCA

e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

þ
1 0 0
0 1 0
0 0 1

0
@

1
A

k̂ 1 tð Þ−k1
� �

_̂k 1 tð Þ
k̂ 2 tð Þ−k2

� �
_̂k 2 tð Þ

k̂ 3 tð Þ−k3
� �

_̂k 3 tð Þ

0
BBBB@

1
CCCCA−ea tð Þ _a1 tð Þ þ x2 tð Þe3 tð Þð Þ−eb tð Þ _b1 tð Þ−y2 tð Þe3 tð Þ� �

− ec tð Þ _c1 tð Þ−z2 tð Þe3 tð Þð Þ:
ð24Þ

Using the parameter update laws (17) and (18) into Eq. (24) gives:

_V
e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A≤−

e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

T ρk1 tð Þ exp −η e1 tð Þj jð Þð Þ −
1
2

Bx−a
2

−
1
2

ρk2 tð Þ exp −η e2 tð Þj jð Þð Þ 0

Bx−a
2

0 cþ ρk3 exp −η e3 tð Þj jð Þð Þ

0
BBBB@

1
CCCCA

e1 tð Þ
e2 tð Þ
e3 tð Þ

0
@

1
A

_V e tð Þð Þ≤−e tð ÞTQ e tð Þ≤0; ð25Þ

where e(t) = [|e1(t)|, |e2(t)|, |e3(t)|]
T is the absolute state error vector, and

Q ¼
ρk1 tð Þ exp −η e1 tð Þj jð Þð Þ −

1
2

Bx−a
2

−
1
2

ρk2 tð Þ exp −η e2 tð Þj jð Þð Þ 0

Bx−a
2

0 cþ ρk3 exp −η e3 tð Þj jð Þð Þ

0
BBBB@

1
CCCCA:

ð26Þ

At this stage, the remaining problem is that if the estimate of the LCPs k1, k2, and k3

and the two positive constants η and ρ are chosen such that the matrix, Q ∈ R3 × 3 (26)

becomes a positive definite matrix (PDM). Since V(e(t)) is positive definite, then the

equilibrium point ei tð Þ ¼ 0; k̂ i ¼ ki; i ¼ 1; 2; 3
� �

of the systems (11) and (18) is

asymptotically stable. Therefore, the two coupled chaotic systems (3) are asymptotically

synchronized. This completes the proof of Theorem 2.

Numerical Simulation Results and Discussion

Numerical simulation results are furnished in order to verify the robustness and

performance of the proposed ASC approach. The true value of the parameters of the

Coullete chaotic system (1) are set as a = 5.5, b = 3.5, and c = 1, and these values are

unknown to the slave system in (3). The initial values of the states vectors are taken

as x1(0) = 0.145, y1(0) = 0.625, z1(0) = 0.925 and x2(0) = 0.945, y2(0) = 0.032, z2(0) =

0.112, respectively. The estimated absolute values of the state vectors of the Coullete

chaotic system (1) are Bx ≤ 3.6, By ≤ 6, and Bz ≤ 12 through numerical simulation. The

controlling parameters are considered as k1 = k2 = 5 and k3 = 10, and the two positive

constants η and ρ are taken as η = 0.01 and ρ = 1. In numerical simulations, the

following model uncertainties and external disturbances are applied to the master and

slave systems (3), respectively.



Master systemð Þ
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f 1 x1 tð Þð Þ þ D1 tð Þ ¼ 0:3 sin
π

3
x1 tð Þ

� �
−0:01 cos 10tð Þ;

f 2 y1 tð Þð Þ þ D2 tð Þ ¼ −0:25 cos
π

4
y1 tð Þ

� �
−0:03 sin 20tð Þ;

f 3 z1 tð Þð Þ þ D3 tð Þ ¼ 0:3 sin
π

2
z1 tð Þ

� �
þ 0:04 cos 10tð Þ;

Slave systemð Þ
g1 x2 tð Þð Þ þ d1 tð Þ ¼ −0:4 cos

π

6
x2 tð Þ

� �
þ 0:02 sin 30tð Þ;

g2 y2 tð Þð Þ þ d2 tð Þ ¼ 0:25 sin
5π
6
y2 tð Þ

	 

−0:01 cos 20tð Þ;

g3 z2 tð Þð Þ þ d3 tð Þ ¼ 0:15 cos
2π
3
z2 tð Þ

	 

−0:01 cos 15tð Þ:

ð27Þ

Accordingly, β1 = 0.64, β2 = 0.54, and β3 = 0.5.

The corresponding numerical simulation results are given as follows:

Figure 4 displays the result of the synchronized error signals. It is demonstrated that

the error signals (11) completely synchronize within a short transient time t ≈ 0.7 s in

the presence of external disturbances and model uncertainties under the control

action (16). The adaptive process of parameters is shown in Fig. 5. From Fig. 5, it can

be observed that the unknown time-varying parameters a1(t) = a + 0.2 sin(35t), b1(t) =

b + 0.1 sin(25t), and c1(t) = c + 0.02 cos(90t) with initial values a1(0) = 7, b1(0) =

2, c1(0) = − 1, converge to the true values of a, b, and c as t→∞, under the parameter

update laws (20). Figure 6 shows the time history of the input control signals. The

proposed ASC approach (16) is robust against different types of perturbations. The

controller response time is short, and the error signals converge to the origin with

critically damped oscillation.

Remark 3.

(i) The proposed ASC approach (16) contains the linear terms, some partially nonlinear

terms, and a feedback term. The exponential term (exp(−η|ei(t)|)) for i = 1, 2, 3, in the

controller (16) provides smoothness to the error signals with small amplitude and

without disturbing the convergence property, even in the presence of unknown external

disturbance and model uncertainties.
Fig. 4 Time series of the synchronized error states



Fig. 5 Time series of the estimated parameter a1(t), b1(t), and c1(t)
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(ii)By selecting a smaller value of η providing the fast convergence rates of the error

signals to the origin.

Remark 4. The proposed ASC approach can be easily utilized for the complete and

generalized synchronization for a class of chaotic as well as hyperchaotic systems. For

example, the synchronization of two identical hyperchaotic Lu systems [20, 22] can also

be achieved by applying the following nonlinear control function:

ui tð Þ ¼ −ki exp −η ei tð Þj jð Þð Þ; f or i ¼ 2; 4; and ui tð Þ ¼ 0; f or i ¼ 1; 3; ð28Þ

and the parameter update laws are given as:

_a1 tð Þ ¼ − y2 tð Þ−x2 tð Þð Þe1 tð Þ; _b1 tð Þ ¼ z2 tð Þe3 tð Þ; _c1 tð Þ
¼ −y2 tð Þe2 tð Þ; and _d1 tð Þ ¼ w2 tð Þe4 tð Þ;

ð29Þ

where the true values of parameters are taken as a = 15, b = 5, c = 10, and d = 1.

Numerical simulation results are shown in Figs. 7 and 8. As compared to the past

published works [20, 22], the synchronization speed is faster (0.6 s vs 4 s). Moreover,

the synchronized error signals in [20, 22] converged to the origin with underdamped

oscillation, while in the current study, the synchronized error signals converged to the
Fig. 6 Time series of the control signals



Fig. 7 Time series of the synchronized error states for two
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origin with critically damped oscillation, which shows the less amount of energy utilized

for CS objective.

As a matter of fact, the time variance property of the system parameters and the

existence of total disturbances in problem formulation and the controller design pro-

cedure for the robust stability of the closed-loop system are making the proposed ASC

approach to be more effective as compared to the previous results and can be easily

implemented in practice.

Conclusions
In this paper, two synchronization control strategies were proposed for the CS objective.

The active controller design procedure was based on the Routh-Hurwitz criterion. A

single input active controller was proposed which established the globally exponential CS

with comparatively low energy. Similarly, the correct balance between the synchronized

error convergence rates to the origin and magnitude of the linear controlling parameters

was identified. Accordingly, a novel adaptive-based synchronization controller was

proposed and suitable adaptive laws of time-varying parameters were designed which

accomplished the robust CS in a short time. The closed-loop stability for CS was proved

and the effectiveness of the proposed algorithm schemes was assessed by numerical

simulations and by comparing with past published works.
Fig. 8 Time series of the estimated parameters a1(t), identical uncertain hyperchaotic systems
(k2 = k4 = 15) b1(t), c1(t), and d1(t)
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Limitations of the proposed AC and ASC algorithm approaches are summarized as

follows.

(i) In the “Solution” section, in using the active control strategy and linearizing the error

system, it has been shown that the correct balance between the converging rates of

the synchronization error signals to the origin and magnitude of the suitable linear

controlling parameters is identified computationally for two identical Coullete chaotic

systems using a single control function. The structure of the Coullete chaotic system

is different from that of the usual chaotic or hyperchaotic systems such as the Lorenz

chaotic system, the Chen chaotic system, and the Rossler hyperchaotic system.

Therefore, a generalized analytic approach should be investigated to discuss the

same problem for the complete and generalized synchronization of a general class

of chaotic (or hyperchaotic) systems.

(ii)As shown in the “Solution to Problem 2.2.2” section, by using the ASC approach,

the synchronized error signals converged to the origin asymptotically in a short

time in spite of different types of uncertainties. This approach can be applied to

various chaotic as well hyperchaotic systems. The main issue is concerned with

the amount of control signals. In the case of generalized synchronization, the

control inputs and bounds may become too large.

(iii)The proposed ASC approaches can be applied only to continuous time dynamical

chaotic systems.
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