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Abstract

This paper presents the performance modeling of the real-time grid-based recursive
Bayesian estimation (RBE), particularly the parallel computation using graphics
processing unit (GPU). The proposed modeling formulates data transmission between
the central processing unit (CPU) and the GPU as well as floating point operations to be
carried out in each CPU and GPU necessary for one iteration of the real-time grid-based
RBE. Given the specifications of the computer hardware, the proposed modeling can
thus estimate the total amount of time cost for performing the grid-based RBE in a
real-time environment. A new prediction formulation, which adopted separable
convolution, is proposed to further accelerate the real-time grid-based RBE. The
performance of the proposed modeling was investigated, and parametric studies have
first demonstrated its validity in various conditions by showing that the average error of
estimation in computational performance stays below 6% to 7%. Utilizing the
prediction with separable convolution, the grid-based RBE has also been found to
perform within 1 ms, although the size of the problem was relatively large.
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Introduction
Recursive Bayesian estimation (RBE) allows the estimation of belief of a dynamically
moving target by updating the belief both in time and observation [1]. There are two
fundamental processes for the RBE: prediction process and correction process. The
prediction process updates the belief by the motion model of the target, whereas the
correction process updates the belief through the current observation. If the target is
observable, the accuracy of the RBE can be maintained by the correction process using
the valid observations. When the target is not observable, the accuracy of the RBE heav-
ily relies on the prediction process and the error accumulates due to the lack of the valid
observation for the correction process. In order for an accurate estimation, the RBE has
to be performed fast enough to catch the motion of the target with a well-defined target
motion model, which requires a good synchronization between its discrete representa-
tion and the RBE. Recent years, as a result, have seen many real-time enhanced RBE
techniques that help improve the speed of the RBE.
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One of such techniques is the modified ensemble Kalman filter (EnKF). The EnKF
allows non-Gaussian estimation byminimizing a cost function defined by a non-Gaussian
observation error with a pre-conditioned conjugate gradient method [2]. Langevin-
Markov Chain Monte Carlo (MCMC) method, which represents the non-Gaussian belief
by sampling it using a Markov chain and Langevin equation, could be a non-Gaussian
RBE technique [3]. Another sampling method is the interactive particle filter (IPF), which
is able to flexibly mitigate the belief space complexity [4]. An ensemble Kalman-particle
predictor-corrector filter is a hybrid method that combines the advantages of EnKF and
IPF and is able to effectively deal with high-dimensional non-Gaussian problems [5]. A
tree-based estimator approximates the posterior belief distribution atmultiple resolutions
to be effective for high-dimensional problems [6], whereas maximum likelihood state
estimation method could also achieve non-Gaussian RBE [7] by using a finite Gaussian
mixture model.
Grid-based RBE technique is able to maintain a good accuracy for the belief since the

entire target space is spatially discretized [8]. The good accuracy is obtained by the sub-
tle discretization of the target space but leads to an inefficient computation at the same
time. Furukawa et al. [9,10] refined the grid-based RBE by developing a more general
element-based RBE. The generalized element can help accurately represent the arbitrary
target space with only the small number of elements compared with the grid-based RBE
so as to reduce the computation of the RBE. Lavis et al. proposed an enhanced grid-based
RBE that allows the update of not only the belief but also the target space [11]. Because
of the dynamic adjustment of the target space, the computation of the RBE is addition-
ally reduced. Further, the parallel grid-based RBE has been proposed, and it significantly
accelerated the computation of the RBE and made its real-time implementation possible
by utilizing the GPU’s strong parallel computational capability [12]. Despite that these
efforts successfully reduce the computation of the RBE to achieve the fast RBE, the accu-
racy of the RBE is not well kept when the prediction process dominates the RBE during
the no-observation period. The time cost of one iteration of the RBE becomes critical
for overcoming this issue because that only if it matches the time increment of the dis-
crete target motion model, the RBE can maintain the accuracy during the no-observation
period.
This paper presents a performance modeling for the parallel grid-based RBE, particu-

larly the parallel computation using the GPU, and it is able to determine the time cost
of one iteration of the RBE. The proposed modeling formulates the total amount of data
transmission between the CPU and the GPU and the total number of floating point oper-
ations to be carried out in each CPU and GPU necessary for one iteration of the parallel
grid-based RBE. Given the specifications of the computer hardware, it is thus possible to
estimate the time cost for one iteration of the parallel grid-based RBE. In order to perform
the parallel grid-based RBE at maximum speed, the proposed modeling also reformulates
and implements the prediction process with separable convolution.
The paper is organized as follows. The following section reviews the recursive Bayesian

estimation as well as the parallel grid-based RBE. Section presents the proposed refor-
mulation of the prediction process for the parallel grid-based RBE and its computational
performance modeling. Section demonstrates the validation and efficacy of the pro-
posed modeling through numerical examples, and the Conclusion and future work are
summarized in the final section.
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Parallel grid-based RBE
Problem statement

The motion of an object, o, is deterministically given by the following equation:

ẋo = f o(xo,uo, wo, t), (1)

where xo represents the state of the object, uo represents the object control input, wo rep-
resents the system noise, which includes environmental influences on the target, and t
represents the time. In general, the state of the object describes its two-dimensional loca-
tion but may also include other variables such as velocity. Let the time interval between
the consecutive time steps be defined as �t. By integrating Equation (1), the state of the
object at the time step k is given by

xok = xok−1 +
∫ tk−1+�t

tk−1

f o(xo,uo,wo, t)dt, (2)

where tk−1 is the time which corresponds to the time step k − 1.

Recursive Bayesian estimation

Prediction

The prediction process starts with the numerical implementation of the object motion
model defined in Equation (2). For simplicity, the numerical integration is carried out by
Riemann left sum algorithm. By dividing the time interval �t between the consecutive
time steps into n subintervals. The state of the object at the time step k is given by

xok = xok−1 +
n−1∑
i=0

f o
(
xo,uo,wo, tk−1 + i

�t
n

)
�t
n
. (3)

Let a sequence of the observations of the object from time step 1 to k − 1 be defined as
sz̃1:k−1 ≡ {sz̃i|∀i ∈ {1, . . . , k − 1}}. Notice here that ˜(·) represents an instance of variable
(·). The prediction process computes the belief of the current state p(xok|sz̃1:k−1) from the
belief in the previous time step p(xok−1|sz̃1:k−1). The prediction is iteratively carried out
by Chapman-Kolmogorov equation and given by

p(xok|sz̃1:k−1)

=
∫
X o

p(xok|xok−1)p(x
o
k−1|sz̃1:k−1)dxok−1, (4)

where p(xok|xok−1) is the probabilistic representation of the object motionmodel defined in
Equation (3), which maps the probability of transition from the previous state xok−1 to the
current state xok . The prediction process at k = 1 is carried out by letting p(xok−1|sz̃1:k−1) =
p(x̃o0), where p(x̃o0) is defined as a prior belief of the object in terms of the probability
density function. Equation (4) indicates that the performance of the prediction process
relies on the object motion model p(xok|xok−1). Due to the fact that the object motion
model is usually non-Gaussian when only prediction process applies to the RBE, the belief
could eventually become heavily non-Gaussian.

Correction

The correction process is associated with the definition of the observation model. Let the
probability of detection (PoD) be 0 ≤ Pd(xok) ≤ 1 as a reliable measure for detecting the
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object in terms of the object state. Observable region sX o
k is defined as

sX o
k = {xok|0 < Pd(xok) ≤ 1}. (5)

The observation szk at the time step k is given by

szk =
{
hs(xok , v

s
k) xok ∈ sX o

k
∅ xok /∈ sX o

k ,
(6)

where v sk represents the observation noise at the time step k, and ∅ represents an empty
element, indicating that the observation contained no information on the object or that
the target is unobservable when it is not within the observable region.
The correction process then computes the belief p(xok|sz̃1:k) given the correspond-

ing observations up to the previous time step p(xok|sz̃1:k−1) and a new observation sz̃k .
The equation is derived by applying formulas for marginal distribution and conditional
independence and given by

p(xok|sz̃1:k)
= l(xok|sz̃k)p(xok|sz̃1:k−1)∫

X o l(xok|sz̃k)p(xok|sz̃1:k−1)dxok
, (7)

where l(xok|sz̃k) represents the observation likelihood of xok . The observation likelihood is
defined with reference to the PoD and is given by

l(xok|sz̃k) =
{
p(xok|sz̃k) sz̃k ∈ sX o

k
1 − Pd(xok)

sz̃k /∈ sX o
k ,

(8)

where p(xok|sz̃k) is the probabilistic representation of the observation model defined in
Equation (6). When the object is within the observable region, a positive observation is
obtained and the observation likelihood is a probability density function given the current
of the object observation. When the object is out of the observable region, the negative
observation is defined with respect to the PoD as the observation likelihood. Due to the
fact that the observation likelihood of the negative observation is non-Gaussian, when
the negative observation occurs in the RBE, the object belief would immediately become
heavily non-Gaussian.

Parallel grid-based RBE

Representation of target space and belief

The grid-based RBE achieves non-Gaussian belief estimation by first representing the
arbitrary target spaceX t in terms of a set of grid cells by constructing a rectangular space
X r that covers the target space. For simplicity, let us consider a two-dimensional target
space, and it is represented as mt = [xt , yt]∈ X t . The creation of a rectangular space X r

is achieved then by defining the minimum and maximum values of the target space

xtmin = min{xt}, xtmax = max{xt}
ytmin = min{yt}, ytmax = max{yt}

and subsequently creating a rectangular space as X r = {m|∀x ∈ [xtmin, xtmax] ,∀y ∈
[ ytmin, ytmax] } ⊇ X t , wherem = [x, y]. The grid space is further introduced by discretizing
the rectangular space by nx and ny grid cells in two directions, respectively. The dimen-
sions of a grid cell are defined as �xr = (xtmax − xtmin)/nx and �yr = (ytmax − ytmin)/ny.
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This results in introducing the center of each grid cell as

m̄r
ix,iy = [x̄rix , ȳ

r
iy ]=[ (ix − 0.5)�xr + xtmin, (iy − 0.5)�yr + ytmin] , (9)

where ∀ix ∈ {1, . . . , nx} and ∀iy ∈ {1, . . . , ny}. Each grid cell is defined as

X r
ix,iy = {m||x − x̄rix | <

1
2
�xr , |y − ȳriy | <

1
2
�yr}. (10)

Note that
⋃nx

ix=1
⋃ny

iy=1 X r
ix,iy = X r and

⋂nx
ix=1

⋂ny
iy=1X r

ix,iy = ∅. Finally, the selection
of grid cells that represent the target space is performed by selecting a grid cell when its
center is located in the target space, X r

ix,iy ⊂ X t if x̄rix,iy ∈ X t . The approximate target
space derived by the processes described above isX t ≈ {X r

1 ,X r
2 , . . . ,X r

ng }, where ng is the
number of grid cells approximating the target space.
The belief is usually represented by a probability density function over the target space.

Similar to the discretization of the target space, the belief could also be represented
discretely by grid cells. The position of each grid cell can be described in the two-
dimensional integer space as [ix, iy], where ix ∈ 1, . . . , nx and iy ∈ 1, . . . , ny. With the
integer representation, the belief at the grid cell [ix, iy] can be represented as pix,iy(·).

Prediction

The prediction process requires the numerical evaluation of Equation (4). Given the
belief of the previous state pix,iy(xtk|sz̃1:k−1) at the grid cell [ix, iy] and the target motion
model pIx,Iy(xtk|xtk−1) constructed in the matrix of size Ix × Iy as a convolution kernel, the
predicted belief of the current state can be numerically computed as

pix,iy(xtk|sz̃1:k−1)

= pix,iy(xtk−1|sz̃1:k−1) ⊗ pIx,Iy(xtk|xtk−1),

(11)

where⊗ indicates the two-dimensional convolution of the belief of the previous state with
the probabilistic target motion model. Therefore, the belief of the current state is given by

pix,iy(xtk|sz̃1:k−1)

=
Iy∑

β=1

Ix∑
α=1

pα,β(xtk|xtk−1)p
ix−α+1,iy−β+1(xtk−1|sz̃1:k−1). (12)

The parallelization of the prediction process is straightforward. Since the prediction at
each grid cell, given by Equation (12), can be performed independently, the parallelization
of the prediction corresponds to the parallelization of the equation and achieves a parallel
efficiency of 100% in an ideal environment. However, this equation also shows that the
computation for the prediction process is largely dominated by the size of the convolution
kernel. In order for real-time performance, it is important that the convolution kernel of
an appropriate size, which needs to be big enough to capture the motion of the target as
well as small enough to perform fast computation, is utilized.

Correction

The correction process corresponds to the numerical computation of Equation (7). Given
the predicted belief p (xtk|sz̃1:k−1) and the new observation likelihood lix,iy(xtk|sz̃k) at the
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grid cell [ix, iy], the corrected belief is computed by

pix,iy(xtk|sz̃1:k) = qix,iy(xtk|sz̃1:k)
Ac

∑ng
α=1 qα(xtk|sz̃1:k)

, (13)

where Ac is the area of a grid cell, and

qix,iy(xtk|sz̃1:k) = lix,iy(xtk|sz̃k)pix,iy(xtk|sz̃1:k−1). (14)

The parallelization of the correction process requires the breakdown of the process
as it identifies which subprocesses are parallelizable. By observing the mathematical
operations, the correction process can be broken down into three steps:

1. Calculate qix,iy(xtk|sz̃1:k) by multiplying the predicted belief pix,iy(xtk|sz̃1:k−1) with
the observation likelihood lix,iy(xtk|sz̃k);

2. Sum
∑ng

α=1 qα(xtk|sz̃1:k) and multiply the sum by Ac;
3. Calculate pix,iy(xtk|sz̃1:k) by dividing qix,iy(xtk|sz̃1:k) by Ac

∑ng
α=1 qα(xtk|sz̃1:k).

The breakdown indicates that steps 1 and 3 are grid-wise sub-processes, which can
be conducted independently. Therefore, for the correction process, steps 1 and 3 can be
computed in parallel, whereas step 2 is not parallelizable.

Target state evaluation

In the parallel grid-based RBE, the state of the target is evaluated by Equation (2) in the
integral form at each time step. For an accurate evaluation of the target state an appro-
priate choice of the time interval �t is necessary. Given a specific computer hardware
configuration, each iteration of the parallel grid-based RBE requires the certain amount
of time �tc to perform the computation, including both the prediction and correction
processes. In order to achieve an accurate evaluation of the target state, the time interval
�t needs to be chosen such that it matches the �tc. As shown in Figure 1, only when the
�t is identical with the �tc the evaluated target states could match the real target states.
When the �t is smaller or larger than the �tc, the evaluation of the target states fails and
eventually leads to large accumulated errors. The�tc is determined by not only the paral-
lel grid-based RBE itself but also its computational performance for the specific computer
hardware configuration.

Figure 1 Target states evaluation.
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Computational performancemodeling
Acceleration of prediction process

Since the RBE designed with high frequency results in using the Markovian target motion
model well approximated by a Gaussian probability density, the proposed modeling first
reformulates the prediction process with the Gaussian assumption as a pre-process and
accelerates the parallel grid-based RBE to achieve the maximum performance. With the
Gaussian assumption, the convolution kernel in the matrix of size Ix × Iy can be separated
into two vector kernels in the name of separable convolution: a column kernel of length Ix
and a row kernel of length Iy. Therefore, the target motion model matrix is separated as

pIx,Iy(xtk|xtk−1) = cpIx(xtk|xtk−1)
rpIy(xtk|xtk−1), (15)

where cpIx(xtk|xtk−1) and
rpIy(xtk|xtk−1) are the column kernel and row kernel, respectively,

with the size of a vector of Ix + Iy. Substituting Equation (15) into Equation (11), the
predicted belief of the current state can be computed as

pix,iy(xtk|sz̃1:k−1)

= pix,iy(xtk−1|sz̃1:k−1) ⊗ cpIx(xtk|xtk−1) ⊗ rpIy(xtk|xtk−1), (16)

which means that the prediction process can be broken down into two steps:

uix,iy(xtk|sz̃1:k−1)

= pix,iy(xtk−1|sz̃1:k−1) ⊗ cpIx(xtk|xtk−1)

=
Ix∑

α=1

cpα(xtk|xtk−1)p
ix−α+1,iy(xtk−1|sz̃1:k−1),

(17)

and

pix,iy(xtk|sz̃1:k−1)

= uix,iy(xtk|sz̃1:k−1) ⊗ rpIy(xtk|xtk−1)

=
Iy∑

β=1

rpβ(xtk|xtk−1)u
ix,iy−β+1(xtk−1|sz̃1:k−1).

(18)

These equations show that the prediction process at each grid cell is carried out by
performing two one-dimensional convolutions, each in horizontal and vertical directions
instead of the original one two-dimensional convolution while remaining complete paral-
lelizability. For Equation (17), the number of floating point operations for each grid cell is
seen 2Ix since Ix times of one multiplication and one summation are necessary, whereas
the number of floating point operations for Equation (18) is 2Iy via the similar observa-
tion. Having a total of ng grid cells, the total number of floating point operations for the
prediction process is thus given by

Np = 2ngIx + Iy. (19)

This is considerably small compared to that of the original formulation which is derived
as 2ngIxIy via Equation (12) since Ix + Iy 
 IxIy for an appropriate prediction process.
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Parallel computation using GPU

Following Equations (16) and (13) for the prediction and correction process, respectively,
Figure 2 shows the schematic diagram of the proposed accelerated parallel grid-based
RBE using GPU. For efficiency, the GPU stores the entire data for RBE in the global mem-
ory and performs RBE using local memories. As a result, the data transmission between
the CPU’s memory and the GPU’s local memories is carried out via the GPU’s global
memory, and all the parallelizable floating point operations are executed using the local
memories. For the prediction process, the data to be transmitted from the CPU’s memory
to the GPU’s local memories are the previous belief p(xtk−1|sz̃1:k−1) and the target motion
model p(xtk|xtk−1). Since the predicted belief is in the local memories, the correction needs
only the observation likelihood to be initially transmitted in addition. After performing
the multiplication of p(xtk|sz̃1:k−1) and the observation likelihood l(xtk|sz̃k) using GPU’s
local memories, the result q(xtk|sz̃1:k) is transmitted to the CPU’s memory to calculate the
sum Ac

∑ng
α=1 qα(xtk|sz̃1:k). The sum is then transmitted back to the GPU’s local memo-

ries to perform divisions in parallel and update the belief p(xtk|sz̃1:k). Finally, the belief is
transmitted back to the CPU’s memory for the next iteration of the accelerated parallel
grid-based RBE.

Modeling of computational performance

The computational performance of the accelerated parallel grid-based RBE using GPU
is determined not only by the performance of the CPU but also by the performance of
the GPU and that of data transmission. As a result, the time cost of one iteration of the
accelerated parallel grid-based RBE is given by

�tc = �ttrans + �tG + �tC, (20)

Figure 2 Procedures in the parallel grid-based RBE using GPU.
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where �ttrans represents the data transmission time cost between the CPU’s memory and
the GPU’s global memory as well as that between the local and the global memory inside
the GPU,�tG represents the time cost of the parallel computation performed on the GPU,
and �tC represents the time cost of the computation performed on the CPU.

Data transmission

In order to determine the data transmission time cost�ttrans for one iteration of the accel-
erated parallel grid-based RBE, the data transmitted among the CPU’s memory, GPU’s
global memory, and GPU’s local memory need to be evaluated in both the prediction and
correction processes. Let the amount of data transmitted in the unit of bytes be defined as

A = PN , (21)

where P is the precision of the numerical representation, and N is defined as the number
of data transmitted. Since the precision is usually constant, the amount of data trans-
mitted could be derived in terms of the number of data transmitted. The numbers of
data of the belief and the target motion model for the prediction process are ng and
Ix + Iy, respectively. The same numbers of data, ng and Ix + Iy, are transmitted to the
GPU’s local memory to perform parallel calculation. In the correction process, the num-
ber of data of the likelihood to be transmitted from the CPU’s memory to the GPU’s
local memory through the GPU’s global memory is ng , whereas the number of data of
the result q(xtk|sz̃1:k) to be transmitted from the GPU’s local memory to the CPU’s mem-
ory through the GPU’s global memory is similarly ng . The number of data of the sum,
Ac

∑ng
α=1 qα(xtk|sz̃1:k), to be then transmitted to the GPU’s local memory to perform par-

allel divisions is 1, and finally, the number of data to be transmitted back to the CPU’s
memory for the next RBE is ng .
By observing the data transmission for one iteration of the accelerated parallel grid-

based RBE, the total number of data transmitted from the CPU’s memory to the GPU’s
global memory is given by

NCG = ng + Ix + Iy + 1 + ng
= 2ng + Ix + Iy + 1, (22)

and all the data are transmitted continuously from the GPU’s global memory to the GPU’s
local memory

NGL = NCG = 2ng + Ix + Iy + 1. (23)

The total number of data transmitted from the GPU’s local memory to the GPU’s global
memory is

NLG = ng + ng = 2ng , (24)

and that from the GPU’s global memory to the CPU’s memory similarly becomes

NGC = NLG = 2ng . (25)

The data transmission time cost�ttrans for one iteration of the accelerated parallel grid-
based RBE is given by

�ttrans = P
(
NCG
BCG

+ NGC
BGC

+ NGG
BGG

)
, (26)
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where NCG and BCG are the total number of data transmitted and the copy bandwidth
with the unit of bytes per second from the CPU’s memory to the GPU’s global memory,
respectively,NGC andBGC are those from theGPU’s globalmemory to the CPU’smemory,
respectively, and NGG and BGG represent those between the GPU’s global memory and
the GPU’s local memory. Due to the fact that the copy bandwidth from the GPU’s global
memory to the GPU’s local memory and the one in opposite direction are the same, the
number of data transmitted inside the GPU is given by

NGG = NGL + NLG = 4ng + Ix + Iy + 1. (27)

Substitute Equations (22), (25), and (27) into Equation (26), the data transmission time
cost for one iteration of the accelerated parallel grid-based RBE is given by

�ttrans = P
(2ng + Ix + Iy + 1

BCG
+ 2ng

BGC
+ 4ng + Ix + Iy + 1

BGG

)
. (28)

It is to be noted here that these parameters of copy bandwidths are inherent for a
specific computer hardware configuration and can be determined experimentally.

Floating point operations

In order to determine the GPU computation time cost �tG and CPU computation time
cost �tC for one iteration of the accelerated parallel grid-based RBE, the number of
floating point operations performed on both CPU and GPU needs to be evaluated. The
number of floating point operations performed on the GPU for the prediction process is
seen 2ng(Ix + Iy) as the Equation (19) indicated. The number of floating point operations
performed on the GPU for the correction process is identified as 2ng in total since ng
parallel multiplications and ng parallel divisions are performed for steps 1 and 3 in Sub-
section 2, respectively. Meanwhile, the number of floating point operations performed on
the CPU is ng by ng summations in step 2 of the Subsection 2. As a consequence, the total
number of floating point operations performed on the GPU and the CPU for one iteration
of the accelerated parallel grid-based RBE is given, respectively, by

NG = 2ng(Ix + Iy) + 2ng = 2ng(Ix + Iy + 1),

NC = ng .

The GPU computation time cost for one iteration of the accelerated parallel grid-based
RBE is given by

�tG = NG
VG

, (29)

where NG is the number of floating point operations performed on the GPU, and VG is
the computational rate of GPU with the unit of FLOPS. Substituting Equation (29) into
Equation (29), the GPU computation time cost is given by

�tG = 2ng
Ix + Iy + 1

VG
. (30)

Similarly, the CPU computation time cost for one iteration of the accelerated parallel
grid-based RBE is given by

�tC = NC
VC

, (31)
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where NC represents the number of floating point operations performed on the CPU,
and VC is the computational rate of CPU with the unit of FLOPS. In the same way, by
substituting Equation (29) into Equation (31), the CPU computation time cost is given by

�tC = ng
VC

. (32)

It is to be noted here that the computational rates, VG and VC, are also inherent for a
specific CPU and GPU configuration and can be determined experimentally.

Experimental validation
Table 1 shows the setup specifications which have been available for the validation and
other investigations. Setup 1 is the fastest in both CPU and GPU, whereas setup 3 is the
slowest. This section firstly shows the improvement of the parallel grid-based RBE using
GPU by adopting the separable convolution in the prediction process with the specifi-
cation listed in setup 1. Moreover, the proposed computational modeling for the parallel
grid-based RBE is validated via setups 1 to 3. In the end, a simulated target searching task
is introduced to further evaluate the efficacy of the proposed modeling.

Improvement in prediction process

The efficiency of the prediction process accelerated by separable convolution was eval-
uated with a problem having a fixed grid space size of 1, 000 × 1, 000 and varying the
convolution kernel size from 1 to 50 on the computer setup 1. The result of the time cost
by GPU is shown in Figure 3 together with the corresponding result by the original pre-
diction. Even when the convolution kernel size is 50, the accelerated prediction is seen to
require the time cost of only 1 ms. Its superiority can also be understood by comparing
it to the original prediction, which needs the time cost 25 times as much as that of the
accelerated prediction process when the convolution kernel size is 50.

Validation

This set of tests was aimed at validating the proposed modeling of computer performance
by estimating the total iteration time cost �t of the parallel grid-based RBE using GPU
and comparing it with the actual iteration time cost experimentally measured in three
different computer setups. Each component, �ttrans, �tG, or �tC, is also compared with
the actual performance, respectively. All the time cost results are measured by averaging
the time cost of 10, 000 iterations. Needless to say, the convolution kernel size Ix + Iy and
grid space size ng are the two major factors in the proposed modeling. Two tests were
thus conducted by each, changing the convolution kernel size and the grid space size.

Table 1 Test computer system specifications

Setup Processor Memory (GB) GPU

1 Intel Dual-Core, 2.70 GHz 4.0 Nvidia GeForce GT220

2 Intel Dual-Core, 2.40 GHz 4.0 Nvidia GeForce GT320M

3 Intel Dual-Core, 2.40 GHz 4.0 Nvidia GeForce GS8400

Nvidia GeForce (Santa Clara, CA, USA), Intel (Santa Clara, CA, USA).
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Figure 3 GPU calculation time cost.

Test 1

Test 1 was performed by fixing the grid space size of the parallel grid-based RBE to
1, 000 × 1, 000 and varying the convolution kernel size Ix = Iy = i from 1 to 200.
A convolution kernel size over 200 was not explored since it is unlikely that the target
motion model requires such a large convolution kernel. The square convolution kernel
was because of the insignificance in changing size in both x and y directions, and this
additionally allows visualization of results in two-dimensional space.
The results of all the components of the time cost for the three computer setups are

shown in Figures 4, 5, and 6. Each solid line represents the estimated total and component
time costs, whereas each solid dot line with the same color represents the corresponding
actual performance. These figures primarily show that the total and component time costs
estimated by the proposed modeling well match to the actual performance. Values listed
in Table 2 also support this and indicate the effectiveness of the proposed modeling since
the average and the maximum relative errors are below 7% and 12%, respectively. While
the time cost of data transmission is seen to contribute most, it is also seen that the time
cost by GPU increases the total time cost with increase in convolution kernel size particu-
larly when the GPU is of low quality. It is thus important to use a high-performance GPU
if fast RBE with large convolution kernel size is necessary.

Test 2

Test 2 was performed by fixing the convolution kernel size of the parallel grid-based RBE
to 16 × 16 or 32 × 32 and varying grid space size nx = ny = n from 100 to 1,000.
These convolution kernel sizes often represent the target motion model with sufficient
accuracy, and the grid space size n = 1, 000, which creates 1, 000, 000 grid cells, also
provides good accuracy in many practical problems. Similarly to test 1, the square grid
size enables two-dimensional visualization of results.



Tong et al. Journal of Uncertainty Analysis and Applications 2013, 1:15 Page 13 of 18
http://www.juaa-journal.com/content/1/1/15

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Kernel Size (i*i)

T
im

e 
(s

)

Δ t
trans

Δ t
G

Δ t
C

Δ t

Figure 4 Time cost of all the components for setup 1 with fixed grid space.

The results for all the components of the time cost for the three computer setups are
shown in Figures 7, 8, and 9, respectively. These figures firstly show that the proposed
modeling is also able to well estimate the actual performance of the parallel grid-based
RBE regardless of different grid space sizes. Similarly to test 1, Table 3 shows small average
and maximum relative errors, which are below 6% and 11%, respectively. Secondly, from
these results, it is seen that the total time cost is dominated by the time cost of data
transmission particularly when the ratio of the grid space size to the convolution kernel
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Figure 5 Time cost of all the components for setup 2 with fixed grid space.
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Figure 6 Time cost of all the components for setup 3 with fixed grid space.

size is large. Since the data transmission rate is determined by the quality of the memory,
the utilization of a high-quality memory is the first priority for fast RBE.

Simulated target searching task

The performance of the prediction process dominates the accuracy of the RBE when no
valid observations are obtained. The aim of this test is to evaluate how well the proposed
modeling help the prediction process keep the accuracy during the no observation period.
A simplified target searching task is described in this subsection. The motion model of
the simulated target is given by

xtk+1 = xtk + �t · vtk cos γ t
k

ytk+1 = ytk + �t · vtk sin γ t
k , (33)

Table 2 Quantitative results for test 1

Time cost Setup

1 2 3

Average relative error

�ttrans 1.159 ms 1.165 ms 1.305 ms

�tG 0.216 ms 0.462 ms 0.856 ms

�tC 0.402 ms 0.446 ms 0.382 ms

�t 1.777 ms 2.073 ms 2.543 ms

(5.88%) (6.55%) (6.05%)

Maximum relative error

�ttrans 2.351 ms 2.254 ms 2.670 ms

�tG 0.716 ms 1.464 ms 3.259 ms

�tC 0.779 ms 0.857 ms 0.818 ms

�t 3.228 ms 4.149 ms 6.081 ms

(10.63%) (11.24%) (11.45%)
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Figure 7 Time cost of all the components for setup 1 with fixed kernel.
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Figure 8 Time cost of all the components for setup 2 with fixed kernel.
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Figure 9 Time cost of all the components for setup 3 with fixed kernel.
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Table 3 Quantitative results for test 2

Total time cost Setup

1 2 3

Average relative error �t 0.513 ms 0.530 ms 0.617 ms

(5.59%) (5.68%) (5.90%)

Maximum relative error �t 2.140 ms 2.491 ms 2.835 ms

(10.08%) (10.64%) (10.26%)

where vt and γ t are the velocity and direction of the target motion, respectively, each
subject to a Gaussian noise, and �t is the time increment. The prior belief on the target
is also Gaussian. The autonomous sensor platforms are assumed to move on a horizontal
plane and given by

xsik+1 = xsik + �t · vsik cos γ
si
k

ysik+1 = ysik + �t · vsik sin γ
si
k

θ
si
k+1 = θ

si
k + �t · αsiγ si

k , (34)

where vsi and γ si are the velocity and turn of the sensor platform (si) respectively, and
αsi is a coefficient governing the rate of turn. The probability of detection Pd(xtk|xsik ) is
given by a Gaussian distribution, whereas the likelihood l(xtk|si z̃tk , x̃sik ) when the target is
detected is given by a Gaussian distribution with variances proportional to the distance
between the sensor platform si and the target. Table 4 shows the major parameters of this
simulated target searching task. The convolution kernel constructed by the target motion
model is represented by a 32 × 32 matrix, and the grid space size is set as 1, 000 × 1, 000.
The computer specifications followed the setup 3 in the Table 1. With the proposed
approach, the time increment �t was chosen as 0.032 s, the time cost of one iteration
of the RBE estimated by the proposed modeling. For the case without the proposed
approach, the time increment �t was chosen as 0.02 s randomly in order to show the
comparison.
Figure 10 shows the initial and final states of four sensor platforms without and

with proposed prediction reformulation, respectively. Without the proposed prediction
improvement, all the sensor platforms lost the target, whereas all of them successfully
found the target under the condition of utilizing the proposed prediction reformulation.
The reason is that the proposed prediction process made the grid-based RBE to update
the belief much faster than the original one, resulting in a reliable tracking on the moving
target. The evaluation of the proposed modeling for this simulated search and rescue task

Table 4Major parameters of the target searching task

Parameter Value

Sensor platform, si Velocity vsik 0.05

Turn coef. αsi 0.8

PoD var. [0.2, 0.2]

Target, t Velocity vtk N(0.1, 0.02)

Direction γ t
k N(0rad, 0.7rad)

Prior [ xt0, y
t
0] N([20, 25], diag{200, 200 })
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Figure 10 Search and rescue task.

is conducted, and the corresponding quantitative results were concluded in the Table 5.
The result shows small average and maximum relative errors as well, which are below 7%
and 10% respectively, and indicates that the proposed modeling is able to estimate the
actual time cost for the grid-based RBE using GPU.

Conclusion and future work
The performance modeling for the real-time grid-based RBE, especially parallel com-
putation using GPU, has been proposed to identify the best resolution of the RBE with
given computer hardware. The modeling allows the estimation of time costs necessary
within CPU and GPU and that of data transmission between CPU and GPU for the real-
time grid-based RBE. In order to speed up the RBE, the prediction has been additionally
reformulated with the separable convolution.
The proposed modeling was experimentally investigated by varying its major param-

eters. The result of the first test with varying convolution kernel size shows that the
average error of the estimation by the proposed modeling stays below 7% regardless of
the convolution kernel size and that a high-performance GPU is necessary if the con-
volution kernel size is large. In the second test with varying grid space size, it is found
that the proposed modeling estimates within the average error of 6%, irrespective of
the grid space size, and that a high-quality memory is necessary if fast RBE is required
for large grid space. Utilizing prediction with separable convolution, the RBE has also
been found to perform within 1 ms, although the size of the problem was relatively
large.
The current study is still the first step for achieving high-fidelity RBE in a real-time envi-

ronment. The project is further planned to utilize the best resolution of the RBE identified
by the proposed modeling and investigate its efficacy.

Table 5 Quantitative results for simulated search and rescue task

Total time Sensor platform

1 2 3 4

Average relative error �t 0.618 ms 0.633 ms 0.626 ms 0.618 ms

(5.78%) (6.21%) (5.82%) (5.93%)

Maximum relative error �t 2.856 ms 2.823 ms 2.892 ms 2.854 ms

(9.89%) (9.56%) (9.25%) (9.68%)
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