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Abstract

In this paper, a new concept of bifuzzy bi-matrix game is introduced where all elements
of the payoff matrices are characterized by bifuzzy variables. The uncertainties of entries
of payoff matrices (bifuzzy variables) aremeasured by bifuzzymeasure known as Chance
measure. Combining the bifuzzy set theory and bi-matrix game theory, the solution
concept of bifuzzy bi-matrix game theory is introduced. The quadratic programming
problem plays the major role to solve bifuzzy bi-matrix game. In order to show the
applicability and feasibility of our proposed method, a real-life bi-matrix game problem
is considered and solved.

Keywords: Bifuzzy variable; Expected value operator; Chance measure; Quadratic
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Introduction
Game theory [1] is a bag of analytical tools designed to help us understand the phenomena
that we observed when decision-makers interact. The models of game theory are highly
abstract representations of classes of real-life situations. The basic assumption is that the
decision-makers pursued well-defined exogenous objectives and take into account their
knowledge and expectations of other decision-maker’s behavior.
A game is a formal description of a strategic situation. Game theory is applied whenever

the actions of several agents are interdependent. These agents may be individuals, groups,
firms, or any combination of these. The concept of game theory provides a language to
formulate, structure, analyze, and understand the strategic scenario. A payoff is a number,
also called utility, that reflects the desirability of an outcome to a player, for whatever
reason. When the outcomes are uncertain variables, payoffs are usually weighted with
their uncertainty. The expected payoff incorporates the player’s attitude toward risk. A
game in strategic form, also called normal form, is a compact representation of a game in
which players simultaneously choose their strategies. The resulting payoffs are presented
in a table with a cell for each strategy combination. In a game in strategic form, a strategy is
one of the given possible actions of a player. In an extensive game, a strategy is a complete
plan of choices, one for each decision point of the player.
In game theory, the players have to choose appropriate strategy to optimize their gain.

There have been different methodologies in bi-matrix game theory to optimize the solu-
tion, a well-known technique is Wolfe’s modified simplex method. In traditional game
theory, the elements of payoff matrix are considered as real numbers, and this basically
depends upon the gain of the players. In recent years, attempts have been made to extend
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the results of crisp game theory to the fuzzy games [2-7]. In credibilistic bi-matrix game
[8], the payoff elements are fuzzy variables. To find the optimum solution, applying the
fuzzy measurable function known as credibility defined by Liu [9] in 2002. Using cred-
ibility theory and game theory, the credibilistic bi-matrix game is converted into crisp
quadratic programming problem which depends upon the confidence level of the play-
ers’ payoff matrix. In bifuzzy matrix game [10], the elements of the payoff matrix are
bifuzzy variables, and its uncertainty is measured by bifuzzy measurable function known
as Chance measure introduced by Liu [9]. Zhou and Liu [11] introduced the concept
of chance distribution for bifuzzy variable, and they also introduced the expected value
operator and its linearity on bifuzzy variable.
In many cases, fuzzy variable is not sufficient to handle some type of real-life prac-

tical problems on bi-matrix game. As a result, a new type of variable is incorporated
which known as bifuzzy variable of bifuzzy set theory. Due to this reason, the ele-
ments of payoff matrices (bi-matrix game) are considered as bifuzzy variables in this
paper. In fuzzy variables, the bounds are real numbers whereas in bifuzzy variable,
the bounds are fuzzy variables and the uncertainty of bifuzzy variable is measured by
chance measure. Combining the bifuzzy set theory and bi-matrix game, bifuzzy bi-matrix
game has been formulated. The optimum solution of bifuzzy bi-matrix game, depend-
ing upon their confidence levels, is discussed in this paper. Finally, a practical example
is included to explain the proposed methodology, and then, solution procedure has been
discussed.

Preliminaries
Given a universe �,P(�) is the power set of �, and a set function Pos defines on P(�)

which is called a possibility measure if it satisfies the following conditions

1. Pos(φ) = 0, φ is an empty set.
2. Pos(�) = 1.
3. Pos(∪i∈IAi) = supi∈I Pos(Ai) for any subclass {Ai|i ∈ I} of P(�).

The necessity measure of a set A is defined as the impossibility of the opposite set Ac.
Then, the necessity measure of A is defined by

Nec(A) = 1 − Pos(Ac).

The triplet (�,P(�), Pos) is usually called a possibility space, which is also called a pat-
tern space. In addition, a self dual set function is called credibility measure [9,12] and
defined as follows:

Cr(A) = 1
2

[
Pos(A) + 1 − Pos(Ac)

]

for any A ∈ P(�) where Ac is the complement of A.
A fuzzy variable ξ is defined as a function from a credibility space (�,P(�), Cr) to the

set of real numbers. Based on credibility measure, the expected value of fuzzy variable ξ

is defined as:

E[ξ ]=
∫
0

∞
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr,

provided that at least one of the two integrals is finite.
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Example 1. (Liu and Lui [13]) Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable with
c ≤ a < b ≤ d. Then, we have

E[ξ ]= 1
4
(a + b + c + d)

Given a credibility space (�,P(�), Cr) which is complete, we obtain the definition of
bifuzzy variable as follows

Definition 1. (Liu [9]) A bifuzzy variable is a function from the credibility space
(�,P(�),Cr) to the set of fuzzy variables.

Definition 2. (Liu [9]) Let (�,P(�),Cr) be a credibility space. A map ζ = (ζ1, ζ2, ..., ζn)T :
� → Fα

n is said to be an n-array bifuzzy vector if for any Borel subset B of�n, the function

Cr{θ ∈ � |ζθ (θ
′) ∈ B}

is treated as measurable with respect to θ , as n = 1, where ζ is called a bifuzzy variable.
Definition 3. (Liu [9]) An n-dimensional bifuzzy vector is a function from the credibility
space (�,P(�),Cr) to the set of n-dimensional fuzzy vector.

Theorem 1. (Liu [9]) Assume that ζ is a bifuzzy variable. Then for any set B of �, we have

(a) The possibility Pos{ζ(θ) ∈ B} is a fuzzy variable.
(b) The necessity Nec{ζ(θ) ∈ B} is a fuzzy variable.
(c) The credibility Cr{ζ(θ) ∈ B} is a fuzzy variable.
Definition 4. (Liu [9]) Suppose ζ is a bifuzzy variable, the expected value of ζ is a real
number defined as,

E[ζ ]=
∫
0

∞
Cr{θ ∈ �|E[ζ(θ)]≥ r}dr −

∫ 0

−∞
Cr{θ ∈ �|E[ζ(θ)]≤ r}dr

provided that at least one of the two integrals is finite.

Theorem 2. (Liu [9]) Let ζ be a bifuzzy variable. If the expected value E[ζ(θ)] is finite for
each θ , then E[ζ(θ)] is a fuzzy variable.

Definition 5. (Zhou and Liu [11]) Assume that ζ and ρ are bifuzzy variables with finite
expected values. If for each θ ∈ �, the fuzzy variables ζ(θ) and ρ(θ) are independent, and
E[ζ(θ)] and E[ρ(θ)] are independent fuzzy variables, then for any real numbers a and b,
we have

E [aζ + bρ] = aE[ζ ]+bE[ρ]
Example 2. Let ζ = (ξ1, ξ2, ξ3, ξ4) be a bifuzzy variable with independent trapezoidal
fuzzy variable ξi = (ai, bi, ci, di) for i = 1, 2, 3, 4. Then we have

E[ζ ] = 1
4
E[ξ1 + ξ2 + ξ3 + ξ4]= 1

4
[E[ξ1]+E[ξ2]+E[ξ3]+E[ξ4] ]

= 1
4
[
1
4
(a1 + b1 + c1 + d1) + 1

4
(a2 + b2 + c2 + d2) + 1

4
(a3 + b3 + c3 + d3)

+1
4
(a4 + b4 + c4 + d4)]

= 1
16

(a1 + b1 + c1 + d1 + a2 + b2 + c2 + d2 + a3 + b3 + c3 + d3 + a4 + b4 + c4 + d4)

where the fuzzy variable ξi = (ai, bi, ci, di) such that ci ≤ ai < bi ≤ di for i = 1, 2, 3, 4.
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Definition 6. (Liu [9]) Let ζ be a bifuzzy variable and B be a set of real number �. Then,
the chance measure denoted by Ch of bifuzzy event ζ ∈ B is a function from (0, 1] to [ 0, 1]
defined as,

Ch{ζ ∈ B}(α) = supCr{A} ≥ αinf θ∈ACr{ζ(θ) ∈ B}

Theorem 3. (Zhou and Liu [11]) Let ζ be a bifuzzy variable and B be a Borel set of �. For
any given α∗ > 0.5, we write δ∗ = Ch{ζ ∈ B}(α∗). Then, we have

Cr{θ ∈ �|Cr{ζ(θ) ∈ B} ≥ δ∗} ≥ α∗.

Definition 7. (Liu [9]) Let ζ be a bifuzzy variable and α, δ ∈ (0, 1]. Then

ζsup(α, δ) = sup{w|Ch{ζ ≥ w}(α) ≥ δ}

is called the (α, δ)−optimistic value to ζ and

ζinf (α, δ) = inf {w|Ch{ζ ≤ w}(α) ≥ δ}

is called the (α, δ)−pessimistic value to ζ

Theorem 4. (Zhou and Liu [11]) Let ζ be a bifuzzy variable. Assume that ζsup(α, δ) is the
(α, δ)−optimistic value of ζ and ζinf (α, δ) is the (α, δ)−pessimistic value to ζ . If α > 0.5
and δ > 0.5 then we have,

Ch{ζ ≤ ζinf (α, δ)}(α) ≥ δ, Ch{ζ ≥ ζsup(α, δ)}(α) ≥ δ

Example 3. Let us consider the trapezoidal fuzzy variable ξ = (a, b, c, d) with the crisp
relation a ≤ b < c ≤ d. Then, the fuzzy measures namely possibility, necessity, and
credibility are defined by Liu [9] as follows:

Pos{ξ ≤ 0} =

⎧⎪⎨
⎪⎩
1 if b ≤ 0,
a

a−b if a ≤ 0 ≤ b,
0 if otherwise.

Nec{ξ ≤ 0} =

⎧⎪⎨
⎪⎩
1 if d ≤ 0,
c

c−d if c ≤ 0 ≤ d,
0 if otherwise.

Cr{ξ ≤ 0} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if d ≤ 0,
2c−d
2(c−d)

if c ≤ 0 ≤ d,
1
2 if b ≤ 0 ≤ c,

a
2(a−b) if a ≤ 0 ≤ b,
0 if otherwise.

Theorem 5. (Liu [9]) Let us consider the trapezoidal fuzzy variable ξ = (a, b, c, d) and
confidence level α ∈ (0, 1], we have

(1) Pos{ξ ≤ 0} ≥ α, if and only if (1 − α)a + αb ≤ 0
(2) Nec{ξ ≤ 0} ≥ α, if and only if (1 − α)c + αd ≤ 0
(3) when α ≤ 1

2 , Cr{ξ ≤ 0} ≥ α, if and only if (1 − 2α)a + 2αb ≤ 0
(4) when α > 1

2 , Cr{ξ ≤ 0} ≥ α, if and only if (2 − 2α)c + (2α − 1)d ≤ 0
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Theorem 6. (Liu [9]) Let ξk = (ak , bk , ck , dk) be trapezoidal fuzzy variables for k =
1, 2, · · · , n and a function g(x, ξ) can be written as,

g(x, ξ) = h1(x)ξ1 + h2(x)ξ2 + · · · + hn(x)ξn + h0(x)

If two functions are defined as h+
k (x) = hk(x) ∨ 0 and h−

k (x) = −hk(x) ∧ 0 for k =
1, 2, · · · , n, Then, there exists a confidence level α ∈ (0, 1] ,

(1) when α < 1/2, Cr{g(x, ξ) ≤ 0} ≥ α, if and only if,

(1 − 2α)

n∑
k=1

[
akh+

k (x) − dkh−
k (x)

] + 2α
n∑

k=1

[
bkh+

k (x) − ckh−
k (x)

] + h0(x) ≤ 0

(2) when α ≥ 1/2, Cr{g(x, ξ) ≤ 0} ≥ α, if and only if,

(2 − 2α)

n∑
k=1

[
ckh+

k (x) − bkh−
k (x)

]+(2α − 1)
n∑

k=1

[
dkh+

k (x) − akh−
k (x)

]+h0(x) ≤ 0

Theorem 7. Let ζk = (ξ1k , ξ2k , ξ3k , ξ4k) be bifuzzy variables for k = 1, 2, · · · , n with trape-
zoidal fuzzy variable ξmk = (amk , bmk , cmk , dmk) for m = 1, 2, 3, 4 and a function g(x, ζ )

can be written as,

g(x, ζ ) = h1(x)ζ1 + h2(x)ζ2 + · · · + hn(x)ζn + h0(x)

If two functions are defined as h+
k (x) = hk(x) ∨ 0 and h−

k (x) = −hk(x) ∧ 0 for k =
1, 2, · · · , n. Then, there exists a confidence level (α, δ) ∈ (0, 1] ,

(1) when δ < 1/2, Ch{g(x, ζ ) ≤ 0}(α) ≥ δ, if and only if,

(1 − 2δ)P11 + 2δP12 + h0(x) ≤ 0

(2) when δ ≥ 1/2, Ch{g(x, ζ ) ≤ 0}(α) ≥ δ, if and only if,

(2 − 2δ)P21 + (2δ − 1)P22 + h0(x) ≤ 0

where P11 defined as,

(1) when α < 1/2, if and only if,

P11 = (1 − 2α)

n∑
k=1

[
a1kh+

k (x) − d4kh−
k (x)

] + 2α
n∑

k=1

[
b1kh+

k (x) − c4kh−
k (x)

]

(2) when α ≥ 1/2, if and only if,

P11 = (2 − 2α)

n∑
k=1

[
c1kh+

k (x) − b4kh−
k (x)

] + (2α − 1)
n∑

k=1

[
d1kh+

k (x) − a4kh−
k (x)

]

where P12 defined as,

(1) when α < 1/2, if and only if,

P12 = (1 − 2α)

n∑
k=1

[
a2kh+

k (x) − d3kh−
k (x)

] + 2α
n∑

k=1

[
b2kh+

k (x) − c3kh−
k (x)

]
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(2) when α ≥ 1/2, if and only if,

P12 = (2 − 2α)

n∑
k=1

[
c2kh+

k (x) − b3kh−
k (x)

] + (2α − 1)
n∑

k=1

[
d2kh+

k (x) − a3kh−
k (x)

]

where P21 defined as,

(1) when α < 1/2, if and only if,

P21 = (1 − 2α)

n∑
k=1

[
a3kh+

k (x) − d2kh−
k (x)

] + 2α
n∑

k=1

[
b3kh+

k (x) − c2kh−
k (x)

]

(2) when α ≥ 1/2, if and only if,

P21 = (2 − 2α)

n∑
k=1

[
c3kh+

k (x) − b2kh−
k (x)

] + (2α − 1)
n∑

k=1

[
d3kh+

k (x) − a2kh−
k (x)

]

where P22 defined as,

(1) when α < 1/2, if and only if,

P22 = (1 − 2α)

n∑
k=1

[
a4kh+

k (x) − d1kh−
k (x)

] + 2α
n∑

k=1

[
b4kh+

k (x) − c1kh−
k (x)

]

(2) when α ≥ 1/2, if and only if,

P22 = (2 − 2α)

n∑
k=1

[
c4kh+

k (x) − b1kh−
k (x)

] + (2α − 1)
n∑

k=1

[
d4kh+

k (x) − a1kh−
k (x)

]

Proof. Since h+
k (x) and h−

k (x) both are nonnegative functions and hk(x) = h+
k (x) − h−

k (x),
thus we have

g(x, ζ ) =
n∑

k=1
hk(x)ζk + h0(x)

=
n∑

k=1

[
h+
k (x) − h−

k (x)
]
ζk + h0(x)

=
n∑

k=1

[
h+
k (x)ζk + h−

k (x)ζ ′
k)

] + h0(x)

where ζ ′
k = (−ξ4k ,−ξ3k ,−ξ2k ,−ξ1k) for k = 1, 2, · · · , n with −ξmk = (−dmk ,−cmk ,

−bmk ,−amk) form = 1, 2, 3, 4. In the function g(x, ζ ), the addition and multiplication on
bifuzzy variables is determined by quadruple as follows,

g(x, ζ ) =

⎛
⎜⎜⎜⎝

∑n
k=1

[
ξ1kh+

k (x) − ξ4kh−
k (x)

] + h0(x)∑n
k=1

[
ξ2kh+

k (x) − ξ3kh−
k (x)

] + h0(x)∑n
k=1

[
ξ3kh+

k (x) − ξ2kh−
k (x)

] + h0(x)∑n
k=1

[
ξ4kh+

k (x) − ξ1kh−
k (x)

] + h0(x)

⎞
⎟⎟⎟⎠

T
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i.e.,

g(x, ζ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
k=1

[
a1kh+

k (x) − d4kh−
k (x)

] + h0(x)∑n
k=1

[
b1kh+

k (x) − c4kh−
k (x)

] + h0(x)∑n
k=1

[
c1kh+

k (x) − b4kh−
k (x)

] + h0(x)∑n
k=1

[
d1kh+

k (x) − a4kh−
k (x)

] + h0(x)∑n
k=1

[
a2kh+

k (x) − d3kh−
k (x)

] + h0(x)∑n
k=1

[
b2kh+

k (x) − c3kh−
k (x)

] + h0(x)∑n
k=1

[
c2kh+

k (x) − b3kh−
k (x)

] + h0(x)∑n
k=1

[
d2kh+

k (x) − a3kh−
k (x)

] + h0(x)∑n
k=1

[
a3kh+

k (x) − d2kh−
k (x)

] + h0(x)∑n
k=1

[
b3kh+

k (x) − c2kh−
k (x)

] + h0(x)∑n
k=1

[
c3kh+

k (x) − b2kh−
k (x)

] + h0(x)∑n
k=1

[
d3kh+

k (x) − a2kh−
k (x)

] + h0(x)∑n
k=1

[
a4kh+

k (x) − d1kh−
k (x)

] + h0(x)∑n
k=1

[
b4kh+

k (x) − c1kh−
k (x)

] + h0(x)∑n
k=1

[
c4kh+

k (x) − b1kh−
k (x)

] + h0(x)∑n
k=1

[
d4kh+

k (x) − a1kh−
k (x)

] + h0(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

Depending upon the confidence level of (δ,α), we can separate the above constraints
using Theorem 6.

Bi-matrix game

In this subsection, let us consider the bi-matrix game whose payoff elements are char-
acterized by real numbers. Let X ≡ {1, 2, · · · ,m} be a set of strategies for the player I
and Y ≡ {1, 2, · · · , n} be a set of strategies for player II. Let Rn be the n-dimensional
Euclidean space and Rn+ be its non-negative orthant. Here, eT be a vector of element ‘1’
whose dimension is specified as per specific context. Mixed strategies of players I and II
are represented by SX = {x ∈ Rm+ , eTx = 1} and SY = {y ∈ Rn+, eTy = 1}, respectively.
By considering real numbers aij and bij as the expected reward for the players I and II

corresponding to the proposed strategies i and j, respectively. Then, the bi-matrix game
can be defined as follows:

(A,B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a11, b11) (a12, b12) . . . (a1n, b1n)
(a21, b21) (a22, b22) . . . (a2n, b2n)

. . . . . .

. . . . . .

. . . . . .
(am1, bm1) (am2, bm2) . . . (amn, bmn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Definition 8. (Basar and Olsder [14]) A pair (x∗, y∗) ∈ SX × SY is said to be Nash
equilibrium strategy of the bi-matrix game BG = (SX , SY ,A,B) if,

xTAy∗ ≤ x∗TAy∗ ,∀x ∈ SX

and x∗TBy ≤ x∗TBy∗ ,∀y ∈ SY
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Theorem 8. (Basar and Olsder [14]) Let BG = (SX , SY ,A,B) be given bi-matrix game. A
necessary and sufficient condition that (x∗, y∗) be an equilibrium strategy of BG is that it
is a solution of the following quadratic programming problem,

max xT (A + B)y − v − w

subject to, Ay − ve ≤ 0

BTx − we ≤ 0

eTx − 1 = 0

eTy − 1 = 0

v,w ∈ �
x, y ≥ 0

Lemma 1. If v∗ be the value of the game for player I where v∗ is given by

v∗ = x∗TAy∗ = max
x

{
xTAy∗ : eTx = 1, x ≥ 0

}

and w∗ is the value of the game for player II where w∗ is given by

w∗ = x∗TBy∗ = max
y

{
x∗TBy : eTy = 1, y ≥ 0

}

And if we assume that xi′ = xi
w and yj′ = yj

v ( for i = 1, 2, · · · ,m; j = 1, 2, · · · , n). Then,
the above Theorem 8 reduces into the following quadratic programming problem,

max eTx′ + eTy′ + x′T (A + B)y′

subject to,
n∑

j=1
aijy′

j ≤ 1 for i = 1, 2, · · · ,m

m∑
i=1

bijx′
i ≤ 1 for j = 1, 2, · · · , n

x′, y′ ≥ 0

where (x∗, y∗) and (v∗,w∗) are the Nash equilibrium strategy and outcome of the bi-matrix
game BG.

Proof. Since (x∗, y∗) ∈ SX × SY be the Nash equilibrium strategy of the bi-matrix game
BG if and only if x∗ and y∗ are simultaneously solutions of the following two problems,

⎧⎪⎨
⎪⎩

max xTAy∗

subject to, eTx = 1
x ≥ 0.

(1)

and ⎧⎪⎨
⎪⎩

max x∗TBy
subject to, eTy = 1

y ≥ 0.
(2)

Here, (x∗, y∗) ∈ SX ×SY be an optimal strategy of BG that satisfy the conditions of (1) and
(2). Also eTx′ = 1

w and eTy′ = 1
v that is, eTx′∗ = 1

w∗ and eTy′∗ = 1
v∗ . So the constraints of



Roy and Mula Journal of Uncertainty Analysis and Applications 2013, 1:11 Page 9 of 17
http://www.juaa-journal.com/content/1/1/11

Theorem 8 can be written into the following form,

Ay∗ ≤ v∗e because xTAy∗ ≤ v∗xTe = v∗ (3)

Hence, Ay ≤ ve or Ay′ ≤ e (4)

i.e,
n∑

j=1
aijy′

j ≤ 1 for i = 1, 2, · · · ,m (5)

and

x∗TB ≤ w∗e because x∗TBy ≤ w∗yTe = w∗ (6)

Hence, BTx ≤ we or BTx′ ≤ e (7)

i.e,
m∑
i=1

bijx′
i ≤ 1 for j = 1, 2, · · · , n (8)

Therefore, the objective function of the Theorem 8 can be modified into the following
form,

max xT (A + B)y − v − w (9)

or max (
x
w

)
T
(A + B)(

y
v
) + 1

w
+ 1

v
(10)

Hence, max x′T (A + B)y′ + eTx′ + eTy′ (11)

Now recall the Equations (5), (8), and (11) with x′, y′ ≥ 0, the theorem is obvious.

Bifuzzy bi-matrix game
In the crisp scenario, there exists a beautiful relationship on bi-matrix game. It is there-
fore natural to ask if something similar holds in bifuzzy scenario as well. In many applied
situation, the elements of the bi-matrix game are not fixed. So the elements are impre-
cise. Therefore, to introduce the bi-matrix game, we considered the elements as bifuzzy
variables and then it is measured by Chance. Let the bifuzzy variable ζij denote the pay-
off element that player I gains or the bifuzzy variable ρij be the payoff element that player
II gains when players I and II play the strategies i and j, respectively. Then, the bifuzzy
bi-matrix game can be represented as follows:

(ζ , ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ζ11, ρ11) (ζ12, ρ12) . . . (ζ1n, ρ1n)
(ζ21, ρ21) (ζ22, ρ22) . . . (ζ2n, ρ2n)

. . . . . .

. . . . . .

. . . . . .
(ζm1, ρm1) (ζm2, ρm2) . . . (ζmn, ρmn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Definition 9. Let ζij and ρij (i = 1, 2, ...,m; j = 1, 2, · · · , n) be independent bifuzzy vari-
ables. Then, (x∗, y∗) is called an expected bifuzzy Nash equilibrium strategy to the bifuzzy
bi-matrix game {SX , SY , ζ , ρ} if,

v∗ = E
[
x∗Tζy∗] ≥ E

[
xTζy∗] ,∀x ∈ SX

w∗ = E
[
x∗Tρy∗] ≥ E

[
x∗Tρy

]
,∀y ∈ SY

The pair (v∗,w∗) is called an optimum value of the bifuzzy bi-matrix game.
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Definition 10. Let ζij and ρij (i = 1, 2, ...,m; j = 1, 2, · · · , n) are different independent
bifuzzy variables, (α, δ) ∈ (0, 1] and w, v ∈ � be predetermined level of the bifuzzy pay-
offs. Then (x∗, y∗) is called a (α, δ)-bifuzzy equilibrium strategy to bifuzzy bi-matrix game
{SX , SY , ζ , ρ} if,

max{v| Ch{xTζy∗ ≥ v}(α) ≥ δ} ≤ max{v| Ch{x∗Tζy∗ ≥ v}(α) ≥ δ}

max{w| Ch{x∗Tρy ≥ w}(α) ≥ δ} ≤ max{w| Ch{x∗Tρy∗ ≥ w}(α) ≥ δ}
Lemma 2. Let bifuzzy bi-matrix game BG = {SX , SY , ζ , ρ} and the value of the game
v∗ for player I is given by

v∗ = E[ x∗Tζy∗]= max
x

{xTζy∗ : eTx = 1, x ≥ 0}
and w∗ is the value of the game for player II is given by

w∗ = E[x∗Tρy∗]= max
y

{x∗Tρy : eTy = 1, y ≥ 0}
where themax operator is defined as,

max
y∈SY

{xTζy} = xTζymax such that E[xTζy]≤ E[xTζymax]

If we assume that x′
i = xi

w and y′
i = yi

v (for i = 1, 2, · · · ,m; j = 1, 2, · · · , n) and the expected
value operator (E) defined on the objective function and the uncertainty of the bifuzzy
constraints is measured with bifuzzy measurable function Chance with confidence level
(α, δ) ∈ (0, 1]. Then the Lemma (1) reduces into the following quadratic programming
problem (QPP):

max eTx′ + eTy′ + E[x′T (ζ + ρ)y′]

subject to, Ch{
n∑

j=1
ζij y′

j ≤ 1}(α) ≥ δ for i = 1, 2, · · · ,m

Ch{
m∑
i=1

ρij x′
i ≤ 1}(α) ≥ δ for j = 1, 2, · · · , n

y′ ≥ 0, x′ ≥ 0

where (x∗, y∗) is the equilibrium strategy and (v∗,w∗) is the equilibrium outcome of the
bifuzzy bi-matrix game.

Proof. Since (x∗, y∗) ∈ SX × SY be an equilibrium strategy of the bifuzzy bi-matrix game
if and only if x∗ and y∗ are simultaneously solutions of the following two problems,⎧⎪⎨

⎪⎩
max xTζy∗

subject to, eTx = 1
x ≥ 0.

(12)

and ⎧⎪⎨
⎪⎩

max x∗Tρy
subject to, eTy = 1

y ≥ 0.
(13)

Here, (x∗, y∗) ∈ SX ×SY be an arbitrary strategy of the bifuzzy bi-matrix game that satisfy
the conditions (3.12) and (3.13). Also, eTx′ = 1

w and eTy′ = 1
v , that is, e

Tx′∗ = 1
w∗

and eTy′∗ = 1
v∗ . So the constraints of Lemma (1) are the elements of bifuzzy variables
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for bifuzzy bi-matrix game. So we cannot directly write the inequality for bifuzzy payoff.
For the uncertainty of the payoff elements, applying the bifuzzy uncertain measurable
function Chance with confidence level (α, δ) ∈ (0, 1] as follows:

Ch {ζ y∗ ≤ v∗e}(α) ≥ δ because, Ch{xTζy∗ ≤ v∗xTe = v∗}(α) ≥ δ

Hence, Ch {ζ y ≤ ve}(α) ≥ δ or, Ch{ζ y′ ≤ e}(α) ≥ δ

Ch {
n∑

j=1
ζij y′

j ≤ 1}(α) ≥ δ for i = 1, 2, · · · ,m

and

Ch {x∗Tρ ≤ w∗e}(α) ≥ δ because, Ch{x∗Tρy ≤ w∗yTe = w∗}(α) ≥ δ

Hence, Ch {ρTx ≤ we}(α) ≥ δ or, Ch{ρT x′ ≤ e}(α) ≥ δ

Ch {
m∑
i=1

ρij x′
i ≤ 1}(α) ≥ δ for j = 1, 2, · · · , n.

Quadratic programming problem

To derive the solution of the bifuzzy bi-matrix game, we are to solve the following bifuzzy
quadratic programming problem,

max eTx′ + eTy′ + x′T (ζ + ρ)y′

subject to,
n∑

j=1
ζij y′

j ≤ 1 for i = 1, 2, · · · ,m

m∑
i=1

ρij x′
i ≤ 1 for j = 1, 2, · · · , n

y′ ≥ 0, x′ ≥ 0.

Since the bifuzzy variables are present in the above quadratic programming problem, so
traditional method is not applicable. To find the solution of the above problem, we have
to introduce the bifuzzy expected operator to the objective function and the constraints,
bifuzzy measurable function named as Chance with confidence level (α, δ) ∈ (0, 1] . So
the bifuzzy quadratic programming problem becomes

max E[eTx′ + eTy′ + x′T (ζ + ρ)y′]

subject to, Ch{
n∑

j=1
ζij y′

j ≤ 1}(α) ≥ δ for i = 1, 2, · · · ,m

Ch{
m∑
i=1

ρij x′
i ≤ 1}(α) ≥ δ for j = 1, 2, · · · , n

y′ ≥ 0, x′ ≥ 0.
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With the help of Theorem 7, we can easily find that h+(x) = x′, h+(y) = y′, and
h−(x) = 0, h−(y) = 0 because y′ ≥ 0, x′ ≥ 0, and using the bifuzzy set theory, the above
problem can be written into crisp quadratic programming problem which depends upon
the confidence level (α, δ) ∈ (0, 1] , as follows:

max
1
16

m∑
i=1

n∑
j=1

{aij11 + aij12 + aij21 + aij22 + bij11 + bij12 + bij21 + bij22

+cij11 + cij12 + cij21 + cij22 + dij11 + dij12 + dij21 + dij22
+xij11 + xij12 + xij21 + xij22 + yij11 + yij12 + yij21 + yij22
+zij11 + zij12 + zij21 + zij22 + tij11 + tij12 + tij21 + tij22}x′

iy
′
j

+
m∑
i=1

x′
i +

n∑
j=1

y′
j

subject to,
If δ < 0.5,α < 0.5,

n∑
j=1

{(1 − 2δ){(1 − 2α)aij11 + 2αbij11} + 2δ{(1 − 2α)aij12 + 2αbij12}} y′
j ≤ 1

for i = 1, 2, · · · ,m
m∑
i=1

{(1 − 2δ){(1 − 2α)xij11 + 2αyij11} + 2δ{(1 − 2α)xij12 + 2αyij12}} x′
i ≤ 1

for j = 1, 2, · · · , n
y′ ≥ 0, x′ ≥ 0

If δ < 0.5,α ≥ 0.5,

n∑
j=1

{(1 − 2δ){(2 − 2α)cij11 + (2α − 1)dij11} + 2δ{(2 − 2α)cij12 + (2α − 1)dij12}} y′
j ≤ 1

for i = 1, 2, · · · ,m
m∑
i=1

{(1 − 2δ){(2 − 2α)zij11 + (2α − 1)tij11} + 2δ{(2 − 2α)zij12 + (2α − 1)tij12}} x′
i ≤ 1

for j = 1, 2, · · · , n
y′ ≥ 0, x′ ≥ 0

If δ ≥ 0.5,α < 0.5,

n∑
j=1

{(2 − 2δ){(1 − 2α)aij21 + 2αbij21} + (2δ − 1){(1 − 2α)aij22 + 2αbij22}} y′
j ≤ 1

for i = 1, 2, · · · ,m
m∑
i=1

{(2 − 2δ){(1 − 2α)xij21 + 2αyij21} + (2δ − 1){(1 − 2α)xij22 + 2αyij22}} x′
i ≤ 1

for j = 1, 2, · · · , n
y′ ≥ 0, x′ ≥ 0
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If δ ≥ 0.5,α ≥ 0.5,
n∑

j=1
{(2 − 2δ){(2 − 2α)cij21 + (2α − 1)dij21} + (2δ − 1){(2 − 2α)cij22 +

(2α − 1)dij22}} y′
j ≤ 1 for i = 1, 2, · · · ,m

m∑
i=1

{(2 − 2δ){(2 − 2α)zij21 + (2α − 1)tij21} + (2δ − 1){(2 − 2α)zij22 +

(2α − 1)tij22}} x′
i ≤ 1 for j = 1, 2, · · · , n

y′ ≥ 0, x′ ≥ 0

where the bifuzzy variable for player I’s payoff is ζ = (ζija, ζijb, ζijc, ζijc) and for
player II’s payoff is ρ = (ρijx, ρijy, ρijz, ρijt) with fuzzy variables defined as, ζija =
(aij11, bij11, cij11, dij11), ζijb = (aij12, bij12, cij12, dij12), ζijc = (aij21, bij21, cij21, dij21), ζijd =
(aij22, bij22, cij22, dij22) and ρijx = (xij11, yij11, zij11, tij11), ρijy = (xij12, yij12, zij12, tij12), ρijz =
(xij21, yij21, zij21, tij21), ρijt = (xij22, yij22, zij22, tij22)
Depending upon confidence level (δ,α) ∈ (0, 1], the proposed bifuzzy bi-matrix game
becomes a standard quadratic programming problem with crisp constraints and obtained
the values of bifuzzy bi-matrix gamew and v to the corresponding strategies of the players,
using Wolfe’s modified simplex method.

A numerical example
A bifuzzy bi-matrix game problem has been formulated for two mobile network compa-
nies at West Bengal in India, depending upon their profits earned. It is considered that
both the companies have four plans for rate of call charges. The plans are 1 paisa/s, 30
paisa/min, 50 paisa/2 min, and 3 rupees/10 min for their networks. Due to the avail-
ability of network and depending upon the plan, assuming that the people talk more in
the first plan rather than the second plan. So, the profit occurs more in the first plan
as compared to other plan. Suppose for the first company, the profit of the plan-a (1
paisa/s) is about 180 to 190 million per hour, but at night time, the profit arises up to 195
million and duringmorning it reduces to 175million. For the plan-b (30 paisa/min), profit
is about 156 to 158 million per hour, but at night time, the profit arises up to 160 mil-
lion and during morning, it reduces to 150 million. For the plan-c (50 paisa/2 min), profit
is about 90 to 95 million per hour, but at night time, the profit arises up to 100 million
and during morning, it reduces to 80 million. For the plan-d (3 rupees/10 min), profit is
about 120 to 130 million per hour, but at night time, the profit arises up to 140 million
and during morning, it reduces to 100 million. Similarly, profit of the second company
for plan-a (1 paisa/s) is about 165 to 170 million per hour, but at night time, the profit
arises up to 175 million and during morning, it reduces to 160 million. For the plan-b (30
paisa/min), profit is about 145 to 148 million per hour, but at night time, the profit arises
up to 150million and during morning, it reduces to 140million. For the plan-c (50 paisa/2
min), profit is about 75 to 78 million per hour, but at night time, the profit arises up to 82
million and during morning, it reduces to 70 million. For the plan-d (3 rupees/10 min),
profit is about 100 to 110 million per hour but at night time, the profit arises up to 130
million and during morning, it reduces to 90 million. For this marketing strategy, the first
company losses 2 million during at morning time and gains 2 million during at night time
and other times gain varies between−1 and 1million per hour. Similarly, the second com-
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pany losses 3 million during morning and gains 2 million during at night time and other
times gain varies between −2 and 1 million per hour.
To optimize their profits, a bifuzzy bi-matrix game is formulated whose payoff matrix

elements are bifuzzy variables representing the profit of the company per hour. For the
first company, bifuzzy variable ζij = (ξij−2, ξij−1, ξij+1, ξij+2), and for second company,
bifuzzy variable ρij = (
ij − 3, 
ij − 2, 
ij + 1, 
ij + 2) with their fuzzy variables ξij and 
ij,
respectively. For the first company, fuzzy variables for plan-a is ξ11 = (175, 180, 190, 195),
plan-b ξ12 = (150, 156, 158, 160), plan-c ξ21 = (80, 90, 95, 100), and plan-d ξ22 =
(100, 120, 130, 140). Similarly for the second company, fuzzy variables for the plan-a is

11 = (160, 165, 170, 175), plan-b 
12 = (140, 145, 148, 150), plan-c 
21 = (70, 75, 78, 82),
and plan-d 
22 = (90, 100, 110, 130). Here, one of the models is shown for particular case,
where values of the confidence levels δ = 3

4 and α = 1
4 (choice of decisionmaker) are con-

sidered. Applying the proposed methodology discussed in earlier section, the equivalent
crisp quadratic programming problem for the bifuzzy bi-matrix game is constructed as
follows:

max 309.625000x′
1y

′
1 + 264.375000x′

1y
′
2 + 147.625000x′

2y
′
1 + 202.125000x′

2y
′
2

+ x′
1 + x′

2 + y′
1 + y′

2

subject to, 179.000000y′
1 + 154.500000y′

2 ≤ 1

86.500000y′
1 + 111.500000y′

2 ≤ 1

164.000000x′
1 + 74.000000x′

2 ≤ 1

144.000000x′
1 + 96.500000x′

2 ≤ 1

y′
1, y′

2, x′
1, x′

2 ≥ 0

The solution of the above non-linear programming problem is

y′ = (0.0, 0.006472492) and x′ = (0.0, 0.002072539)

which leads to the following solution of the original problem

y∗ = (0, 1) and w = 482.499969

x∗ = (0, 1) and v = 154.500000.

Now for different values of confidence levels (Cofd. lev.), the values of the game (Val.
game) and the strategies (Str.) of the players I and II are presented in Table 1.
From the above tabulated values, it is observed that the values of the game increase

with increasing the values of confidence levels. For particular case, when δ = 1,α = 1,
the values of the game are maximum, and consequently, it can be concluded that both
the companies have maximum profit. Again for δ = 0.1,α = 0.1, the values of the
game are minimum and so the companies have minimum profit. Also, the decision maker
(here company) has the right to choose the confidence levels. So for the selection of
proper network and time condition, the companies have chosen the confidence levels
and obtained the values of the game, i.e., the profits of the companies are maximum and
appropriate.
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Table 1 Values of conf. levels, values of game, and strategies of the players

Cofd. lev. Cofd. lev. Val. game II Val. game I Str. II Str. II Str. I Str. I

δ α w v y 1 y2 x1 x2

0.100000 0.100000 102.199997 149.399994 0.000000 1.000000 0.000000 1.000000

0.100000 0.200000 106.200005 150.600006 0.000000 1.000000 0.000000 1.000000

0.100000 0.300000 110.199997 151.800018 0.000000 1.000000 0.000000 1.000000

0.100000 0.400000 114.199997 153.000000 0.000000 1.000000 0.000000 1.000000

0.100000 0.500000 128.199997 156.199982 0.000000 1.000000 0.000000 1.000000

0.100000 0.600000 130.199997 156.599991 0.000000 1.000000 0.000000 1.000000

0.100000 0.700000 132.199997 157.000000 0.000000 1.000000 0.000000 1.000000

0.100000 0.800000 146.478531 157.400009 0.000000 1.000000 0.529248 0.470752

0.100000 0.900000 147.676834 157.800018 0.000000 1.000000 0.531335 0.468665

0.100000 1.000000 148.866653 158.199982 0.000000 1.000000 0.533333 0.466667

0.200000 0.100000 102.400002 149.600006 0.000000 1.000000 0.000000 1.000000

0.200000 0.200000 106.400002 150.800003 0.000000 1.000000 0.000000 1.000000

0.200000 0.300000 110.400002 152.000015 0.000000 1.000000 0.000000 1.000000

0.200000 0.400000 114.400002 153.199997 0.000000 1.000000 0.000000 1.000000

0.200000 0.500000 128.399994 156.399994 0.000000 1.000000 0.000000 1.000000

0.200000 0.600000 130.399994 156.800003 0.000000 1.000000 0.000000 1.000000

0.200000 0.700000 132.399994 157.200012 0.000000 1.000000 0.000000 1.000000

0.200000 0.800000 146.678558 157.600021 0.000000 1.000000 0.529248 0.470752

0.200000 0.900000 147.876846 158.000000 0.000000 1.000000 0.531335 0.468665

0.200000 1.000000 149.066666 158.399979 0.000000 1.000000 0.533333 0.466667

0.300000 0.100000 102.599998 149.800003 0.000000 1.000000 0.000000 1.000000

0.300000 0.200000 106.599998 150.999985 0.000000 1.000000 0.000000 1.000000

0.300000 0.300000 110.600006 152.200012 0.000000 1.000000 0.000000 1.000000

0.300000 0.400000 110.600006 152.200012 0.000000 1.000000 0.000000 1.000000

0.300000 0.500000 128.600006 156.599991 0.000000 1.000000 0.000000 1.000000

0.300000 0.600000 130.600021 157.000000 0.000000 1.000000 0.000000 1.000000

0.300000 0.700000 132.600006 157.400009 0.000000 1.000000 0.000000 1.000000

0.300000 0.800000 146.878555 157.800018 0.000000 1.000000 0.529248 0.470752

0.300000 0.900000 148.076859 158.199982 0.000000 1.000000 0.531335 0.468665

0.300000 1.000000 149.266678 158.600006 0.000000 1.000000 0.533333 0.466667

0.400000 0.100000 102.800003 150.000000 0.000000 1.000000 0.000000 1.000000

0.400000 0.200000 106.799995 151.199997 0.000000 1.000000 0.000000 1.000000

0.400000 0.300000 110.799995 152.399994 0.000000 1.000000 0.000000 1.000000

0.400000 0.400000 114.800011 153.600021 0.000000 1.000000 0.000000 1.000000

0.400000 0.500000 128.800003 156.800003 0.000000 1.000000 0.000000 1.000000

0.400000 0.600000 130.800003 157.200012 0.000000 1.000000 0.000000 1.000000

0.400000 0.700000 132.800003 157.600021 0.000000 1.000000 0.000000 1.000000

0.400000 0.800000 147.078552 158.000000 0.000000 1.000000 0.529248 0.470752

0.400000 0.900000 148.276825 158.399979 0.000000 1.000000 0.531335 0.468665

0.400000 1.000000 149.466675 158.800003 0.000000 1.000000 0.533333 0.466667

0.500000 0.100000 104.999992 152.200012 0.000000 1.000000 0.000000 1.000000

0.500000 0.200000 108.999992 153.399994 0.000000 1.000000 0.000000 1.000000

0.500000 0.300000 112.999985 154.600006 0.000000 1.000000 0.000000 1.000000

0.500000 0.400000 116.999992 155.800003 0.000000 1.000000 0.000000 1.000000

0.500000 0.500000 131.000000 159.000000 0.000000 1.000000 0.000000 1.000000

0.500000 0.600000 133.000000 159.399994 0.000000 1.000000 0.000000 1.000000

0.500000 0.700000 135.000015 159.800018 0.000000 1.000000 0.000000 1.000000

0.500000 0.800000 149.278549 160.200012 0.000000 1.000000 0.529248 0.470752

0.500000 0.900000 150.476837 160.600006 0.000000 1.000000 0.531335 0.468665

0.500000 1.000000 151.666656 161.000015 0.000000 1.000000 0.533333 0.466667
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Table 1 Values of conf. levels, values of game, and strategies of the players (Continued)

0.600000 0.100000 105.199989 152.399994 0.000000 1.000000 0.000000 1.000000

0.600000 0.200000 109.200005 153.600021 0.000000 1.000000 0.000000 1.000000

0.600000 0.300000 113.199997 154.800003 0.000000 1.000000 0.000000 1.000000

0.600000 0.400000 117.200012 156.000015 0.000000 1.000000 0.000000 1.000000

0.600000 0.500000 131.200012 159.199997 0.000000 1.000000 0.000000 1.000000

0.600000 0.600000 133.199982 159.600006 0.000000 1.000000 0.000000 1.000000

0.600000 0.700000 135.199997 160.000000 0.000000 1.000000 0.000000 1.000000

0.600000 0.800000 149.478561 160.399994 0.000000 1.000000 0.529248 0.470752

0.600000 0.900000 150.676849 160.800003 0.000000 1.000000 0.531335 0.468665

0.600000 1.000000 151.866684 161.199997 0.000000 1.000000 0.533333 0.466667

0.700000 0.100000 151.866684 161.199997 0.000000 1.000000 0.533333 0.466667

0.700000 0.200000 109.399994 153.800018 0.000000 1.000000 0.000000 1.000000

0.700000 0.300000 113.399994 155.000000 0.000000 1.000000 0.000000 1.000000

0.700000 0.400000 117.400002 156.199982 0.000000 1.000000 0.000000 1.000000

0.700000 0.500000 131.400009 159.399994 0.000000 1.000000 0.000000 1.000000

0.700000 0.600000 133.399994 159.800018 0.000000 1.000000 0.000000 1.000000

0.700000 0.700000 135.399994 160.200012 0.000000 1.000000 0.000000 1.000000

0.700000 0.800000 149.678543 160.600006 0.000000 1.000000 0.529248 0.470752

0.700000 0.900000 150.876831 161.000015 0.000000 1.000000 0.531335 0.468665

0.700000 1.000000 152.066666 161.399994 0.000000 1.000000 0.533333 0.466667

0.800000 0.100000 105.599998 152.800018 0.000000 1.000000 0.000000 1.000000

0.800000 0.200000 105.599998 152.800018 0.000000 1.000000 0.000000 1.000000

0.800000 0.300000 113.599998 155.199997 0.000000 1.000000 0.000000 1.000000

0.800000 0.400000 117.599998 156.399994 0.000000 1.000000 0.000000 1.000000

0.800000 0.500000 131.600006 159.600006 0.000000 1.000000 0.000000 1.000000

0.800000 0.600000 133.599991 160.000000 0.000000 1.000000 0.000000 1.000000

0.800000 0.700000 135.600006 160.399994 0.000000 1.000000 0.000000 1.000000

0.800000 0.800000 149.878540 160.800003 0.000000 1.000000 0.529248 0.470752

0.800000 0.900000 151.076843 161.199997 0.000000 1.000000 0.531335 0.468665

0.800000 1.000000 152.266678 161.600006 0.000000 1.000000 0.533333 0.466667

0.900000 0.100000 105.799995 153.000000 0.000000 1.000000 0.000000 1.000000

0.900000 0.200000 109.800003 154.200012 0.000000 1.000000 0.000000 1.000000

0.900000 0.300000 113.800003 155.399994 0.000000 1.000000 0.000000 1.000000

0.900000 0.400000 117.800003 156.599991 0.000000 1.000000 0.000000 1.000000

0.900000 0.500000 131.800003 159.800018 0.000000 1.000000 0.000000 1.000000

0.900000 0.600000 133.800018 160.200012 0.000000 1.000000 0.000000 1.000000

0.900000 0.700000 135.800003 160.600006 0.000000 1.000000 0.000000 1.000000

0.900000 0.800000 150.078537 161.000015 0.000000 1.000000 0.529248 0.470752

0.900000 0.900000 151.276840 161.399994 0.000000 1.000000 0.531335 0.468665

0.900000 1.000000 152.466690 161.800003 0.000000 1.000000 0.533333 0.466667

1.000000 0.100000 106.000000 153.199997 0.000000 1.000000 0.000000 1.000000

1.000000 0.200000 110.000000 154.399994 0.000000 1.000000 0.000000 1.000000

1.000000 0.300000 114.000000 155.600006 0.000000 1.000000 0.000000 1.000000

1.000000 0.400000 118.000000 156.800003 0.000000 1.000000 0.000000 1.000000

1.000000 0.500000 132.000000 160.000000 0.000000 1.000000 0.000000 1.000000

1.000000 0.600000 134.000000 160.399994 0.000000 1.000000 0.000000 1.000000

1.000000 0.700000 136.000000 160.800003 0.000000 1.000000 0.000000 1.000000

1.000000 0.800000 150.278564 161.199997 0.000000 1.000000 0.529248 0.470752

1.000000 0.900000 151.476852 161.600006 0.000000 1.000000 0.531335 0.468665

1.000000 1.000000 152.666641 161.999985 0.000000 1.000000 0.533333 0.466667
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Conclusion
The properties of bifuzzy variable and bi-matrix game theory have been investigated in
the paper. Using bifuzzy theory, the procedure to solve the bifuzzy bi-matrix game prob-
lem has been discussed. A real-life practical problem for bifuzzy bi-matrix game has been
included and solved using proposed method. Various solutions have provided for differ-
ent confidence levels. The players have freedom to choose the appropriate confidence
levels, and for inexact confidence levels, the solution of the bifuzzy bi-matrix game prob-
lem may not be optimum. For appropriate choice of confidence levels, the players have
optimum values with strategies of the bifuzzy bi-matrix game. The present method can
be used as a powerful decision-making tool for decision maker to take right decision for
competitive systems.

Acknowledgements
The authors are grateful to acknowledge the anonymous referees for their helpful suggestions and comments which
have led to an improvement in the quality of the paper.

Author details
1Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore,
West Bengal 721102, India. 2ISRO Satellite Centre, Old Airport Road, Vimanapura Post, Bangalore 560017, India.

Received: 6 May 2013 Accepted: 19 October 2013
Published: 11 November 2013

References
1. Owen, G: Game Theory, Academic, San Diego (1995)
2. Zadeh, LA: Fuzzy sets. Inf. Control. 8, 338–353 (1965)
3. Bector, CR, Chandra, S: Fuzzy Mathematical Programming and FuzzyMatrix Games. Springer, Berlin, Heidelberg (2005)
4. Nishizaki, I, Sakawa, M: Fuzzy and Multiobjective Games for Conflict Resolution. Physica, Heidelberg (2001)
5. Campos, L: Fuzzy linear programming models to solve fuzzy matrix game. Fuzzy Sets Syst. 32, 275–289 (1989)
6. Roy, SK, Mula, P, Mondal, SN: A new solution concept in credibilistic game. CiiT Int. J. Fuzzy Syst. 3, 115–120 (2011)
7. Roy, SK: Game Theory Under MCDM and Fuzzy Set Theory. VDM (Verlag Dr. Muller), Germany (2010)
8. Mula, P, Roy, SK: Credibilistic bi-matrix game. J. Uncertain Syst. 6(1), 71–80 (2012)
9. Liu, B: Theory and Practice of Uncertain Programming. Physica, Heidelberg (2002)
10. Mula, P, Roy, SK: Bifuzzy matrix game. CiiT. Int. J. Fuzzy Syst. 5(1), 10–18 (2013)
11. Zhou, J, Liu, B: Analysis and algorithms of bifuzzy systems. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 12(3),

357–376 (2004)
12. Li, X, Liu, B: A sufficient and necessary condition for credibility measures. Int. Jour. Uncert. Fuzz. Know. Based Sys.

14(5), 527–535 (2006)
13. Liu, B, Lui, YK: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4),

445–450 (2002)
14. Basar, T, Olsder, GJ: Dynamic Noncooperative Game Theory. Second Edition. Academic, San Diego (1995)

doi:10.1186/2195-5468-1-11
Cite this article as: Roy andMula: Bi-matrix game in bifuzzy environment. Journal of Uncertainty Analysis andApplications
2013 1:11.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Preliminaries
	Bi-matrix game

	Bifuzzy bi-matrix game
	Quadratic programming problem

	A numerical example
	Conclusion
	Acknowledgements
	Author details
	References

