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Abstract

In this paper we propose an efficient approach for group multi-criteria decision
making (MCDM) based on intuitionistic multi-fuzzy set (IMFS). First we construct
intuitionistic multi-fuzzy matrices for decision makers with respect to the criteria
(attributes) of the alternatives. Based on intuitionistic multi-fuzzy matrices, we construct
the aggregated intuitionistic multi-fuzzy matrix using the proposed intuitionistic
multi-fuzzy weighted averaging (IMFWA) operator. Then we use Hamming distance
and Euclidean distance measurements in the context of IMFS between the
aggregated matrix and the specified sample matrix to reach the optimal decision.
This paper also presents score function and accuracy function of IMFS with an
application to MCDM. Finally, a real-life case study related to heart disease diagnosis
problem is provided to illustrate the advantage of the proposed approach.

Keywords: Group MCDM; Intuitionistic multi-fuzzy set; Intuitionistic multi-fuzzy
weighted averaging operator; Hamming distance; Euclidean distance; Score
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Introduction
Intuitionistic fuzzy set (IFS) was introduced by Atanassov [1] and can be shown as a

generalization and extension of Zadeh's fuzzy set theory [2]. IFS has emerged as an ac-

tive research area mainly for solving multiple-criteria decision making problems [3-9]

and group decision making (GDM) problems [10-12] where the values of local criteria

(attributes) of alternatives and/or their weights are intuitionistic fuzzy values (IFVs).

Intuitionistic fuzzy set covers such kind of situations where a human being can express

the degree of belonging of an element to a set as well as degree of non-belonging of an

element to a set.

A complete account of the development of multi-set theory has been seen in [13].

As a generalization of multi-set, Yager [14] introduced the concept of multi-fuzzy set

(MFS). An element of a MFS can occur more than once with possibly the same or

different membership values. MFS theory is an extension of theories of fuzzy sets [2],

L-fuzzy sets [15], and intuitionistic fuzzy sets [16]. Group multi-criteria decision mak-

ing requires certain methods to aggregate the opinions provided by different experts.

Yager [17] proposed an interesting and well-grounded approach, namely the ordered

weighted averaging (OWA) [17], which enabled aggregation of the variables in terms

of their order in the set.
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Most of the human reasoning involves linguistic variables whose values are words ra-

ther than numbers to express a situation in a better way in an uncertain environment.

Fuzzy sets act as the basis of these linguistic variables. But in some situations like

decision making problems (such as medical diagnosis, sales analysis, marketing, etc.),

the description by a linguistic variable in terms of membership function only is not

adequate. In many cases, there is an obvious chance of an appearance of a non-null

complement. IFS can be used in this context as a proper tool for representing both

membership and non-membership of an element to a concept [18]. Again there are sit-

uations where each element has different membership values. In such situations, an

intuitionistic multi-fuzzy set (IMFS) is more adequate. Here we present IMFS as a tool

for representing such situations linguistically.

The aim of this paper is to combine the concept of intuitionistic fuzzy set and multi-

fuzzy set to produce an intuitionistic multi-fuzzy set and apply this to group MCDM

problems. In group MCDM, a group of decision makers provide their opinions based

on their own observations and intuitions over a set of attributes. The individual opin-

ions are finally converted to a collective opinion using some suitable procedure. This

article introduces IMFSs, basic operations on IMFSs, and application of IMFSs to

MCDM problems by constructing a suitable algorithmic approach. Here we also

present score function and accuracy function in the context of IMFS with an applica-

tion to MCDM. In the proposed approach, we first construct intuitionistic multi-fuzzy

matrices (IMFMs) for decision makers. Decision makers provide their opinions in

terms of linguistic scales at different time instances which are represented by IMFMs.

Next we construct the aggregated intuitionistic multi-fuzzy matrix which reflects the

combined opinions of all decision makers using our proposed intuitionistic multi-fuzzy

weighted averaging (IMFWA) operator. IMFWA can be treated as an extension of

intuitionistic weighted arithmetic mean (IWAM) [19]. Then this study uses IMFS-

based normalized Hamming distance and normalized Euclidean distance to find out

the final outcome. Finally, this study degenerates the individual experts' opinions

(IMFS) into IFS and compares the final outcome. This approach is illustrated using a

suitable case study concerned with medical disease diagnosis.

The rest of this article is organized as follows: The second section presents the preliminar-

ies about IFS and some operations on IFS. The third section includes a brief description

about MFS, IMFS, and few operations on IMFS including IMFWA operator and

distance measurements. The fourth section includes the proposed algorithmic

approach, followed by a case study in the fifth section. Finally, the paper is concluded

in the sixth section.
Intuitionistic fuzzy sets and some operations
In this section, we briefly review the definition of IFS, its operations, and comparisons.
Definition of IFS and IFV with necessary conditions

Definition 1 Intuitionistic fuzzy sets were introduced by Atanassov [1]. Let X be a uni-

versal set and A ⊂ X. An intuitionistic fuzzy set is a set

A ¼ x; μA xð Þ; νA xð Þ : x ∈ Xf g
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where the functions μA : X→ [0, 1] and νA : X→ [0, 1] reflect the degree of membership

and non-membership of the element x from X to set A, respectively, and for every x ∈
X, it is also fulfilled that

0 ≤ μA xð Þ þ νA xð Þ ≤ 1:

The function πA :X→ [0, 1], given by πA(x) = 1 − μA(x) − νA(x), x ∈ X, defines the degree of
uncertainty of the membership of the element x to set A known as hesitation function. For a

fixed x ∈ X, an object {μA(x),vA(x)} is usually called IFV or intuitionistic fuzzy number (IFN).

Description of two basic operations using intuitionistic fuzzy sets

Addition⊕ and multiplication⊗ of IFSs

The operations of addition⊕ and multiplication⊗ on intuitionistic fuzzy values were

defined by Atanassov [19] as follows: Let A = (μA,vA) and B = (μB,vB) be IFVs, then

A⊕B ¼ μA þ μB−μA:μB; νA:νBð Þ ð1Þ
A⊗B ¼ μA:μB; νA þ νB−νA:νBð Þ: ð2Þ

These operations were constructed in such a way that they produce IFVs since it is
easy to prove that 0 ≤ μA + μB − μA. μB + νA. νB ≤ 1 and 0 ≤ μA. μB + νA + νB − νA. νB ≤ 1.

Multiplication⊗ of IFS with real values

The addition and multiplication of IFSs with real values were obtained using expressions

(1) and (2) in [20]. For any integer n, nA ¼ 1− 1−μAð Þn; νnA
� �

and An ¼ μnA; 1− 1−νAð Þn� �
.

It was proven later that these operations produce IFVs not only for integer n but also for all

real values λ > 0, i.e.,

λA ¼ 1− 1−μAð Þλ; νλA
n o

ð3Þ

Aλ ¼ μλA; 1− 1−νAð Þλ
n o

: ð4Þ

Definition 2 Intuitionistic weighted arithmetic mean: The IWAM can be obtained
using expressions (1) and (3) as follows:

IWAM ¼ w1A1⊕w2A2⊕…⊕wnAn ¼ 1−
Yn
i¼1

1−μAi

� �wi ;∐
n

i¼1
νwi
Ai

( )
ð5Þ

where 0 ≤wi ≤ 1 and
Xn
i¼1

wi ¼ 1.

This aggregating operator provides IFVs and is currently the most popular in the so-

lution of MCDM problems in the intuitionistic fuzzy setting.

Comparison of IFSs

An important problem is the comparison of IFVs. Chen and Tan [3] proposed to use

the score function (or net membership) as S(x) = μ(x) − v(x) where x is an IFV. Hong

and Choi [4] in addition to the above score function introduced the accuracy function

as H(x) = μ(x) + v(x). Xu [21] used both the functions S and H to construct order rela-

tions between any pair of intuitionistic fuzzy values (x and y) as follows:
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If S xð Þ > S yð Þð Þ; thenx > y;
If S xð Þ ¼¼ S yð Þð Þ; then

1ð Þ if H xð Þ ¼¼ H yð Þð Þ; thenx ¼ y;
2ð Þ if H xð Þ < H yð Þð Þ; thenx < y:

Intuitionistic multi-fuzzy set and some operations
This section briefly describes multi-fuzzy set, intuitionistic multi-fuzzy set, and a few

operations on IMFS including IMFWA operator and distance measurements.

MFS and IMFS

Definition 3 Let k be a positive integer and U be a universal set. A multi-fuzzy set A over

U is a set of ordered sequences A ¼ x= μ1A xð Þ; μ2A xð Þ;…; μiA xð Þ;…; μkA xð Þ� �
: x ∈ U

� �
where μiA∈P Uð Þ; i ¼ 1; 2;…; k.

The function μA ¼ μ1A; μ
2
A;…; μkA

� �
is called a multi-membership function of multi-

fuzzy set A, and k is called the dimension of multi-fuzzy set A.

Definition 4 An intuitionistic multi-fuzzy set A is defined by A ¼
x= μ1A xð Þ; μ2A xð Þ;…; μkA xð Þ� �

; ν1A xð Þ; ν2A xð Þ;…; νkA xð Þ� �
: x ∈ U

� �
; where 0≤μiA xð Þ þ νiA xð Þ≤

1, πi
A xð Þ ¼ 1− μiA xð Þ þ νiA xð Þ� �

for every x ∈ U and i = 1,2,…,k where k is a positive inte-

ger and U is a universal set.

For a fixed x ∈ U, an object μiA xð Þ; νiA xð Þ� �
is usually called an intuitionistic multi-fuzzy

value (IMFV) or intuitionistic multi-fuzzy number (IMFN) where i = 1,2,…,k and k > 0.

Remark 1 If we arrange the membership sequences in decreasing order, then the cor-

responding non-membership sequence may not be in decreasing or increasing order.

Remark 2 The sequences of membership functions and non-membership functions

only have k terms (finite number of terms), and k is known as the dimension of A.

Some useful operations on IMFS

For any two intuitionistic multi-fuzzy sets A and B of dimension k, the following opera-

tions can be defined. Let

A ¼ x= μ1A xð Þ; μ2A xð Þ;…; μkA xð Þ� �
; ν1A xð Þ; ν2A xð Þ;…; νkA xð Þ� �

: x ∈ U
� �

:

B ¼ x= μ1B xð Þ; μ2B xð Þ;…; μkB xð Þ� �
; ν1B xð Þ; ν2B xð Þ;…; νkB xð Þ� �

: x ∈ U
� �

:

Addition of IMFS (A⊕ B)
In A⊕ B, the membership and non-membership values are obtained as follows:

μjA⊕B ¼ μjA xð Þ þ μjB xð Þ−μjA xð Þ:μjB xð Þ; νjA⊕B ¼ νjA xð Þ:νjB xð Þ; j ¼ 1; 2;…; k; x∈U : ð6Þ

Multiplication of IMFS (A⊗ B)

In A⊗ B, the membership and non-membership values are obtained as follows:

μjA ⊗ B ¼ μjA xð Þ:μjB xð Þ;
νjA ⊗ B ¼ νjA xð Þ þ νjB xð Þ−νjA xð Þ:νjB xð Þ;
j ¼ 1; 2;…; k; x ∈ U :

ð7Þ

Example 1 Let A and B be two intuitionistic multi-fuzzy sets of dimension 3 defined
as follows:
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A ¼ 0:7; 0:6; 0:5ð Þ; 0:1; 0:2; 0:4ð Þf g;
B ¼ 0:4; 0:4; 0:3ð Þ; 0:3; 0:4; 0:6ð Þf g:

The addition (A⊕ B) and multiplication (A⊗ B) of A and B can be obtained by
A⊕B ¼ 0:82; 0:76; 0:65ð Þ; 0:03; 0:08; 0:24ð Þf g;

A⊗B ¼ 0:28; 0:24; 0:15ð Þ; 0:37; 0:52; 0:76ð Þf g:

Multiplication of IMFS A with real value

Multiplication of IMFS A of dimension k with real value λ > 0 can be defined as

λA ¼ 1− 1−μjA
� �λ

; νjA

� �λ� 	
;

Aλ ¼ μjA

� �λ
; 1− 1−νjA
� �λ� 	

;

j ¼ 1; 2;…; k; x∈U :

ð8Þ

Example 2 Let A be an intuitionistic multi-fuzzy set of dimension 3 where A is de-
fined as follows and λ = 0.5.

A ¼ 0:7; 0:6; 0:5ð Þ; 0:1; 0:2; 0:4ð Þf g;

Now λA = (0.45, 0.37, 0.29)(0.32, 0.45, 0.63), Aλ = (0.84, 0.77, 0.71)(0.05, 0.11, 0.23).
Proposed IMFWA operator

Definition 5 Intuitionistic multi-fuzzy weighted arithmetic operator can be defined by

IMFWA ¼ w1A1⊕w2A2⊕…⊕wnAn

¼ 1−
Yn
i¼1

Yk
j¼1

1−μjAi

� �wi

;
Yn
i¼1

Yk
j¼1

νjAi

� �wi

;
Yn
i¼1

Yk
j¼1

1−μjAi

� �wi

−
Yn
i¼1

Yk
j¼1

νjAi

� �wi

( )
ð9Þ

where A1,A2,…,An are IMFS of dimension k and w1,w2,…,wn are their weights whereXn
i¼1

wi ¼ 1 and wi ∈ [0, 1].

Example 3 Let A1 and A2 be two intuitionistic multi-fuzzy sets of dimension 3, and

weights w1 = 0.3 and w2 = 0.7 are assigned to them. Let

A1 ¼ 0:7; 0:6; 0:5ð Þ; 0:1; 0:2; 0:4ð Þf g;
A2 ¼ 0:4; 0:4; 0:3ð Þ; 0:3; 0:4; 0:6ð Þf g:

The aggregated IMFWA is computed as
IMFWA A1;A2ð Þ ¼ w1A1⊕w2A2 ¼
1− 1−0:7ð Þ0:3 1−0:6ð Þ0:3 1−0:5ð Þ0:3 1−0:4ð Þ0:7 1−0:4ð Þ0:7 1−0:3ð Þ0:7� �

;

0:1ð Þ0:3 0:2ð Þ0:3 0:4ð Þ0:3 0:3ð Þ0:7 0:4ð Þ0:7 0:6ð Þ0:7� � ¼ 0:84; 0:04f g:

Definition of score function S(x), x ∈ U and accuracy function H(x), x ∈ U for IMFSs

Definition 6 If x is an IMFV where x ¼ μ1x; μ
2
x;…; μkx

� �
; ν1x; ν

2
x;…; νkx

� �� �
, the score

function can be defined as



Table 1 IMFVs and choice values

U/E e1 e2 e3 e4 e5 Choice value

h1 (0.3,0.7,0.5) (0.4,0.3,0.4) (0.1,0.2,0.0) (0.5,0.6,0.7) (0.4,0.3,0.4) (1.7,2.1,2.0)

(0.2,0.1,0.4) (0.3,0.6,0.4) (0.7,0.7,0.8) (0.4,0.3,0.2) (0.6,0.4,0.4) (2.2,2.1,2.2)

h2 (0.4,0.3,0.5) (0.7,0.6,0.8) (0.6,0.5,0.4) (0.3,0.6,0.2) (0.4,0.7,0.5) (2.4,2.7,2.4)

(0.5,0.4,0.4) (0.2,0.2,0.1) (0.3,0.3,0.4) (0.7,0.3,0.7) (0.1,0.2,0.3) (1.8,1.4,1.9)

h3 (0.1,0.2,0.1) (0.3,0.2,0.1) (0.8,0.7,0.8) (0.3,0.2,0.2) (0.4,0.3,0.2) (1.9,1.6,1.4)

(0.7,0.6,0.9) (0.6,0.0,0.7) (0.0,0.1,0.1) (0.6,0.7,0.6) (0.4,0.7,0.7) (2.3,2.1,3.0)

h4 (0.5,0.4,0.5) (0.4,0.3,0.4) (0.2,0.1,0.0) (0.5,0.6,0.3) (0.4,0.5,0.4) (2.0,1.9,1.6)

(0.4,0.4,0.3) (0.5,0.3,0.5) (0.7,0.6,0.7) (0.4,0.3,0.6) (0.6,0.4,0.3) (2.6,2.0,2.4)

h5 (0.6,0.2,0.7) (0.8,0.3,0.4) (0.3,0.3,0.3) (0.3,0.4,0.1) (0.5,0.3,0.4) (2.5,1.5,1.9)

(0.3,0.4,0.2) (0.1,0.5,0.4) (0.6,0.4,0.3) (0.5,0.5,0.8) (0.3,0.5,0.5) (1.8,2.3,2.2)

h6 (0.6,0.6,0.8) (0.4,0.3,0.3) (0.6,0.4,0.3) (0.6,0.3,0.2) (0.3,0.4,0.2) (2.5,2.0,1.8)

(0.2,0.3,0.1) (0.5,0.1,0.2) (0.2,0.4,0.4) (0.3,0.6,0.4) (0.3,0.4,0.6) (1.5,1.8,1.7)
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S xð Þ ¼ ∑
j
μj xð Þ−νj xð Þ� �

;j ¼ 1; 2;…; k: ð10Þ

The accuracy function can be defined as

H xð Þ ¼ ∑
j
μj xð Þ þ νj xð Þ� �

; j ¼ 1; 2;…; k: ð11Þ

Comparison of IMFS

If x and y are IMFVs where x ¼ μ1x; μ
2
x;…; μkx

� �
; ν1x; ν

2
x;…; νkx

� �� �
and y ¼

μ1y ; μ
2
y ;…; μky

� �
; ν1y ; ν

2
y ;…; νky

� �n o
, then x and y can be compared as follows:
Table 2 Score function and choice values

U Choice value Score value Accuracy value

h1 (1.7,2.1,2.0) 0.7 12.4

(2.2,2.1,2.2)

h2 (2.4,2.7,2.4) 2.4 12.6

(1.8,1.4,1.9)

h3 (1.9,1.6,1.4) 2.5 12.3

(2.3,2.1,3.0)

h4 (2.0,1.9,1.6) 1.5 12.5

(2.6,2.0,2.4)

h5 (2.5,1.5,1.9) 1.8 12.2

(1.8,2.3,2.2)

h6 (2.5,2.0,1.8) 1.3 11.3

(1.5,1.8,1.7)
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if S xð Þ > S yð Þð Þ; then x > y;
if S xð Þ ¼¼ S yð Þð Þ; then

1ð Þ if H xð Þ ¼¼ H yð Þð Þ; then x ¼ y;
2ð Þ if H xð Þ < H yð Þð Þ; then x < y:

Example 4 Let x = {(0.7, 0.6, 0.5), (0.1, 0.2, 0.4)} and y = {(0.4, 0.4, 0.3), (0.3, 0.4, 0.6)}. Now

S xð Þ ¼ 0:7−0:1ð Þ þ 0:6−0:2ð Þ þ 0:5−0:4ð Þf g ¼ 1:1;
S yð Þ ¼ 0:4−0:3ð Þ þ 0:4−0:4ð Þ þ 0:3−0:6ð Þf g ¼ −0:2;
H xð Þ ¼ 0:7þ 0:1ð Þ þ 0:6þ 0:2ð Þ þ 0:5þ 0:4ð Þf g ¼ 2:5;
H yð Þ ¼ 0:4þ 0:3ð Þ þ 0:4þ 0:4ð Þ þ 0:3þ 0:6ð Þf g ¼ 2:4:

Since S(x) > S(y), therefore x > y.

Example 5 Suppose U = {h1, h2, h3, h4, h5, h6} is a set of six houses (alternatives) and

E = {e1, e2, e3, e4, e5} is a set of five parameters (criteria). Mr. X wants to buy a house

based on the intuitionistic multi-fuzzy values provided for all the parameters of the

given houses which are shown in Table 1. Intuitionistic multi-fuzzy choice values

μic; ν
i
c

� �
are computed as μic ¼

Xn
j¼1

μi xj
� �

; i ¼ 1; 2;…; k and νic ¼
Xn
j¼1

νi xj
� �

; i ¼ 1; 2;…; k

(Table 1). Table 2 shows the score function and accuracy function measurements with

respect to the intuitionistic multi-fuzzy choice values. As per comparisons of IMFVs,

the maximum score value gives the optimal alternatives, i.e., house h3. Therefore, Mr.

X will go for house h3. This example shows the application of score function and accur-

acy functions in multi-criteria decision making problems.

Distance measurements over IMFSs

Definition 7 Hamming distance dH(A,B) between two IMFS, A and B, in U = (x1,x2,…,xn)

of dimension k can be defined as follows:

dH A;Bð Þ ¼ 1
2k

Xn
j¼1

Xk
i¼1

μiA xj
� �

−μiB xj
� � þj jνiA xj

� �
−νiB xj
� �

 

þ� 

πi

A xj
� �

−πi
B xj
� �jÞ

 !
; x ∈ U :

ð12Þ

Normalized Hamming distance lH(A,B) between two IMFS, A and B, in U = (x1,x2,…,xn)
of dimension k can be defined as

lH A;Bð Þ ¼ 1
2nk

Xn
j¼1

Xk
i¼1

μiA xj
� �

−μiB xj
� � þj jνiA xj

� �
−νiB xj
� �

 

þ� 

πi

A xj
� �

−πi
B xj
� �jÞ

 !
; x ∈ U :

ð13Þ

Example 6 Let A and B be two IMFSs of dimension 3.

A ¼ 0:7; 0:6; 0:5ð Þ; 0:1; 0:2; 0:4ð Þf g;B ¼ 0:4; 0:4; 0:3ð Þ; 0:3; 0:4; 0:6ð Þf g:

The Hamming distance dH(A,B) can be computed as
dH A;Bð Þ ¼ 1
2

0:7−0:4 þj j0:1−0:3j jþð j0:2−0:3f jÞ þ 0:6−0:4 þj j0:2−0:4j jþð j0:2−0:2jÞ
þ 0:5−0:3 þj j0:4−0:6j jþð j0:1−0:1jÞg ¼ 0:7:
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The normalized Hamming lH(A,B) distance can be computed as

lH A;Bð Þ ¼ 1
2� 3

0:7−0:4 þj j0:1−0:3j jþð j0:2−0:3f jÞ þ 0:6−0:4 þj j0:2−0:4j jþð j0:2−0:2jÞ
þ 0:5−0:3 þj j0:4−0:6j jþð j0:1−0:1jÞg ¼ 0:23:

Definition 8 Euclidean distance dE(A,B) between two IMFS, A and B, in U = (x1,x2,…,xn)
of dimension k can be defined as follows:

dE A;Bð Þ ¼
 

1
2k

Xn
j¼1

Xk
i¼1

μiA xj
� �

−μiB xj
� �� �

2 þ νiA xj
� �

−νiB xj
� �� �2 þ πi

A xj
� �

−πi
B xj
� �� �2!1

2

; x ∈ U :

ð14Þ

The normalized Euclidean distance lE(A, B) between two IMFS, A and B, in U = (x1,
x2,…,xn) of dimension k can be defined as

lE A;Bð Þ ¼ 1
2nk

Xn
j¼1

Xk
i¼1

μiA xj
� �

−μiB xj
� �� �2 þ νiA xj

� �
−νiB xj
� �� �2 þ πi

A xj
� �

−πi
B xj
� �� �2 !1

2

; x ∈ U :

ð15Þ

Example7 Let A and B be two IMFS of dimension 3. Let
A ¼ 0:7; 0:6; 0:5ð Þ; 0:1; 0:2; 0:4ð Þf g;B ¼ 0:4; 0:4; 0:3ð Þ; 0:3; 0:4; 0:6ð Þf g:

The Euclidean distance dE(A,B) can be computed as dE A;Bð Þ ¼
� 1
2

h
0:7−0:4ð Þ2� þ 0:1−0:3ð Þ2

þ 0:2−0:3ð Þ2g þ � 0:6−0:4ð Þ2 þ 0:2−0:4ð Þ2 þ 0:2−0:2ð Þ2g þ 0:5−0:3ð Þ2� þ 0:4−0:6ð Þ2 þ

0:1−0:1ð Þ2g
i�1�2 ¼ 0:39: The normalized Euclidean distance lE(A,B) can be computed as

lE A;Bð Þ ¼
� 1
2� 3

h
0:7−0:4ð Þ2 þ 0:1−0:3ð Þ2 þ 0:2−0:3ð Þ2� �þ � 0:6−0:4ð Þ2

þ 0:2−0:4ð Þ2 þ 0:2−0:2ð Þ2g þ � 0:5−0:3ð Þ2

þ 0:4−0:6ð Þ2 þ 0:1−0:1ð Þ2g
i�1

2 ¼ 0:22:

Presentation of IMFS to IFS degeneration

An intuitionistic multi-fuzzy set A ¼ x= μ1A xð Þ; μ2A xð Þ;…; μkA xð Þ� ��
ν1A xð Þ; ν2A xð Þ;…;
�

νkA

xð ÞÞ : x ∈ Ug can be degenerated to an IFS AG where AG ¼ x=ðμGA xð Þ;�
νGA xð Þ� �

: x ∈ Ug;

μGA xð Þ ¼ 1
k

Xk
i¼1

μiA; ν
G
A xð Þ ¼ 1

k

Xk
i¼1

νiA; and 0≤μGA xð Þ þ νGA xð Þ≤1, πG
A xð Þ ¼ 1− μGA xð Þ þ νGA xð Þ� �

for every x ∈U and i = 1,2,…,k where k is a positive integer and U is a universal set.

Example 8 Let A be an IMFS of dimension 3. If A = {(0.7, 0.6, 0.5), (0.1, 0.2, 0.4)}, then

IFS AG can be expressed as AG = {(0.7 + 0.6 + 0.5)/3, (0.1 + 0.2 + 0.4)/3} = (0.6, 0.2).

An algorithm for IMFS-based GDM
In this section, we develop an algorithm for an intuitionistic multi-fuzzy set-based

group decision making method using Hamming distance measurement technique.
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Step 1: Intuitionistic multi-fuzzy matrices are constructed based on the values pro-

vided by the decision makers. Assume that the rating of ith alternatives xi with respect

to the jth criteria cj given by the lth decision maker dl are expressed in IMFS as

r lð Þ
ij ¼ μ 1lð Þ

ij xð Þ; μ 2lð Þ
ij xð Þ;…; μ klð Þ

ij xð Þ
� �

; ν 1lð Þ
ij xð Þ; ν 2lð Þ

ij xð Þ;…; ν klð Þ
ij xð Þ

� �
: x ∈ U

n o
; where k is

the dimension of IMFS. M, N, and L are the number of alternatives, criteria, and deci-

sion makers, respectively. Hence, a multi-criteria group decision making problem using

IMFS can be expressed by the following matrix.

R lð Þ ¼ r lð Þ
ij

� �
m � n

¼

r lð Þ
11 r

lð Þ
12 ⋯r lð Þ

1n

r lð Þ
21 r

lð Þ
22 ⋯r lð Þ

2n

⋮ ⋮ ⋱ ⋮

r lð Þ
m1 r

lð Þ
m2⋯r lð Þ

mn

2
666664

3
777775

where l ∈ L; i ∈ M; j ∈ N ;m ¼ Mj j; n ¼ Nj j;
and r lð Þ

ij ¼ μ 1lð Þ
ij xð Þ; μ 2lð Þ

ij xð Þ;…; μ klð Þ
ij xð Þ

� �
; ν 1lð Þ

ij xð Þ; ν 2lð Þ
ij xð Þ;…; ν klð Þ

ij xð Þ
� �

: x ∈ U
n o

:

Step 2: A weight is provided to each decision maker dl(l ∈ L) which can be expressed
as wi ∈ [0, 1] ∀ i ∈ L where
XL
i¼1

wi ¼ 1.

Step 3: An aggregated intuitionistic multi-fuzzy matrix is constructed based on the

opinions of the decision makers. Let R lð Þ ¼ r lð Þ
ij

� �
m � n

be an intuitionistic multi-fuzzy

matrix of the lth decision maker. In group decision making processes, all individual de-

cision maker's opinion is focused into a group opinion to construct an aggregated intui-

tionistic multi-fuzzy matrix rij with the help of an IMFWA operator.

rij ¼ IMFWA r 1ð Þ
ij ; r 2ð Þ

ij ;…; r Lð Þ
ij

� �
¼ w1R1⊕w2R2⊕…⊕wLRL

¼ 1−
YL
i¼1

Yk
j¼1

1−μj
Ri

� �
wi ;
YL
i¼1

Yk
j¼1

νj
Ri

� �wi

;
YL
i¼1

Yk
j¼1

1−μj
Ri

� �
wi−
YL
i¼1

Yk
j¼1

νj
Ri

� �wi

)(

The aggregated intuitionistic multi-fuzzy matrix can be defined as follows:

R ¼
r11 r12… r1n
r21 r22… r2n
: : :
rm1 rm2…rmn

2
664

3
775

where rij ¼ μ 1ð Þ
ij ; μ 2ð Þ

ij ;…; μ kð Þ
ij

� �
; ν 1ð Þ

ij ; ν 2ð Þ
ij ;…; ν kð Þ

ij

� �
; π 1ð Þ

ij ;π 2ð Þ
ij ;…;π kð Þ

ij

� �
;

μpij ¼ 1−
YL
l¼1

1−μlij
� �

wl ; νpij ¼
YL
l¼1

νlij

� �wl

; πp
ij ¼

YL
l¼1

1−μlij
� �

wl−
YL
l¼1

νlij

� �wl

; i ∈ M; j ∈ N ; p ∈ k:
Step 4: Distance matrices are constructed by deriving the normalized Hamming dis-
tance and Euclidean distance between the aggregated matrix (R) and the sample matrix

(S). The distance matrix can be defined as follows:



Table 3 Observation of expert I

Patients/symptoms Chest pain Palpitations Dizziness Fainting Fatigue

P1 (0.3,0.7,0.5) (0.4,0.3,0.4) (0.1,0.2,0.0) (0.5,0.6,0.7) (0.4,0.3,0.4)

(0.2,0.1,0.4) (0.3,0.6,0.4) (0.7,0.7,0.8) (0.4,0.3,0.2) (0.6,0.4,0.4)

(0.5,0.2,0.1) (0.3,0.1,0.2) (0.2,0.1,0.2) (0.1,0.1,0.1) (0.0,0.3,0.2)

P2 (0.4,0.3,0.5) (0.7,0.6,0.8) (0.6,0.5,0.4) (0.3,0.6,0.2) (0.4,0.7,0.5)

(0.5,0.4,0.4) (0.2,0.2,0.1) (0.3,0.3,0.4) (0.7,0.3,0.7) (0.1,0.2,0.3)

(0.1,0.3,0.1) (0.1,0.2,0.1) (0.1,0.2,0.2) (0.0,0.1,0.1) (0.5,0.1,0.2)

P3 (0.1,0.2,0.1) (0.3,0.2,0.1) (0.8,0.7,0.8) (0.3,0.2,0.2) (0.4,0.3,0.2)

(0.7,0.6,0.9) (0.6,0.0,0.7) (0.0,0.1,0.1) (0.6,0.7,0.6) (0.4,0.7,0.7)

(0.2,0.2,0.0) (0.1,0.8,0.2) (0.2,0.2,0.1) (0.1,0.1,0.2) (0.2,0.0,0.1)

P4 (0.5,0.4,0.5) (0.4,0.3,0.4) (0.2,0.1,0.0) (0.5,0.6,0.3) (0.4,0.5,0.4)

(0.4,0.4,0.3) (0.5,0.3,0.5) (0.7,0.6,0.7) (0.4,0.3,0.6) (0.6,0.4,0.3)

(0.1,0.2,0.2) (0.1,0.4,0.1) (0.1,0.3,0.3) (0.1,0.1,0.1) (0.0,0.1,0.3)
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T ¼
t11 t12⋯ t1n
t21 t22⋯t2n
⋮ ⋮ ⋱ ⋮
tm1 tm2⋯tmn

2
664

3
775

When both of R and S can be expressed as IMFM, the normalized Hamming distance
lH(R, S) and Euclidean distance lE(R, S) over R and S in U = (x1,x2,…,xn) of dimension k

can be defined with tij where

tHij ¼ lH R; Sð Þ

¼ 1
2nk

Xn
j¼1

Xk
i¼1

ðjμiR xj
� �

−μiS xj
� � þj jνiR xj

� �
−νiS xj
� �j þ jπi

R xj
� �

−πi
S xj
� �jÞ: ð16Þ
Table 4 Observation of expert II

Patients/symptoms Chest pain Palpitations Dizziness Fainting Fatigue

P1 (0.5,0.6,0.4) (0.3,0.5,0.3) (0.4,0.6,0.6) (0.5,0.2,0.8) (0.4,0.7,0.8)

(0.2,0.2,0.5) (0.3,0.2,0.5) (0.2,0.3,0.2) (0.3,0.6,0.1) (0.4,0.0,0.1)

(0.3,0.2,0.1) (0.4,0.3,0.2) (0.2,0.1,0.2) (0.2,0.2,0.1) (0.2,0.3,0.1)

P2 (0.6,0.2,0.7) (0.8,0.3,0.4) (0.3,0.3,0.3) (0.3,0.4,0.1) (0.5,0.3,0.4)

(0.3,0.4,0.2) (0.1,0.5,0.4) (0.6,0.4,0.3) (0.5,0.5,0.8) (0.3,0.5,0.5)

(0.1,0.4,0.1) (0.1,0.2,0.2) (0.1,0.3,0.4) (0.2,0.1,0.1) (0.2,0.2,0.1)

P3 (0.6,0.6,0.8) (0.4,0.3,0.3) (0.6,0.4,0.3) (0.6,0.3,0.2) (0.3,0.4,0.2)

(0.2,0.3,0.1) (0.5,0.1,0.2) (0.2,0.4,0.4) (0.3,0.6,0.4) (0.3,0.4,0.6)

(0.2,0.1,0.1) (0.1,0.6,0.5) (0.2,0.2,0.3) (0.1,0.1,0.4) (0.4,0.2,0.2)

P4 (0.5,0.6,0.7) (0.3,0.7,0.2) (0.2,0.3,0.2) (0.4,0.3,0.5) (0.2,0.4,0.3)

(0.3,0.2,0.1) (0.6,0.3,0.6) (0.5,0.3,0.5) (0.4,0.3,0.3) (0.5,0.4,0.4)

(0.2,0.2,0.2) (0.1,0.0,0.2) (0.3,0.4,0.3) (0.2,0.4,0.2) (0.3,0.2,0.3)



Table 5 Observation of expert III

Patients/symptoms Chest pain Palpitations Dizziness Fainting Fatigue

P1 (0.3,0.4,0.7) (0.3,0.8,0.7) (0.4,0.1,0.2) (0.3,0.4,0.4) (0.1,0.3,0.7)

(0.5,0.5,0.3) (0.6,0.1,0.2) (0.3,0.5,0.8) (0.4,0.5,0.2) (0.7,0.3,0.3)

(0.2,0.1,0.0) (0.1,0.1,0.1) (0.3,0.4,0.0) (0.3,0.1,0.4) (0.2,0.4,0.0)

P2 (0.6,0.4,0.5) (0.4,0.3,0.6) (0.4,0.6,0.5) (0.2,0.5,0.3) (0.7,0.5,0.3)

(0.2,0.3,0.4) (0.5,0.2,0.3) (0.3,0.3,0.4) (0.4,0.4,0.7) (0.2,0.2,0.3)

(0.2,0.3,0.1) (0.1,0.5,0.1) (0.3,0.1,0.1) (0.4,0.1,0.0) (0.1,0.3,0.4)

P3 (0.4,0.2,0.6) (0.4,0.6,0.4) (0.6,0.5,0.3) (0.6,0.4,0.3) (0.3,0.3,0.3)

(0.3,0.6,0.2) (0.5,0.3,0.5) (0.3,0.4,0.6) (0.3,0.5,0.5) (0.4,0.6,0.5)

(0.3,0.2,0.2) (0.1,0.1,0.1) (0.1,0.1,0.1) (0.1,0.1,0.2) (0.3,0.1,0.2)

P4 (0.8,0.6,0.7) (0.4,0.7,0.2) (0.6,0.4,0.4) (0.6,0.5,0.5) (0.3,0.4,0.4)

(0.1,0.1,0.3) (0.5,0.3,0.5) (0.3,0.4,0.3) (0.4,0.3,0.4) (0.5,0.4,0.3)

(0.1,0.3,0.0) (0.1,0.0,0.3) (0.1,0.2,0.3) (0.0,0.2,0.1) (0.2,0.2,0.3)
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tEij ¼ lE R; Sð Þ

¼
 

1
2nk

Xn
j¼1

Xk
i¼1

μiR xj
� �

−μiS xj
� �� �

2 þ νiR xj
� �

−νiS xj
� �� �2 þ πi

R xj
� �

−πi
S xj
� �� �2!1

2

ð17Þ

When R is expressed as IMFM and S can be expressed by a simple intuitionistic fuzzy

matrix (IFM) which is the matrix representation of IFS in MCDM problems, normal-

ized Hamming distance lH(R, S) and Euclidean distance lE(R, S) (the dimension of R is k

and the dimension of S is 1) can be defined with tij where

tHij ¼ lH R; Sð Þ

¼ 1
2nk

Xn
j¼1

Xk
i¼1

ðjμiR xj
� �

−μS xj
� � þj jνiR xj

� �
−νS xj
� �j þ jπi

R xj
� �

−πS xj
� �jÞ: ð18Þ
Table 6 Observation of expert IV

Patients/symptoms Chest pain Palpitations Dizziness Fainting Fatigue

P1 (0.3,0.3,0.5) (0.6,0.4,0.4) (0.4,0.3,0.4) (0.6,0.3,0.4) (0.2,0.3,0.3)

(0.2,0.1,0.4) (0.3,0.6,0.5) (0.4,0.7,0.4) (0.3,0.3,0.2) (0.7,0.5,0.3)

(0.5,0.6,0.1) (0.1,0.0,0.1) (0.2,0.0,0.2) (0.1,0.4,0.4) (0.1,0.2,0.4)

P2 (0.3,0.3,0.5) (0.4,0.3,0.6) (0.4,0.5,0.6) (0.3,0.6,0.7) (0.3,0.2,0.4)

(0.5,0.5,0.4) (0.5,0.2,0.3) (0.3,0.3,0.3) (0.5,0.3,0.1) (0.5,0.2,0.2)

(0.2,0.2,0.1) (0.1,0.5,0.1) (0.3,0.2,0.1) (0.2,0.1,0.2) (0.2,0.6,0.4)

P3 (0.3,0.2,0.4) (0.3,0.2,0.4) (0.8,0.7,0.3) (0.3,0.7,0.1) (0.2,0.3,0.1)

(0.2,0.6,0.1) (0.6,0.0,0.2) (0.0,0.1,0.1) (0.6,0.3,0.3) (0.2,0.2,0.1)

(0.5,0.2,0.5) (0.1,0.8,0.4) (0.2,0.2,0.6) (0.1,0.0,0.6) (0.4,0.5,0.8)

P4 (0.2,0.4,0.3) (0.1,0.3,0.3) (0.2,0.1,0.1) (0.5,0.3,0.3) (0.4,0.3,0.0)

(0.2,0.4,0.3) (0.5,0.3,0.2) (0.2,0.6,0.1) (0.4,0.3,0.1) (0.0,0.1,0.7)

(0.6,0.2,0.4) (0.4,0.4,0.5) (0.6,0.3,0.8) (0.1,0.4,0.6) (0.6,0.6,0.3)



Table 7 Symptoms vs diseases

Symptoms/stages Stage I Stage II Stage III Stage IV

Chest pain (0.8,0.1,0.1) (0.7,0.2,0.1) (0.5,0.3,0.2) (0.1,0.7,0.2)

Palpitations (0.2,0.7,0.1) (0.5,0.1,0.4) (0.3,0.5,0.2) (0.3,0.6,0.1)

Dizziness (0.3,0.5,0.2) (0.4,0.2,0.4) (0.8,0.1,0.1) (0.5,0.1,0.4)

Fainting (0.5,0.3,0.2) (0.4,0.1,0.5) (0.3,0.2,0.5) (0.2,0.6,0.2)

Fatigue (0.5,0.4,0.1) (0.1,0.2,0.7) (0.4,0.4,0.2) (0.3,0.3,0.4)
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tEij ¼ lE R; Sð Þ

¼
 

1
2nk

Xn
j¼1

Xk
i¼1

μiR xj
� �

−μS xj
� �� �

2 þ νiR xj
� �

−νS xj
� �� �2 þ πi

R xj
� �

−πS xj
� �� �2!1

2

ð19Þ

Step 5: Distance matrices are searched to find out minimal distance for each alternative.

Case study
Statistics have consistently shown that heart disease is one of the leading causes of

deaths in the USA and all over the world (CDC's report) [22]. Prompt and accurate

diagnosis followed by proper treatment is necessary for life saving. Unfortunately, ac-

curate diagnosis of heart diseases has never been an easy task. We illustrate the ap-

proach by using a medical diagnosis-based case study specifically for heart disease

diagnosis. In this research work, we have categorized heart disease into four different

stages based on a common set of symptoms like chest pain, palpitations, dizziness,

fainting, and fatigue. Stage ‘I’ indicates that the patient is in the initial stages of heart

disease and is fully curable if diagnosed at early stages and follows proper treatment.

Patients who belong to stage ‘II’ are in more unsafe conditions and critical to cure.

Stage ‘III’ is more unsafe in comparison to stage ‘II’, and the last stage is stage ‘IV’

wherein the disease is assumed to be not recoverable.

Let D be the set of four related stages of heart disease (stage I, stage II, stage III, and

stage IV) expressed by D = {d1, d2, d3, d4} and S be the set of five related symptoms
Table 8 Aggregated intuitionistic multi-fuzzy matrix

Patients/symptoms Chest pain Palpitations Dizziness Fainting Fatigue

P1 (0.36,0.53,0.54) (0.41,0.55,0.48) (0.34,0.33,0.34) (0.49,0.39,0.62) (0.29,0.43,0.60)

(0.25,0.18,0.39) (0.36,0.29,0.38) (0.36,0.52,0.48) (0.35,0.41,0.17) (0.59,0.00,0.24)

(0.39,0.30,0.07) (0.23,0.16,0.15) (0.30,0.15,0.19) (0.17,0.20,0.22) (0.13,0.57,0.15)

P2 (0.49,0.30,0.56) (0.62,0.39,0.63) (0.44,0.49,0.46) (0.28,0.53,0.38) (0.50,0.46,0.40)

(0.35,0.39,0.34) (0.27,0.25,0.24) (0.36,0.32,0.35) (0.51,0.37,0.44) (0.23,0.25,0.31)

(0.16,0.30,0.10) (0.12,0.36,0.13) (0.21,0.19,0.19) (0.21,0.10,0.18) (0.27,0.29,0.29)

P3 (0.38,0.33,0.54) (0.35,0.35,0.31) (0.72,0.59,0.49) (0.47,0.44,0.20) (0.30,0.33,0.20)

(0.30,0.50,0.21) (0.55,0.00,0.34) (0.00,0.20,0.22) (0.42,0.50,0.44) (0.31,0.43,0.38)

(0.32,0.17,0.25) (0.10,0.65,0.35) (0.28,0.21,0.29) (0.10,0.06,0.36) (0.38,0.25,0.42)

P4 (0.55,0.51,0.58) (0.31,0.54,0.28) (0.33,0.24,0.19) (0.51,0.44,0.41) (0.33,0.40,0.29)

(0.22,0.24,0.23) (0.52,0.30,0.42) (0.38,0.46,0.32) (0.40,0.30,0.29) (0.00,0.38,0.40)

(0.23,0.25,0.19) (0.17,0.16,0.30) (0.29,0.31,0.49) (0.09,0.26,0.30) (0.67,0.31,0.31)



Table 9 Distance matrix with equal weight (w1 =w2 =w3 =w4 = 1/4)

Patients/
diseases

Hamming distance Euclidean distance Diagnosis
resultStage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

P1 0.23 0.31 0.28 0.34 0.25 0.30 0.28 0.32 Stage I

P2 0.26 0.30 0.25 0.27 0.27 0.29 0.24 0.26 Stage III

P3 0.32 0.31 0.23 0.24 0.32 0.29 0.24 0.26 Stage III

P4 0.23 0.26 0.25 0.29 0.23 0.25 0.28 0.30 Stage I
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(chest pain, palpitations, dizziness, fainting, and fatigue) given by S = {s1, s2, s3, s4, s5}.

Suppose that a group of four experts E = {e1, e2, e3, e4} is monitoring the symptoms as

per their knowledgebase to reach an agreement about which stage of heart disease is

more likely to appear for a particular patient. A set of four patients P = {P1, P2, P3, P4} is

considered in this study. This article assumes that the set of experts {e1, e2, e3, e4} pro-

vides their opinions on a set of symptoms {s1, s2, s3, s4, s5} by means of intuitionistic

multi-fuzzy sets M = {M1,M2,M3,M4} as depicted below (Tables 3, 4, 5, and 6). Table 7

shows the reference values of each of the symptoms for the mentioned stages (stage I,

stage II, stage III, and stage IV) of heart disease. The aggregated intuitionistic multi-

fuzzy decision matrix based on the opinions of decision makers is shown in Table 8.

As the patient's condition and variations of symptoms differ with time, for an expert,

it might not be feasible to make a decision based on one inspection of the patient. A

probable solution might be to inspect the patient at regular time intervals and record

them accordingly. This paper has taken the sample readings at three different time in-

tervals of a day. So each symptom is described by three membership functions (μ),

three non-membership functions (v), and three hesitation margins (π).

In accordance with the case study, the various steps of the algorithm are described as

follows:

Step 1: Intuitionistic multi-fuzzy matrix R = {R1, R2, R3, R4} for each expert E = {e1, e2,

e3, e4} is constructed by considering the three consecutive observations of those experts.

Tables 3, 4, 5, and 6 shows the intuitionistic multi-fuzzy decision matrices (R1, R2, R3, R4)

for expert I (e1), expert II (e2), expert III (e3), and expert IV (e4), respectively.

Step 2: In the case study, we have considered two real cases. Initially, the weights of

each expert are taken to be equal. In the second case, we assume that the weights of

each expert are different. Due to experts' variation in experience and domain of expert-

ise, different priorities can be assigned to different experts, so variations in their

weights during the decision making process is practical.

Step 3: An aggregated intuitionistic multi-fuzzy matrix is constructed based on the

opinions of the decision makers. When the weights of each expert are equal, Table 8

shows the corresponding aggregated intuitionistic multi-fuzzy matrix.
Table 10 Distance matrix with different weights (w1 = 0.1,w2 = 0.2,w3 = 0.3,w4 = 0.4)

Patients/
diseases

Hamming distance Euclidean distance Diagnosis
resultStage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

P1 0.24 0.31 0.27 0.34 0.26 0.30 0.27 0.31 Stage I

P2 0.26 0.29 0.23 0.26 0.26 0.28 0.23 0.26 Stage III

P3 0.34 0.29 0.26 0.25 0.34 0.28 0.26 0.25 Stage IV

P4 0.26 0.24 0.26 0.30 0.26 0.24 0.28 0.30 Stage II



Table 11 Distance matrix with different weight (w1 = 0.3,w2 = 0.2,w3 = 0.4,w4 = 0.1)

Patients/
diseases

Hamming distance Euclidean distance Diagnosis
resultStage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

P1 0.23 0.32 0.29 0.35 0.25 0.31 0.30 0.33 Stage I

P2 0.27 0.31 0.25 0.27 0.27 0.30 0.25 0.27 Stage III

P3 0.31 0.34 0.22 0.24 0.31 0.32 0.23 0.25 Stage III

P4 0.19 0.27 0.26 0.30 0.21 0.27 0.28 0.31 Stage I
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Steps 4 and 5: This step calculates distance matrices using normalized Hamming dis-

tance and normalized Euclidean distance for each patient for the set of diseases. The

lowest distance shows proper diagnosis in both Hamming distance and Euclidean dis-

tance measurements. This step is illustrated in two phases: in the first phase, all deci-

sion makers are assumed to have equal importance or weight (w1 = w2 =w3 =w4 = 1/4),

and the next phase considers different weights according to the priority of each individ-

ual decision makers. Table 9 presents the outcome of the first phase, and Tables 10, 11,

and 12 present the outcomes of the second phase. Each table shows the result of

Hamming distance measurements, Euclidean distance measurements, and diagnostic

outcome. Tables 9, 10, 11, and 12 are constructed using Table 7 (sample matrix) and

Table 8 (aggregated matrix) and the expressions (18) and (19).

Diagnostic results from Table 9 indicates that patient P1 and P4 are in stage I, while

P2 and P3 are in stage III which is similar to the diagnostic result of Table 11. Other

diagnostic results from Table 10 specifies that patient P1 is in stage I, P2 is in stage III,

P3 is in stage IV, and P4 is in stage II which is similar to Table 12. Hamming distance

and Euclidean distance measurements are observed to produce similar diagnostic out-

come in all the cases.

When experts' opinions (IMFS) are degenerated to IFS as per subsection ‘Presenta-

tion of IMFS to IFS degeneration’, the various distance measurements results are given

in Tables 13 and 14 for similar weight experts and different weight experts, respectively.

From the given result set, it can be observed that the diagnostic result of Table 13 is

similar with that of Table 9, but the result of Table 14 is different from that of Table 10.

This study indicates that when weights of individual experts are equal, a similar diag-

nostic outcome can be found in both cases (IMFS and degenerated IFS), but when

weights of experts are different, then different diagnostic outcomes can be found. In

general, the diagnostic outcome is different when IMFS is degenerated to IFS. This

happens due to multiple-time inspection of experts in the case of IFMS and one-time

inspection for IFS.
Table 12 Distance matrix with different weight (w1 = 0.2,w2 = 0.1,w3 = 0.3,w4 = 0.4)

Patients/
diseases

Hamming distance Euclidean distance Diagnosis
resultStage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

P1 0.24 0.31 0.29 0.35 0.26 0.31 0.29 0.32 Stage I

P2 0.26 0.29 0.24 0.26 0.27 0.28 0.23 0.26 Stage III

P3 0.35 0.31 0.25 0.23 0.35 0.29 0.25 0.25 Stage IV

P4 0.26 0.25 0.26 0.30 0.25 0.24 0.28 0.30 Stage II



Table 13 Distance matrix with equal weight (w1 =w2 =w3 =w4 = 1/4)

Patients/
diseases

Hamming distance Euclidean distance Diagnosis
resultStage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

P1 0.17 0.31 0.20 0.29 0.33 0.50 0.41 0.49 Stage I

P2 0.26 0.29 0.22 0.25 0.44 0.49 0.40 0.42 Stage III

P3 0.30 0.29 0.18 0.20 0.49 0.46 0.32 0.36 Stage III

P4 0.18 0.28 0.21 0.26 0.31 0.45 0.43 0.48 Stage I
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Conclusion
In this paper, we first present an intuitionistic multi-fuzzy set which is a combination

of an intuitionistic fuzzy set and a multi-fuzzy set. We then introduce some basic oper-

ations on intuitionistic multi-fuzzy set and their properties. Especially, we introduce the

concept of intuitionistic multi-fuzzy weighted averaging operator which can be treated

as an extension of intuitionistic weighted arithmetic mean operator. We have proposed

an algorithmic approach which combines the opinions of individual decision makers to

produce an aggregated matrix by using a group multi-criteria decision making method.

In the proposed approach, we measure the Hamming distance and Euclidean distance

of each patient for the set of diseases by considering the symptoms of that particular

disease where both type of distance measurements yield similar diagnostic result. The

lowest distance shows proper diagnosis for both Hamming distance and Euclidean dis-

tance measurements. The observed case study illustrates our approach in two phases:

in the first phase, all decision makers are assumed to have equal importance or weight,

and the next phase considers different weights for each individual decision makers.

Our observation proves that changes in experts' weight might have several impacts on

disease diagnosis, i.e., diagnosis might vary for different patients. In this study, we also

present score function and accuracy function in the context of IMFS with an applica-

tion to MCDM. Finally, this study degenerates the individual experts' opinions (IMFS)

into IFS and compares the final outcome which is found to be different. The concept of

multiplicity is incorporated by taking samples from the same patient at different times.

A future scope of this research work might be enhancing the study of intuitionistic

multi-fuzzy set for uncertain group decision making problems where GDM is crucial

due to the lack of information, expertise of the experts, risk amendment, etc. An ex-

ample of these type of problems might be critical disease diagnosis, risk management,

natural disaster forecasting, typical financial decision making, etc. Researchers may

introduce the advantages of machine learning techniques to allow updating of informa-

tion for decision makers which would be more adaptable in the real life environments.
Table 14 Distance matrix with different weights (w1 = 0.1,w2 = 0.2,w3 = 0.3,w4 = 0.4)

Patients/
diseases

Hamming distance Euclidean distance Diagnosis
resultStage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

P1 0.18 0.31 0.20 0.29 0.35 0.50 0.39 0.48 Stage I

P2 0.25 0.28 0.21 0.24 0.42 0.47 0.37 0.41 Stage III

P3 0.31 0.26 0.20 0.21 0.50 0.41 0.34 0.37 Stage III

P4 0.21 0.25 0.22 0.25 0.35 0.40 0.42 0.47 Stage I
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