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Abstract

Background: If an appropriate probability distribution cannot be identified for a
given situation, it becomes extremely difficult to draw reliable inferences about the
given domain of study under investigation. This is due to the fact that statistical
theory of testing of hypothesis cannot be meaningfully employed in those cases. To
deal with such situations, Uncertainty theory is recommended as an alternative by
Liu (2007) and testing the validity of the hypotheses about uncertainty distributions
is currently receiving the attention of researchers.

Methods: In this paper, for testing uncertain hypotheses about the true uncertainty
distribution function, a new test procedure based on the inputs given by one or
more domain experts is suggested. The proposed method can also be used for
testing uncertain hypotheses about the equality of two uncertainty distribution
functions.

Results: Illustrative examples are also provided in support of the test procedure
suggested in this paper to demonstrate the utility of the same.

Conclusions: The same methodology can be used for testing the equality of two
uncertainty distributions by making use of the ratio used in the construction of
the test.

Keywords: Uncertain measure; Uncertainty distribution; Empirical uncertainty
distribution; Testing uncertain hypothesis
Background
Testing of statistical hypotheses is a major branch of study in classical statistical inference.

It deals with the process of developing appropriate test procedures for testing the validity

of statistical hypotheses. Statistical hypotheses are statements about characteristics

of real-life situations modeled in terms of probability distributions and a statistical

test helps the decision maker whether to accept or reject the given hypothesis

based on sampled observations. The theory of testing of statistical hypotheses revolves

around the probability theory.

There are several real-life situations where it would be very difficult to identify

appropriate models (probability distributions) describing the probabilistic properties of

the given phenomena. Further, collection of adequate information in the form of

sampled data to explain fully the probability distribution is not always viable. To deal

with these situations, [1] introduced a new theory called the Theory of Uncertainty.

Further refinements on the Theory of Uncertainty have been carried out by Liu
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[2]. For more details about the Theory of Uncertainty and its applications in

various fields of research, one can refer to [2]. The online resource of [3] is an

excellent source of information on the latest status of various aspects related to

Uncertainty Theory.

It is well known that probability distributions are the backbone of the theory of

statistical inference that helps practitioners to study about the inherent characteristics of

the given situation. Inferences related to the given system require the knowledge of

parameters involved in the underlying probability distributions for which several

solutions are available in the literature. Similar to probability distributions playing

a crucial role in the stochastic situations, uncertainty distributions play a significant

role in the Theory of Uncertainty. Uncertainty distributions model the nature of

uncertainty present in the given system. Several uncertainty distributions and their

properties are available in [3]. These distributions have certain unknown constants,

and practitioners require the knowledge of these quantities to study the nature of

uncertainty. Liu [2] suggested an estimation procedure for the estimation of parameters in

an uncertainty distribution. It was followed by the works of Wang and Peng [4] and Wang

et al. [5]. Recently, Wang et al. [6] introduced an uncertain hypothesis testing procedure

to test the equality of two uncertainty distributions.

In this paper, a new test procedure is introduced for testing whether a specified

uncertainty distribution function can be the true uncertainty distribution function

of the given system. The proposed test procedure makes use of a distance based

on empirical comprehensive uncertainty distribution defined by Liu [2]. The

suggested procedure can be modified suitably for handling the situation wherein

one will be interested in testing the equality of two uncertainty distributions. The

paper is organized as follows. The second section of the paper introduces the un-

certainty theory and uncertainty distributions briefly. The third section of the paper

explains Wang et al. [6] test procedure and introduces the new test for testing

hypotheses about uncertainty distributions. Illustrations are given in the fourth

section, and conclusions are provided in fifth section.
Methods
Uncertainty distributions

Let Г be a nonempty set and L be a σ- algebra over Г. Elements of L are known

as events. Uncertainty measure M is a function from L to [0,1] which measures

the degree of belief associated with an event. Initially, it was introduced as a

function from L to [0,1], satisfying the axioms such as normality, monotonicity,

self-duality, and countable subadditivity [1]. Later on, Liu [3] refined the definition

of uncertainty measure and defined it as a measure satisfying normality, duality,

and subadditivity axioms. A measureable function ξ from the uncertainty space

(Г,L,M) to the set of real numbers is defined as uncertain variable. The uncertainty

distribution Ф:R→ [0,1] of an uncertain variable ξ is defined by Ф(x) =M{ξ ≤ x}, for

any x ∈ R. According to Peng and Iwamura [7], a sufficient and necessary

condition for a function Ф:R→ [0,1] to be an uncertainty distribution function is

that the function is an increasing function except for the choices Ф(x) ≡ 0 and

Ф(x) ≡ 1.
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Example of some uncertainty distribution functions [3] are

1. The uncertainty normal distribution denoted by N(c,σ),c ∈ R, σ > 0 is defined as
Φ xð Þ ¼ 1þ e
π c−xð Þffiffi

3
p

σ

h i−1
; x∈R: ð1Þ

The uncertainty lognormal distribution denoted by LOGN(c,σ), ∈ c R, σ > 0 is
2.

defined as

Φ xð Þ¼ 1þe
π c− logxð Þffiffi

3
p

σ

h i−1

; x ≥ 0: ð2Þ

Liu [2] has given a method of computing empirical uncertainty distribution function

using the data collected from an expert. Assume that the set of expert’s experimental

data (x1,α1),(x2,α2),…,(xn,αn)meets the consistent condition x1 < x2 <… < xn, 0 ≤ α1 ≤ α2 ≤
… ≤ αn ≤1.
Then, the empirical uncertainty distribution is computed by

Φ̂ xð Þ ¼
0 if x < x1

αi þ αiþ1−αið Þ x−xið Þ
xiþ1−xi

if xi ≤ x ≤ xiþ1; 1 ≤ i < n

1 if x > xn

:

8><
>: ð3Þ

To distinguish the empirical uncertainty distribution function from the true uncer-

tainty distribution Ф, we use the symbol ^ on top of Ф for empirical uncertainty distri-

bution function. When the experimental data is collected from m experts, empirical

comprehensive uncertainty distribution function is obtained using the convex combin-

ation of the empirical uncertainty distribution computed for each expert. That is, we

compute the empirical uncertainty distribution functions Φ̂1 , Φ̂2 ,…, Φ̂m using the

above definition of empirical uncertainty distribution function for the data collected

from the m experts. Then, these m empirical uncertainty distribution functions are

combined in the following manner to get the empirical comprehensive uncertainty

distribution function

Φ̂ xð Þ ¼ w1Φ̂1 xð Þ þ w2Φ̂2 xð Þ þ…þ wmΦ̂m xð Þ; ð4Þ

where
Xm
i¼1

wi ¼ 1;wi ≥ 0; i ¼ 1; 2;…;m:

It is pertinent to note that this convex combination is also an empirical uncertainty

distribution as proved by Peng and Iwamura [7].

Test for uncertainty distribution hypotheses

In this section, we develop a test procedure for testing hypotheses about uncertainty

distributions. An uncertain hypothesis is a hypothesis about uncertainty distributions

that characterize uncertain situations.

Wang et al. [4] suggested a method of uncertain hypotheses testing based on uncer-

tainty theory to test whether two uncertainty distributions are equal or not. They
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considered the two sets of expert’s data of the form x11; α
1
1

� �
; x12; α

1
2

� �
;…; x1m; α

1
m

� �
and

x21; α
2
1

� �
; x22; α

2
2

� �
;…; x2n; α

2
n

� �
that meet the consistent conditions

x11 < x12 < … < x1m; 0 ≤ α11 ≤ α
1
2 ≤…≤ α1m ≤ 1

x21 < x22 < … < x2n; 0 ≤ α21 ≤ α
2
2 ≤… ≤ α2n ≤ 1:

It is presumed that the two theoretical uncertainty distributions with respect to the ex-
pert’s data are F1(x) and F2(x). To test the null uncertainty hypothesis H0:F1(x) = F2(x) for

any x ∈ R against the alternative uncertainty hypothesis H1:F1(x) ≠ F2(x) for some x ∈ R,

Wang et al. [4] constructed a test procedure based on randomly generated points from two

empirical uncertainty distribution functions corresponding to the two experts’ data In this

paper, we construct a test for testing the uncertain hypothesis that a given function F1 can

be the true uncertainty distribution function for the given situation of interest against the

alternative hypothesis that F2 is the true uncertainty distribution function. Consider the

problem of testing the hypothesis H0:F(x) = F1(x) ∀x against the alternative hypothesis H1:F

(x) = F2(x) ∀x, where F1 and F2 are known theoretical uncertainty distribution functions.

The test procedure assumes that the data related to the given testing problem are

collected from m experts. Each expert gives his opinion in terms of a sequence of

numbers along with the corresponding belief levels, where the lengths of the sequences

are not necessarily the same for all experts but the numbers in every sequence are

expected to cover possible values of the subject of interest. The data collected from

the m experts can be mathematically described as given in Table 1. It is pertinent

to note as in the case of formulating hypotheses in the classical theory of testing

statistical hypotheses, the functions specified under null and alternative hypothesis

are determined judiciously in an appropriate manner by taking into account the

chance environment and experts’ opinion. Issues related to this aspect have been

discussed in the illustrative examples.

Corresponding to the information given in the m rows of Table 1, we compute the

empirical uncertainty distribution functions Φ̂1 , Φ̂2 … Φ̂m using the definition

given in the previous section and combine these m empirical functions, using a

convex combination, to get the empirical comprehensive uncertainty distribution

function defined in Eq. (4).

Let Ar be the sequence of numbers reported by the expert r(r= 1,2,…,m) and S ¼ ∪m
r¼1Ar .

For every x ∈ Ar, we compute the distance between the empirical comprehensive uncer-

tainty distribution and the empirical uncertainty distribution function given under the null

hypothesis, namely,

d Φ̂; F1
� � ¼∑

x∈S
dx Φ̂ xð Þ; F1 xð Þ� �

;

where dx Φ̂ xð Þ; F1 xð Þ� � ¼ Φ̂ xð Þ−F1 xð Þ� �2
∀x ∈ S:
Table 1 Experimental data for m experts

Expert Values and degree of belief

1 x11; α
1
1

� �
; x12; α

1
2

� �
;…; x1n1 ; α

1
n1

� �
2 x21; α

2
1

� �
; x22; α

2
2

� �
;…; x2n2 ; α

2
n2

� �
M xm1 ; α

m
1

� �
; xm2 ; α

m
2

� �
;…; xmnm ; α

m
nm

� �
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Similarly, we find the distance between the empirical comprehensive uncertainty

distribution and the uncertainty distribution function given under the alternative

hypothesis using

d Φ̂; F2
� � ¼∑

x∈S
dx Φ̂ xð Þ; F2 xð Þ� �

;

where dx Φ̂ xð Þ; F2 xð Þ� � ¼ Φ̂ xð Þ−F2 xð Þ� �2
∀x ∈ S:

If we treat the empirical comprehensive uncertainty distribution function based on the

opinion of several domain experts as an appropriate estimate of the true distribution, then

it is reasonable to develop a test based on the same. If the distribution mentioned under

the null hypothesis is to be supported, then we expect the distance between the empirical

comprehensive uncertainty distribution function Φ̂ and F1 to be small. Hence, it is rea-

sonable to define the rejection rule for rejecting the null hypothesis as

d Φ̂; F1
� �

d Φ̂; F2
� � > k; ð5Þ

where k is the largest real number satisfying the inequality

σ(Rk) ≥ α.

Here, Rk ¼ x
dx Φ̂ xð Þ−F1 xð Þð Þ
dx Φ̂ xð Þ−F2 xð Þð Þ > k

����
�	

and σ Rkð Þ ¼ N Rkð Þ
N Sð Þ , N being the number of elements

in the given set. The constant α is predetermined by the user. It is nothing but the pro-

portion of items in S ¼∪m
r¼1

Ar for which the ratio of the distance between the empirical

comprehensive uncertainty distribution function and the distribution specified under null

hypothesis to the corresponding distance based on the distribution mentioned under the

alternative hypothesis, exceeding the threshold value k. It may be noted that the value of α

closer to 1 will increase the number of cases where the condition mentioned in Rk will be

satisfied leading higher chance of rejection. Similarly, a value of α closer to 0 will decrease

the number of cases where the condition mentioned in Rk will be satisfied leading to lower

chance of rejection. The practitioner has to decide the choice of α in a judicious manner

striking a balance between the rejection rate and the chance of taking a correct decision.

Results and discussion
To illustrate the process of developing a test procedure using the above method, two

examples are considered.

Example 1

The data given in [6] are based on knowledge and experience of three teachers

who performed an analysis about the degree of difficulty of a higher mathematics

examination. The experimental data describing their estimated average scores and

belief degrees are given below.

� Teacher 1: (60, 0.05), (70, 0.15), (80, 0.55), (85, 0.85), (90, 0.95)

� Teacher 2: (60, 0.08), (70, 0.17), (75, 0.36), (80, 0.58), (85, 0.85), (90, 0.95)

� Teacher 3: (50, 0.2), (60, 0.3), (70, 0.4), (80, 0.8), (85, 1)
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As mentioned earlier, the most important task in testing of uncertain hypotheses is

the formulation of null and alternative hypotheses in a meaningful manner. It has

two stages, namely, identifying a suitable uncertainty distribution (e.g., zigzag,

normal, and lognormal distributions) for the given situation and the parametric

values to be used under the null and alternative hypotheses. This can be accomplished

using the works of Liu [3] and Wang and Peng [4] related to estimation of uncertainty

distributions.

Using the Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm), normal

and lognormal uncertainty distributions were fitted for three data sets using the least

squares method of Liu [3]. Since the errors corresponding to lognormal are small (for

all the three data sets) when compared to normal uncertainty distributions, we

have decided to use the lognormal distribution under both null and alternative

hypotheses. Figures 1, 2, and 3 give shapes of the fitted lognormal uncertainty

distribution functions as well as the pairs of experimental data corresponding to

the true teachers. For the three data sets, the least squares estimated values corresponding

to lognormal fit for teacher 1, teacher 2, and teacher 3 are (C = 4.3605, σ = 0.1010),

(C = 4.3520, σ = 0.1095), and (C = 4.2227, σ = 0.2271), respectively. As in the case of

classical statistical theory of testing of hypotheses, it is left to the discretion of the

practitioner to decide the choices to be used under null and alternative hypotheses

based on his belief and observation of the given system. The distributions to be

used under the null and alternative uncertainty hypotheses have been chosen by

taking into account the distances between the fitted distributions and the empirical

comprehensive uncertainty distribution as defined in the third section . One of the

distributions having the two smallest distances has been used in the null hypothesis

and the other in the alternative hypothesis. Thus, we consider testing the null

uncertainty hypothesis H0 : Φ xð Þ ¼ 1þ e
π 4:3605− lnxð Þffiffi

3
p

0:1010ð Þ


 �−1
against the alternative uncer-

tainty hypothesis

H1 : Φ xð Þ ¼ 1þ e
π 4:3520− lnxð Þffiffi

3
p

0:1095ð Þ


 �−1

We start the process of formulating the test procedure by computing the empirical
comprehensive uncertainty distribution using the experimental data obtained from the

three different teachers, where empirical comprehensive uncertainty distribution based

on three experts’ opinion are given by

Φ̂ xð Þ ¼ w1Φ̂1 xð Þ þ w2Φ̂2 xð Þ þ w3Φ̂3 xð Þ

Here, Φ̂ , Φ̂ , and Φ̂ are empirical distributions based on first, second, and third
1 2 3

teachers. It may be noted that the weightsw1, w2, and w3 are non-negative quantities

satisfying, w1 + w2 + w3 = 1. For the sake of simplicity, we assume w1, w2, and w3

are 1
3 . For the given data, we have A1 = {60,70,80,85,90},A2 = {60,70,75,80,85,90},

and A3 = {50,60,70,80,85} S = {50,60,70,75,80,85,90}.

http://orsc.edu.cn/liu/resources.htm


Figure 1 Fitted lognormal for Wang et al. [6] data of teacher 1 with C = 4.3605 and σ = 0.1010.
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Therefore, we get

d Φ̂; F1
� � ¼ X

x∈S

dx Φ̂ xð Þ; F1 xð Þ� � ¼ 0:06359114

d Φ̂; F2
� � ¼ X

x∈S

dx Φ̂ xð Þ; F2 xð Þ� � ¼ 0:04387163:

d Φ̂;F1ð Þ
Hence,
d Φ̂;F2ð Þ ¼ 1:449482.

Table 2 gives σ(Rk) for different values of k. If the user decides to choose α =

0.4, then k is taken as 2.5. This choice leads to the acceptance of the hypothesis

H0 : Φ xð Þ ¼ 1þ e
π 4:3605− lnxð Þffiffi

3
p

0:1010ð Þ


 �−1
.

Figure 2 Fitted lognormal for Wang et al. [6] data of teacher 2 with C = 4.3546 and σ = 0.1109.



Figure 3 Fitted lognormal for Wang et al. [6] data of teacher 3 with C = 4.2227 and σ = 0.2271.
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Example 2

In Example 1, since lognormal uncertainty distribution fitted well for all the three data

sets, we have used the same distribution under the null and alternative hypotheses.

Now, we consider a testing problem where different distributions are used under the

null and alternative hypotheses.

This example is based on the data provided in Chapter 4 of [3]. The expert’s

experimental data is given below:

(0.6, 0.1), (1.0, 0.3), (1.5, 0.4), (2.0, 0.6), (2.8, 0.8), (3.6, 0.9).

Using the Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm), lognormal

uncertainty distribution and normal uncertainty distribution were fitted for the above data

set using the least squares method. Figures 4 and 5 explain the observed data points as

well as the fitted distributions for the expert’s experimental data set.

The least squares estimated values corresponding to lognormal and normal fit for

data set are (C = 0.4825, σ = 0.7852) and (C = 1.7690, σ = 1.2953), respectively. The

errors corresponding to the lognormal and normal fit are 0.0081 and 0.0074. It is

decided to test the null uncertain hypothesis H0 : Φ xð Þ ¼ 1þ e
π 0:4825− lnxð Þffiffi

3
p

0:7852ð Þ


 �−1
against

alternative uncertain hypothesis H0 : Φ xð Þ ¼ 1þ e
π 0:4825− lnxð Þffiffi

3
p

0:7852ð Þ


 �−1
:

It is to be noted that a testing problem of this kind becomes meaningful in these types

of situations since the errors do not show a huge difference. If the difference between the
Table 2 Range of k and σ (Rk) for Wang et al. [6] data

k >5 [2.6,4.9] [2.0,2.5] [1.1,1.9] 1.09 [1.02,1.08] [1.0,1.01] <1

σ(Rk) 0 1
7

2
7

3
7

4
7

5
7

3
7

3
7

http://orsc.edu.cn/liu/resources.htm


Figure 4 Fitted lognormal for Liu [3] data with C = 0.4825 and σ = 0.7852.
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errors is considerably large, then one can use the distribution function corresponding to

the smaller error as the one suitable for the given uncertain situation without depending

on any test procedure.

Since the data is based on only one expert, the test makes use of the empirical uncertainty

distribution using the experimental data obtained from the expert.
Figure 5 Fitted lognormal for Liu [3] data with C = 1.7690 and σ = 1.2953.



Table 3 Range of k and σ(Rk) for Liu [3] data

K >55.6 [1.1, 55] [0.8,1] 0.7 [0.2, 0.6] 0.1 0

σ(Rk) 0 1
6

2
6

3
6

4
6

5
6

6
6
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Here, A = S = {0.6,1,1.5,2,2.8},

d Φ̂; F1
� � ¼∑

x∈S
dx Φ̂ xð Þ; F1 xð Þ� � ¼ 0:0073954

d Φ̂; F2
� � ¼∑

x∈S
dx Φ̂ xð Þ; F2 xð Þ� � ¼ 0:0080926:

Therefore,
d Φ̂;F1ð Þ
d Φ̂;F2ð Þ ¼ 0:913856.

Table 3 gives σ(Rk) for different values of k. If the user decides to choose α = 0.4,

then k must be taken as 0.7. This choice leads to the rejection of the hypothesis

H0 : Φ xð Þ ¼ 1þ e
π 0:4825− lnxð Þffiffi

3
p

0:7852ð Þ


 �−1
.

Conclusions
In this paper, a new test procedure that makes use of the data gathered from one or

more domain experts has been developed for testing whether a specified uncertainty

distribution can be the true uncertainty distribution function of the given situation.

Two illustrative examples are also provided by making use of the data sets available in

[4] and [3]. The first example deals with the case where both the null and alternative

hypotheses use the lognormal uncertainty distribution, whereas the second example

considers the testing problem where lognormal uncertainty and normal uncertainty

distributions are used under null and alternative hypotheses, respectively.

It is pertinent to note that the same methodology can be used for testing the equality

of two uncertainty distributions by making use of the ratio used in the construction of

the test explained in the third section. Decision regarding the acceptance or rejection

of the null hypotheses can be made by making use of the same ratio, namely,
d Φ̂;F1ð Þ
d Φ̂;F2ð Þ .

However, the null hypothesis will be rejected if the ratio
d Φ̂;F1ð Þ
d Φ̂;F2ð Þ is either very small or

very large.
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