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Abstract

Enhancing system life span is an essential area of concern to reliability practitioners.
Various techniques can be adopted to achieve this, of which redundancy allocation
is a popular one. System life increases whenever a redundant component is added
to any of the components of the system, but the amount of increase depends on
the choice of component to which redundancy is allocated. We need to identify the
best choice of component, to which when a redundant component is added,
maximum increase in system life is achieved. In this paper, we propose a general
rule for maximizing system life stochastically by properly allocating a redundant
component. Knowledge about the order of component lives is enough to make the
optimal decision here. This rule can be applied to any simple or complex systems,
and any number of redundant components can be added to the system to have
maximum possible improvement. Some useful coherent systems are studied here in
the light of derived results.
MSC 2010: Primary 90B25; 62 N05; 60E15; Secondary 60 K10; 65 K10; 62G30
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Introduction
Designing a system to perform its intended job at least up to a specified time, known

as a target life or mission time, always has been a challenge to reliability practitioners.

To enhance the random system life by allocating redundant components is a common

practice. However, that does not ensure stochastic maximization of system life unless

the redundancy is allocated properly. There has been no general rule for addressing

this demanding issue of optimal allocation of redundancy that can be applied to any

simple or complex coherent systems which maximizes the life span of a system sto-

chastically. There may be a situation where no compromise with meeting the target life

can be afforded. In such cases, the system needs to be so designed that it can operate

satisfactorily at least for some specified length of time. Mention may be made of a mis-

sile flight, which would be required to function up to the time it takes in reaching its

known destination or artificial satellites, and space explorers have to be safe for a pre-

determined mission time without any major failure. Another example could be military

communication equipment, which must last all through its field operation of known

length. Thus, designing a reliable system often requires that the system performs its

intended job of specific duration without any major disruption, and malfunctioning of
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any of its constituent components may cause a great loss, which may not be restricted

only to a loss of money or time due to malfunction.

It is important to note that the amount of increase in system life is different for a dif-

ferent choice of the components to which the redundant component is to be added.

Thus, the issue boils down to attaching the redundant components in an effective man-

ner so as to maximize the system life stochastically.

Generally, there are two commonly used types of redundancies - standby redundancy

and active or parallel redundancy. In standby redundancy, a redundant component is

attached in such a way that it starts functioning immediately after the failure of the

component to which it is attached. Parallel redundancy is used when it is difficult or

not possible to replace the failed components during operation of the system. The

redundant components are connected in parallel with the components of the system,

and they function simultaneously with the original components. In this paper, the

active or parallel redundancy at component level is considered to increase the system life

stochastically. It has been noted in Barlow and Proschan [1] that in the case of active

redundancy, component-wise redundancy works much better than the system-wise

redundancy.

The past work on reliability optimization can be classified as follows: papers solving

the issue by focusing on the enhancement of component life [2-4] and by making

provision of adding redundant components [5-8]. In some recent works, Sheikhalishahi

et al. [9] presented a reliability redundancy allocation problem where they considered

some particular system designs. Cao et al. [10] solved a redundancy allocation problem

using a decomposition-based approach in series–parallel systems only. In this paper, we

propose a general rule for making an optimal decision to choose a component of a

given system to which the redundant component is to be added to stochastically

maximize the system life. The method is applicable to any coherent systems in general.

The paper is organized as follows: the present section introduces the work and dis-

cusses earlier works in this area. The second section includes preliminaries necessary

to develop a method for redundancy allocation, some related definitions, and the result.

The third section formulates an optimum allocation rule, using the one which can

identify the best choice of component of a system to which the redundant component

is to be added to give maximum rise in system life. Applications of the rule to some

important coherent systems are included in the fourth section. Finally, the fifth section

concludes the work.
Preliminaries and notation
An n-component system is said to be coherent if every component is relevant, i.e., every

component has some contribution towards the system performance and if the system is

monotone, i.e., the performance of the system improves with the improvement of any

component or a subset of components. For the formal definition of an n-component

coherent system, one can refer to Barlow and Proschan [1].

A system life can be determined from its component lives. Here we decompose a

coherent system in a number of subsystems in such a way that the system fails when-

ever any of the subsystems fail, and a subsystem fails when all of its components fail.

Thus, the system life can be obtained from the subsystem lives.
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Next, the concept of stochastic order and stochastic equality of two variables are

given below which will be used in the sequel.

Let F and G be two probability distribution functions on real line R. Let two random

variables X and Y be distributed according to F and G, respectively. F is stochastically

larger than G if

F xð Þ ≤G xð Þ for all x ∈ R:

In this case, we have P(X ≥ t) ≥ P(Y ≥ t) for all t. This means that X exceeds a fixed

number with a higher probability than Y does. In other words, X is said to be stochas-

tically larger than Y. In the notation, Xi ≥ st Xj.

Two random variables X and Y are said to be stochastically equal or simply equal in

distribution if

P X≤tð Þ ¼ P Y≤tð Þ for all t:

It is denoted by X = st Y.
In this paper, we develop a rule for selecting a component (optimal solution) for

which system life is stochastically maximized, i.e., the chance of increase in system life

being maximum is greatest when a redundant component is attached to it. The notion

of stochastic ordering of component lives is used to formulate the rule for getting the

solution. Let X1, X2,…, Xn be independently distributed random lives of the compo-

nents of an n-component coherent system. By the definition of stochastic ordering of

random variables, it can easily be seen that the order of the component lives implies

and is implied by the order of component reliabilities, i.e., if reliability of a component

is more than that of the other, then it is more likely to have longer life, or vice versa. If

Xi be the life of the ith component having reliability pi(t) at time t, and Xj be the life of

the jth component having reliability pj(t), then

Xi ≥ st Xj

if and only if P Xi > tð Þ ≥ P Xj > t
� �

; for all t
i:e:; pi tð Þ ≥ pj tð Þ; for all t:

ð1Þ

Thus, in case the order of component reliabilities is known, the problem can be

solved in a similar manner as will be discussed in this paper.

An implication of stochastic ordering between two random variables is now stated

below, which will be used in interpreting the result discussed in Theorem 1 in the next

section.

If Xi ≥ st Xj, then P(Xi > Xj) ≥ P(Xj > Xi), i.e., if Xi is stochastically larger than Xj, the

chance of Xi being larger than Xj is more, since

P Xi > Xj
� � ¼

Z∞

xj¼−∞

P Xi > xj
� �

dFXj xj
� �

≥
Z∞

xj¼−∞

P Xj > xj
� �

dFXj xj
� �

; by 1ð Þ

¼
Z∞

xj¼−∞

1−FXj xj
� �� �

dFXjðxjÞ¼ 1−
1
2
¼ 1

2
:

ð2Þ

In a group of competing system designs, if the system life for a certain design is
stochastically larger than that of the other, the corresponding system reliability will
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also be more, by similar reasoning as in (1). If T1 and T2 are system reliabilities for

two different designs, then

T 1≥stT 2

if and only if P T 1 > tð Þ ≥ P T2 > tð Þ; for all t: ð3Þ

In Theorem 1, we find the optimal solution that gives stochastically largest system
life. By (3), the same solution will also maximize the system reliability.

Throughout the paper, by equality (‘=’) of random variables (random lives), we mean

stochastic equality; by ‘≥’ and ‘≤’ between two random variables, we indicate ‘stochastic-

ally larger’ and ‘stochastically smaller’, respectively. Similarly, ‘smaller (larger)’ indicates

‘stochastically smaller (larger)’, and ‘equal’ indicates ‘stochastically equal’.

Now consider X1, X2,…, Xn, independently distributed random lives of the compo-

nents of an n-component system which is decomposed into k subsystems, C1, C2,…, Ck,

of sizes n1, n2,…, nk, respectively. Note that
Xk
i¼1

ni≥n, when the subsystems are overlap-

ping, i.e., one component may belong to more than one subsystem. Non-overlapping

subsystems do not share any components. For a system with non-overlapping subsys-

tems,
Xk
i¼1

ni ¼ n.

Let Ci ¼ i1; i2;…; inif g; where ij is the jth component of the ith subsystem Ci, j = 1,

2,…, ni, i = 1, 2,…, k. Let Yi be the life of the ith subsystem, Ci, i.e., the largest of the

lives of all components belonging to Ci.

It is known that a coherent system is always monotone, which indicates that the reli-

ability of a coherent system increases with the improvement of any component or a

subset of components. When a redundant component is added to a system component

in parallel, the component reliability increases. Thus, the system reliability increases

(non-decreases) when a redundant component is added to any of the components of a

coherent system. Using redundancy improves system life as well. Let us now prove the

following result:

Result
The system life increases (non-decreases) when a redundant component is added to

any of the components of the system.

Proof The system life can be written as

T ¼ min
1≤i≤k

max
j∈Ci

Xj ¼ min
1≤i≤k

Y i ð4Þ

where Y i ¼ max
j∈Ci

Xj is the life of the ith subsystem, which is the maximum of the

component lives of the ith subsystem. The component having a maximum life

among the lives of all components in the ith subsystem, by failing, will cause the

subsystem to fail. The system life, as given in (4), will be the minimum of the lives

of all subsystems.

Let U be the random life of the redundant component, which is independent of X1,

X2,…, Xn .
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Suppose Y(1) to be the smallest of the subsystem lives, i.e., Y 1ð Þ ¼ min
1≤i≤k

Y i, and Y(2)

to be the second smallest. When a redundant component having a random life U is

added to a system component, one of the following cases may occur:

Case 1. The redundant component is added to the subsystem with the smallest life,

where U will be one of the following:

(i) U ≤ Y(1)
(ii) Y(1) <U < Y(2)
(iii)Y(1) < Y(2) <U

Case 2. The redundant component is added to some other subsystem (not to the one

with the smallest life).

In case 1(i), again Y 1ð Þ ¼ min
1≤i≤k

Y i. The system life will remain unchanged.

In 1(ii), U ¼ min
1≤i≤k

Y i. The system life will increase from Y(1) to U.

In 1(iii), Y 2ð Þ ¼ min
1≤i≤k

Y i, and the system life will increase from Y(1) to Y(2).

In case 2, there will be no change in system life.

Hence, the result follows.

Our objective is to select the system component which gives maximum rise in the

system life when a redundant component is added to it. The next section proves a the-

orem to get the optimal solution.

Optimum allocation rule
Suppose Tj to be the life of the jth subsystem Cj, if the redundant component is

attached to a component belonging to Cj, j = 1, 2,…, k.

Now we see how the system life changes if a redundant component (s) is added to a

component belonging to Cj.

If s is added to a component belonging to Cj, the life of the jth subsystem will become

Tj ¼ Y j þmax U–Y j; 0
� �

; j ¼ 1; 2;…; k: ð5Þ

Now suppose Y(1), Y(2),…, Y(k) to be the ordered subsystem lives. Then, (4) becomes

T = Y(1).

The following result helps select the subsystem to a component of which the redun-

dant component is to be added in order to have maximum system life.

Theorem 1

Increase in system life is stochastically maximum when a redundant component is

added to a component belonging to the subsystem with the smallest life.

Proof Here one of the following three cases may occur:

(i) U ≤ Y(1) ≤ Y(2) ≤… ≤ Y(k)
(ii) Y(1) ≤ Y(2) ≤… ≤ Y(k) ≤U

(iii)Y(1) ≤ Y(2) ≤… ≤ Y(i) ≤U ≤ Y(i +1) ≤… ≤ Y(k), i = 1, 2,…, (k − 1)

Now let us see how system life changes in the three scenarios.
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(i) If U ≤ Y(1) ≤ Y(2) ≤… ≤ Y(k), then by (5), Tj = Yj, for all j = 1, 2,…, k, and system life,

T = Y(1).

Thus, in this situation, the system life will remain the same no matter which

subsystem component the redundant component is added to.

(ii) If Y(1) ≤ Y(2) ≤… ≤ Y(k) ≤U, by (5), Tj =U for all j = 1, 2,…, k, and therefore, if s is

added to a component belonging to the subsystem having the smallest system life

Y(1), the life of that subsystem will then be U, and hence, the system life will be

the smallest of other Y(i)'s, i.e., T = Y(2), which is greater than Y(1). However, if s is

added to a component belonging to any other subsystem, the minimum of

subsystem lives will then be Y(1), and hence, the system life will then be T = Y(1).

Thus, in this situation, the optimal choice of subsystem should be the subsystem

having the smallest life. The redundant component should be added to a

component belonging to the subsystem having the smallest life in order to increase

the system life.

(iii) If Y(1) ≤ Y(2) ≤… ≤ Y(i) ≤ U ≤ Y(i+1) ≤… ≤ Y(k), by (5), Tj = U, for all j such that

Y(j) ≤ U, and Tj = Y(j), for all j such that Y(j) ≥U. Therefore, if s is added to a

component belonging to any subsystem having life ≥ U, the system life will

be T = Y(1). If s is added to a component belonging to a subsystem having

life ≤ U, but ≥ Y(1), then also the system life will be T = Y(1). However, if s is

added to a component belonging to a subsystem having the smallest life, the

system life will increase to Y(2).

Thus, in this case, also the optimum choice is the subsystem having the smallest life.

Combining all three cases, it is clear that the optimum choice of subsystem is the

one that has the smallest life.

The statement ‘increase in system life is stochastically maximum’ in the theorem is

equivalent to the ‘chance of increase in system life being maximum is greatest’, by the

same reasoning as in (2).

Next, we determine which component of the selected subsystem should be chosen in

order to get maximum system life. Suppose Ci to be the selected subsystem. Its life is

Y i ¼ max
j∈Ci

Xj ¼ X nið Þ ð6Þ

where X(1), X(2),…, X nið Þ are the ordered component lives of subsystem Ci.

Adding s to a subsystem is the same as adding s to any of the ni components, but

since those components may also belong to some other subsystems, we need to take

care of this fact while choosing the component to which s will be attached.

If U ≤ X nið Þ, by (6), the subsystem life Y i ¼ X nið Þ.

If X nið Þ ≤ U, by (6), the subsystem life Yi =U.

For a system with overlapping subsystems, the decision of choosing a component is

based on other subsystems where the components belong to. We consider the lives

of those subsystems that contain the components of the selected subsystem, and find

the smallest of them. Following the same logic as in Theorem 1, the corresponding

component is the component that maximizes the system life.

Suppose Ci to be the subsystem with the smallest life. Let Ci ¼ i1; i2;…; inif g, where i1;

i2;…; ini are ni components belonging to Ci. Let the component ij ( j = 1, 2,…, ni) belong
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to other mj (≥ 0) subsystems C
ijð Þ

1 ;C
ijð Þ

2 ;…;C
ijð Þ

mj (these are nothing but mj subsystems

from C1, C2,…, Ck, except Ci), whose lives are, respectively, denoted by Y
ijð Þ

1 ;Y
ijð Þ

2 ;…;Y
ijð Þ

mj .

Let Y
ijð Þ

hj
be the subsystem life, the smallest among the lives of all subsystems

(except Ci) that contain the component ij, i.e.,

Y
ijð Þ

hj
¼ min

1≤l≤mj

Y
ijð Þ

l ; j ¼ 1; 2; ::::; ni

For each of components i1; i2;…; in , we may get one such subsystem. Let their lives
i

be Y i1ð Þ
h1

;Y i2ð Þ
h2

;…;Y
inið Þ

hni
, respectively. Following the logic used in proving Theorem 1,

the component corresponding to the smallest life among Y
ijð Þ

h1
;Y

ijð Þ
h2

;…;Y
ijð Þ

hni
will be

chosen. Thus, we can write the following: Choose component ij (to which the redun-

dant component s will be attached to achieve maximum increase in system life) if

Y
ijð Þ

hj
¼ min

1≤q≤nj
Y

iqð Þ
hq

ð7Þ

Note that in case the subsystem with the second smallest life does not contain any
of the components of the subsystem with the smallest life, it does not matter which

component of the latter subsystem (one having the smallest life) the redundant com-

ponent is added to, because in this case, the life of the subsystem with the second

smallest life will not change, but the life of the other subsystems may increase when

s is added. The system life will then be the minimum of Y(2), the second smallest sub-

system life, and max(U, Y(1)), the larger between the redundant component life and

the smallest subsystem life, i.e., system life T =min(Y(2), max(U, Y(1))).

In case of systems with non-overlapping subsystems, the redundant component can

be added to any of the components belonging to the smallest life subsystem. The rise

in system life will be the same, and that will be the maximum.

Note that the method discussed above can be used for adding any number of redun-

dant components. The components should be added one at a time.

Application of the rule
Let us first consider some commonly used systems and see how the rule works to iden-

tify the component which gives maximum rise in system life when the redundant com-

ponent is added to it.

In an n-component series system, there are n subsystems, each having a single com-

ponent. Hence, by Theorem 1, the component (which is also a subsystem, in this case)

with the smallest life is to be chosen for adding the redundant component in order to

maximize the system life.

For an n-component parallel system, since there is only a single subsystem of size

n and none of the components can belong to any other subsystem, the redundant

component can be added to any of the components in parallel. The increase in sys-

tem life will be the same, and that will be the maximum.

Consider a series–parallel system, where components 2 and 3 are in parallel and

component 1 is in series to the parallel structure connecting components 2 and 3.
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Here, there are two subsystems, {1} and {2, 3}, which are non-overlapping. If life of

component 1 is less than that of the larger of components 2 and 3, then by Theorem 1,

the redundant component should be added to component 1. Otherwise it should be

added to any one of components 2 and 3 to get the maximum system life. Exactly simi-

larly we can solve the problem for a hi-fi system, where components 1 and 2 are in par-

allel, components 4 and 5 are in parallel, and both of them (parallel structures) are in

series with component 3, thus having a series–parallel structure with non-overlapping

subsystems.

For a parallel–series system, where components 1 and 2 are in series and component

3 is in parallel to them (that series), the subsystems are {1, 3} and {2, 3}. Without loss

of generality, suppose the life of component 1 to be smaller than that of component 2.

Then, the life of subsystem {1, 3} will be less. This subsystem has two components,

namely, 1 and 3, of which component 3 belongs to another subsystem. Hence, by (7),

the redundant component should always be added to component 3, which gives max-

imum rise in system life.
An application to a bridge system

Let us consider a complex system, like a bridge system, as shown in Figure 1.

Let the order of the component lives be X2 < X4 < X1 < X3 < X5. The subsystems of this

system are {1, 2}, {1, 3, 5}, {2, 3, 4}, and {4, 5}, whose lives are, respectively, X1, X5, X3,

and X5, of which X1 is the smallest. Hence, by Theorem 1, subsystem {1, 2} is to be

chosen. Its components, 1 and 2, also belong to subsystems {1, 3, 5} and {2, 3, 4}, re-

spectively. Since X5 > X3, the life of subsystem {2, 3, 4} is smaller, and hence, by (7),

component 2 is to be chosen to which the redundant component should be added so

that the chance of getting maximum rise in system life is greatest.

For example, in particular, if X1 =5, X2 =2, X3 = 7, X4 = 4, and X5 = 9, the system life,

by (4), is 5. If we add the redundant component having life U = 8 to component 2, the

system life becomes 8. If we added it to component 1, the system life would then be 7.

If we added it to component 3 or 4 or 5, the system life would not have changed then,

and that would be 5.

Now suppose the order of the component lives to be X2 < X4 < X1 < X5 < X3. Then,

the subsystem lives are, X1, X3, X3, and X5, respectively, for subsystems {1, 2}, {1, 3, 5},
Figure 1 A bridge system.
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{2, 3, 4}, and {4, 5}. Hence, the system life is X1, being the smallest. By the theorem,

we choose subsystem {1, 2}. Now since the lives of {1, 3, 5} and {2, 3, 4} are equal,

the redundant component can be added to any one of components 1 and 2, and in

each case, it will be the same and the increase in system life (and hence the system

life) is stochastically maximum.

Conclusions and discussion
In this paper, we have developed a rule for selecting a component of a coherent system

to which we can attach a redundant component to maximize the system life stochastic-

ally. If we have an idea about the order of the component lives, the rule proposed here

can be used to make an optimal decision to choose the component. This rule can be

applied to any simple or complex systems. However, proper care should be taken in

achieving a trade-off between the benefit of enhancing the system life and the cost of

achieving it subject to other constraints, such as constraints involving weight or volume.
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