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Abstract

The ability to predict and analyze the function of genetic circuits will enhance the
design of autonomous, programmable, complex regulatory genetic structures. An
abundance of modeling techniques has recently been developed to delineate simple
genetic structures in terms of their constituents. Simple systems with characteristics of
feedback inhibition, multi-stability, switching, and oscillatory expression have often
been the focus. The present work is an attempt to improve existing deterministic
models that fail to oblige to the crucial aspect of noise in genetic modeling.
The objective of this work is to analyze, model, and simulate the protein populations in
gene expression mechanisms by resorting to stochastic algorithms. The system involves
two types of genes; the protein produced from the expression of one gene is capable
of turning off the expression of the other gene. Rates of degradation of these proteins
are assumed to be proportional to their concentrations. The master equation of this
‘genetic toggle switch’ is formulated using the probabilistic population balance around
a particular state and by considering five mutually exclusive events. The efficacy of the
present methodology is mainly attributable to the ability to derive the governing
equations for the means, variances, and covariance of the random variables by the
method of system-size expansion of the nonlinear master Equation. A less laborious
approach based on Kurtz’s limit theorems for the derivation of the stochastic
characteristics is also presented for comparison. Solving the resultant ordinary differential
equations governing the means, variances, and covariance of the master equations
simultaneously using the published data yield information concerning not only the
means of the two populations of proteins but also the minimal uncertainties of the
populations inherent in the expressions. It is demonstrated that systems with small
populations are susceptible to large internal fluctuations (or uncertainties) in their
population evolution. Large uncertainties are observed after the populations enter the
proximity of the saddle node, which is likely to cause transition of system’s steady state
from one to another. Independent Monte-Carlo simulation runs clearly demonstrates
that the occurrence of such internal noise-induced transition.

Keywords: Stochastic; Nonlinear; Model; Genetic networks; Genetic circuits; Metastable;
Noise-induced transitions

Introduction
One of the earliest examples of a bistable genetic switch is represented in the right-

ward operator of bacteriophage lambda [1,2]. The essential elements of this type of

genetic switch, are a pair of promoters that each produces a repressor protein capable

of inhibiting the production of the opposing repressor. Overlayed on these essential

elements are several layers of regulatory nuance. To elucidate the impacts of these
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essential elements of a simplified regulatory circuit, a series of synthetic toggle

switches were created.

Figure 1 shows the two-state genetic toggle switch consisting of two protein re-

pressor genes and two promoters, which was investigated by Gardner et al. [3]. Each

promoter enables the production of one repressor and is inhibited by the other. They

elegantly designed experiments that demonstrated switching of a toggle circuit from

one steady state to another by switching system’s parameters across the bifurcation

curve to a bistable region through either thermal inactivation of Repressor A or lig-

and binding-induced dissociation of the Repressor B-DNA complex. In the proximity

of the bifurcation point, the final steady-state protein population possesses a bimodal

distribution in their green fluorescent protein (GFP) fluorescence. It does not have a

sharp jump from one fluorescence level to another, as the deterministic model pre-

dicts. The authors surmise that the stochastic nature of the dynamics blurs the bifur-

cation point.

McAdams and Arkin’s [4,5] Monte-Carlo simulations of gene expression revealed the

importance of fluctuations, or noises or uncertainties, of small systems. In such small
Figure 1 Schematic diagram of the toggle switch in its two stable states. Both gene A and gene B
produce a dimeric repressor protein that binds to the controlling element to prevent the expression of the
opposing gene. At any given time step, the pool of each repressor monomer can increase, decrease due to
degradation, or remain the same.
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systems, proteins are produced from an activated promoter in short bursts of variable

numbers of proteins that occur at random time intervals. As a result, there can be large

differences in the time between successive events in regulatory cascades across a cell

population, which, in turn, creates both special and temporal heterogeneity of cell popula-

tions in biological systems. Soon after the discovery of the potential impacts of the stochas-

ticity of genetic regulatory system, stochastic algorithms developed by chemical physicists

have been introduced in analyzing gene expression (e.g., [6,7]). The stochastic nature

of a competitive expression mechanism can produce probabilistic outcomes in switching

mechanisms that select between alternative regulatory paths, such as toggle switch.

Stochastic algorithms have been developed for analyzing noise of different origins

and internal and external noises (e.g., [8-10]). External noises are the fluctuations created

in an otherwise deterministic system by the application of an external random force,

whose stochastic properties are supposed to be known. A Langevine equation is

commonly adopted in the analysis of dynamics caused by external noises. Internal

noise arises from discrete systems where only a limited number of variables affecting

the populations of the discrete entities can be included in the analysis. Small discrete

systems, such as genes of small populations, often exhibit notable internal fluctuations. A

master equation, derived from probabilistic population balance around a particular state

of the system by taking into account all mutually exclusive events, has been adopted this

type of discrete state, continuous-time stochastic processes.

The stochasticity of gene expression is complicated by its nonlinearity. Multiple

steady states, stability, and bifurcation in gene expressions (e.g., [11]) could mingle with

the analysis of noise, or fluctuations. The efficacy of the master equation algorithm in

gene expression is mainly attributable to its powerful ability to solve the nonlinear master

equations through the system size expansion [9,12]. In this approach, a suitable expansion

parameter must be identified in the master equation. The expansion parameter represents

the size of the fluctuations, and therefore, the magnitude of the jumps, or transitions, of

system’s state. Since the internal noises are expected to be low when the system size is

large, the system size has been proposed as an expansion parameter. Master equation for-

mulation along with the system-size expansion has indeed applied to the analysis of noise

in gene expression. It should be mentioned that the limit theorems of Kurtz [13-15] have

rendered the complex procedure of system size expansion simple and highly accessible.

Kurtz’s proof demonstrated the solution of a Langevine equation approaches to van

Kampen’s system size expansion as the system size approaches to infinite.

Kepler and Elston [16] examined the stochastic dynamics of the single-gene system

with and without feedback and a switching system composed of two mutually repressed

genes. Several assumptions were made in their simplified model: the two genes share

the same operator and same degradation rate, proteins bind to the operator as dimers,

and rate of dimerization is fast. Both master equation and Monte-Carlo simulation were

adopted in their study. Scott et al. [17] adopted the master equation along with the system

size expansion algorithm in the estimation of internal noise of the single-gene system that

involves the mRNA formation and degradation and protein formation and degradation.

The system size expansion has several limitations in modeling the gene regulatory

process. It is a good approximation to the master equation for small internal noise and

large system size. Moreover, the noise should be well within the boundary of attraction

[9]. Thus, noises in oscillatory process and those away from the steady states have been



Chen Journal of Uncertainty Analysis and Applications 2014, 2:1 Page 4 of 38
http://www.juaa-journal.com/content/2/1/1
a focus of several studies. Tao et al. [18] studied the noise far from the steady states

and revealed that during the approach to equilibrium, the noise is not always reduced

by the strength of the feedback. This is contrary to results seen in the equilibrium limit

which show decreased noise with feedback strength. Ito and Uchida [19] found that the

internal noise of a regulatory single-gene system grows without bound in oscillatory

networks and developed an alternative method for estimating the evolution of internal

noise in such systems.

Kepler and Elston’s simulation work [16] demonstrated that simple noisy genetic

switch have rich bifurcation structures. Among them, bifurcations driven solely by

changing the rate of operator fluctuations even as the underlying deterministic system

remains unchanged. They find stochastic bistability where the deterministic equations

predict monostability and vice versa. Ochab-Marcinek [20] investigated the stationary

behavior of a nonlinear system, a reduced, deterministic Yildirim and Mackey [21]

model of the gene regulatory system, and discovered the transition of a steady state

induced by noise. A perturbed Gaussian white noise term was introduced in the de-

terministic model followed by numerical simulations. Turcotte et al. [22] studied

noise-induced stabilization of an unstable state of a genetic switch that undergoes a

variety of bifurcations in response to parameter changes. Their Monte Carlo simula-

tions showed that near one such bifurcation, noise induces oscillations around an

unstable spiral point and thus effectively stabilizes this unstable fixed point.

In addition to the master equation algorithm, Monte Carlo simulation has been

adopted in simulating the dynamic behaviors in genetic regulatory systems under the

influences of internal noise (e.g., [11,23,24]). The Monte Carlo simulation shares the

same assumption, the Markov property, as the master equation, and the noise can be

obtained directly from master equation’s deterministic counterpart. Moreover, the

Monte Carlo simulation is capable of revealing the various characteristics of nonlinear

dynamic system, such as the number of steady states, bifurcation, and internal noises.

In this expositional work, the master equations are formulated by stochastic popula-

tion balance. Van Kampen’s system size expansion of the resultant nonlinear master

equation gives rise to the variances of the processes. We demonstrate the implementation

of Kurtz’s limit theorems can efficiently achieve the same goal. Simulations are conducted

based on both the master equations and the Monte Carlo procedure for three systems:

bistable, monostable, and on the bifurcation curve. Finally, we demonstrate the possi-

bility of transition induced by internal noises for a bistable system.

Model formulation

A genetic toggle switch with negative feedback to the genes consists of two mutually

coupled genes. The transcription products of these genes are two inhibitory repressor

proteins competing to shut off the production of two constitutive promoters [1,3,25];

the protein transcribed by a gene of one type is capable of deactivating the transcrip-

tion of the other gene. A toggle switch typically has more than one possible stable

steady state depending on the reaction parameters under consideration [3]. There

are a number of instances in nature where this switch-like behavior is utilized. The

lysogeny/lysis switch of the bacteriophage λ virus infecting the bacterium Escherichia coli

is a representative example and has been discussed in detail by Ptashne [1] and Ptashne

and Gann [25].
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Gardner [26] discussed results generated from their deterministic model of a negative

feedback toggle switch. Each type of the repressor protein is involved in two types of

processes. The first process corresponds to the production of the protein. The rate of

protein production is proportional to the concentration of mRNA, which, in turn, is

proportional to the concentration of the un-repressed gene, G. The repressor binding

on un-repressed gene is commonly assumed to be in a quasi-steady state with the re-

pressor, R, and the repressed gene, GRm, i.e.,

G þ m R ⇆ GRm

Moreover, by assuming the total number of un-repressed genes is much larger than
that of R so that G remains constant during the process, it can be shown that the rate

of production of protein is proportional to 1
1þKRm where K is the equilibrium constant

of the above reaction and R the concentration of the repressor monomer [27-29]. The

second process in the model of Gardner et al. is degradation of the protein that is as-

sumed to be first order.

Similar to the work of Gardner, we will assume that the genes are in equilibrium with

their repressed genes in the current work. The stochastic nature of a competitive ex-

pression mechanism can produce probabilistic outcomes in switching mechanisms that

select between alternative regulatory paths, such as toggle switch.

The master equation describing the stochastic nature of the toggle switch is developed

through the probabilistic population balance. The formulation of the master equation

given below follows what Oppenheim et al. [8], Gardiner [10], and van Kampen [9] estab-

lished. We have previously adopted this algorithm in the analysis of disease spread [30].

Mathematical assumptions

Let the random variables, N1(t) and N2(t) represent the populations of the repressor

protein R1 and repressor protein R2 at time t, respectively. The random vector of the

system is N(t) such that N(t) = [N1(t), N2(t)] and the realization of this random vector

representing the state of the system at time t is given by n(t), where n(t) = [n1(t), n2(t)].

Moreover, the probability of the system to be in state n at time t is denoted by Pn1,n2(t)

or P[n1(t),n2(t);t]. The following assumptions are imposed in driving the master equation

governing the transition of the system among various states.

1. The random vector, N(t), is Markovian, i.e., for any set of successive times,

t1 < t2 <… < tq, we have P [N(tq) * N(t1), N(t2), , N(tq−1)] = P [N(tq) * N(tq−1)].

2. The number of increments or decrements in population numbers of the classes

depends only on the time interval, Δt, but not time, i.e., it is temporally

homogeneous, signifying that N(Δt)and [N(t +Δt) −N(t)] are identically distributed.

3. The probability of an individual to produce or degrade is proportional to the

duration of time interval, (t, t +Δt), if the value of Δt is sufficiently small.

4. The probabilities of two or more transitions to take place are negligible during the

time interval, (t, t +Δt), so that at most, one transition occurs during this period.

5. Individual proteins in the same class have the same probability of contacting the

genes, and therefore, have the same probability of repressing the genes. Similarly,

the individual proteins in the same class have the same probability of being

degraded.
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Transition intensity functions

On the basis of the assumptions given in the proceeding subsection, the transition

probability of each event can be written in terms of the transition intensity functions,

k1, k2, α2, and α4, as follows:

The first transition-intensity function, k1, is the production probability of a type-1 re-

pressor protein from a particular active (not repressed) gene of type-1 per unit time.

Based on the assumption of temporal homogeneity, we have

Pr
a particular active gene of type−1 will produce a repressor protein of
type−1 during the time interval; t; t þ Δtð Þ

� �
¼ k1 Δt þ o Δtð Þ;

where lim
Δt→0

o Δtð Þ
Δt ¼ 0. By considering all active type-1 genes in the system, the probability

that the population of the type-1 protein will increase by one is k1Ga1, where Ga1 de-

notes the number of active gene of type-1, i.e., the genes that are not repressed.

Mathematically,

Pr a type−1 protein will be produced during the time interval; t; t þ Δtð Þð Þ
¼ k1 Ga1 Δt þ o Δtð Þ
¼ α1 f 1 Δt þ o Δtð Þ

where f1 is the ratio of populations of active gene to total, active and repressed, genes

of type-1. In writing the last line of the above statement, we assume that the total num-

ber of gene remains constant during the process of interest. Thus, the parameter, α1, is

the probability that a particular active gene will transcribe and produce a type-1 protein

per unit time multiplied by the total number of genes.

For a negative feedback genetic circuit, Goodwin [27,28] and Griffith [29] showed that

f 1 ¼
1

1þ Kan2m
;

where Ka is the equilibrium constant of the combination reaction of the active gene of

type-1 and repressor, a m-mer, and m is the number of protein monomers of type-2 in

the repressor. Combining the last two equations yields

Pr a type−1 protein will be produced in time interval; t; t þ Δtð Þð Þ
¼ α1

1þ Kan2m
Δt þ o Δtð Þ ð1Þ

The second transition intensity function, α2, is the overall consumption probability of

a particular active protein of type-1 in time interval, (t, t +Δt), including its function in

repressing protein type-2. Mathematically,

Pr a particular repressor protein of type−1 will be consumed in time interval; t; t þ Δtð Þð Þ
¼ α2Δt þ o Δtð Þ

By considering all repressor protein of type-1 genes in the system, the probability that
the population of the type-1 protein will decrease by one is α2n1, or,

Pr a type−1 repressor protein will be consumed in time interval; t; t þ Δtð Þð Þ
¼ α2 n1 Δt þ o Δtð Þ ð2Þ
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By analogy, the third transition intensity function, k2, is the production probability of

a type-2 repressor protein from a particular active (not repressed) gene of type-2 per

unit time, or,

Pr
a particular active gene of type−2 will produce a repressor protein of type−2 during
time interval; t; t þ Δtð Þ

� �
¼ k2 Δt þ o Δtð Þ

This definition will lead to the following transition probability:
Pr a type−2 protein will be produced during the time interval; t; t þ Δtð Þð Þ
¼ k2 Ga2 Δt þ o Δtð Þ
¼ α3 f 2 Δt þ o Δtð Þ
¼ α3

1þ Kbn1M
Δt þ o Δtð Þ

ð3Þ

where Ga2 denotes the number of active gene of type-2, f2 the ratio of populations of

active gene to total, active and repressed, genes of type-2, or,

f 2 ¼
1

1þ Kbn1M ;

Kb the equilibrium constant of the combination reaction of the active gene of type-2

and repressor of type-1, a M-mer, and M is the number of protein monomers of type-1

in the repressor.

Also by analogy, the fourth transition-intensity function, α4, is the consumption

probability of a particular active protein of type-2 during the time interval, (t, t +Δt), or,

Pr a particular repressor protein of type−2 will be consumed in time interval; t; t þ Δtð Þð Þ
¼ α4Δt þ o Δtð Þ

By considering all repressor protein of type-2 genes in the system, we have,
Pr a type−2 repressor protein will be consumed in time interval; t; t þ Δtð Þð Þ
¼ α4n2Δt þ o Δtð Þ ð4Þ

It should be noted that the rates adopted in deterministic models and discussed earl-
ier in the outset of the ‘Model Formulation’ section are used in defining the transition

intensity functions below. The transition intensity functions have pivotal importance in

master equation models and Monte Carlo simulations. More importantly, the adoption

of deterministic rate constants in master equation is a cornerstone in the interpretation

of intrinsic (or internal) noise van Kampen [9].

Master equations

Based on the transition intensity functions defined above, the master equation can be

obtained by taking probability balance of the following five mutually exclusive events

leading to the evolution of the state of the system:

� a R1 is produced while R2 remains constant

� a R1 is degraded while R2 remains constant

� a R2 is produced while R1 remains constant

� a R2 is degraded while R1 remains constant

� both R1 and R2 remain the same.
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As illustrated in Figure 2, the probabilities that these five exclusive events will lead

the system to state n at arbitrary time (t +Δt) can be written as follows:

Pr
the system will transfer from state n′ tð Þ ¼ n1−1; n2ð Þ into state
n tþΔtð Þ ¼ n1; n2ð Þ due to the production of one
type−1 protein in time interval; t; t þ Δtð Þ

0
@

1
A

¼ W n tþΔtð Þ; n′ tð Þ Pn1−1; n2 tð Þ Δt ¼ W n1; n2ð Þ; n1−1; n2ð Þ Pn1−1; n2 tð Þ Δt
¼ α1

1þ Kanm2
Pn1−1; n2 tð Þ Δt þ o Δtð Þ ð5Þ

where W n; n′ tð Þ is the conditional probability of the system transition from state n′(t)

to state n(t +Δt) per unit time.

Pr
the system will transfer from state into state n′ tð Þ ¼ n1 þ 1; n2ð Þ into
state n t þ Δtð Þ ¼ n1; n2ð Þ due to the degradation of a type−1
protein in time interval; t; tþ Δtð Þ

0
@

1
A

¼ W n tþΔtð Þ; n′ tð ÞPn1þ1; n2 tð Þ Δt ¼ W n1; n2ð Þ; n1þ1; n2ð ÞPn1þ1; n2 tð Þ Δt
¼ n1 þ 1ð Þ α2 Pn1þ1; n2 tð Þ Δt þ o Δtð Þ

ð6Þ

Pr
the system will transfer from state into state n′ tð Þ ¼ n1; n2−1ð Þ into
state n t þ Δtð Þ ¼ n1; n2ð Þ due to production of one type−2
protein in time interval; t; t þ Δtð Þ

0
@

1
A

¼ W n tþΔtð Þ; n′ tð Þ Pn1; n2−1 tð Þ Δt ¼ W n1; n2ð Þ; n1; n2−1ð Þ Pn1; n2−1 tð Þ Δt
¼ α3

1þ KbnM1
Pn1; n2−1 tð Þ Δt þ o Δtð Þ ð7Þ

Pr
the system will transfer from state n′ tð Þ ¼ n1; n2 þ 1ð Þ into
state n t þ Δtð Þ ¼ n1; n2ð Þ due to the degradation of a type−2
protein in time interval; t; t þ Δtð Þ

0
@

1
A

¼ W n tþΔtð Þ; n′ tð ÞPn1; n2þ1 tð Þ Δt ¼ W n1; n2ð Þ; n1; n2þ1ð ÞPn1; n2þ1 tð Þ Δt
¼ n2 þ 1ð Þ α4 Pn1; n2þ1 tð Þ Δt þ o Δtð Þ ð8Þ
Figure 2 Probabilistic population balance involving five mutually exclusive events in time interval,
(t, t + Δt).
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Pr the system will remain at state n ¼ n1; n2ð Þ during the time interval; t; t þ Δtð Þð Þ
¼ W n tþΔtð Þ; n′ tð ÞPn1; n2 tð Þ Δt ¼ W n1; n2ð Þ; n1; n2ð ÞPn1; n2 tð Þ Δt
¼ 1 −

α1
1þ Kan2m

þ n1α2 þ α3
1þ Kbn1M

þ n2α4

� �
Δt

� �
Pn1; n2 tð Þ þ o tð Þ

ð9Þ

Since these five events are mutually exclusive, we have

Pn1; n2 t þ Δtð Þ ¼ W n1; n2ð Þ; n1−1; n2ð ÞPn1−1; n2 tð Þ þ W n1; n2ð Þ; n1þ1; n2ð ÞPn1þ1; n2 tð Þ
þW n1; n2ð Þ; n1; n2−1ð ÞPn1; n2−1 tð Þ þ W n1; n2ð Þ; n1; n2þ1ð ÞPn1; n2þ1 tð Þ
þW n1; n2ð Þ; n1; n2ð ÞPn1; n2 tð Þ

By substituting all the transition probabilities discussed in Equations 5 through 9 into
the above expression, we obtain the probability of the system at state n at arbitrary time

(t +Δt) as follows:

Pn1; n2 t þ Δtð Þ t ¼ α1
1þ Kan2m

Pn1−1; n2 tð Þ Δt þ n1 þ 1ð Þ α2Pn1þ1; n2 tð Þ Δ
þ α3

1þ Kbn1M
Pn1; n2−1 tð Þ Δt þ n2 þ 1ð Þ α4 Pn1; n2þ1 tð Þ Δt

þ 1 −
α1

1þ Kan2m
þ n1α2 þ α3

1þ Kbn1M
þ n2α4

� �
Δt

� �
Pn1; n2 tð Þ

By rearranging the above equation and taking the limit as Δt→ 0, we obtain the fol-
lowing master equation:

dPn1; n2 tð Þ
dt

¼ α1
1þ Kan2m

Pn1−1; n2 tð Þ þ n1 þ 1ð Þα2Pn1þ1; n2 tð Þ
þ α3

1þ Kbn1m
Pn1; n2−1 tð Þ þ n2 þ 1ð Þα4Pn1; n2þ1 tð Þ

−
α1

1þ Kan2m
þ n1α2 þ α3

1þ Kbn1M
þ n2α4

� �
Pn1; n2 tð Þ

ð10Þ

For convenience, the one-step operator, E, is defined through its effect on arbitrary
function f(n) as van Kampen [9]:

E f nð Þð Þ ¼ f nþ 1ð Þ and E−1 f nð Þð Þ ¼ f n−1ð Þ ð11Þ

The master equation is rewritten compactly in terms of the one-step operator as follows:
dPn1; n2 tð Þ
dt

¼ α1
1þ Kan2m

E−1
n1 −1

� �
Pn1; n2 tð Þ þ En1−1ð Þα2 n1 Pn1; n2 tð Þ

þ α3
1þ Kbn1M

E−1
n2 −1

� �
Pn1; n2 tð Þ þ En2−1ð Þα4 n2 Pn1; n2 tð Þ

ð12Þ

The solution to the equation with the step operator yields the time-dependent joint
probability distribution of the populations of repressor proteins.

System-size expansion based on van Kampen’s procedure

The approximation of the master equation, Equation 10 or 12, leads the evolution of

the joint probability distribution of the populations of the two competing repressors,

Pn(t). Equation 10 comprises a set of ordinary differential equations with the joint

probability function, Pn(t), as its unknown. Each equation in the set represents a par-

ticular outcome of n; thus, solving Equation 12 for the joint probability distribution
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of an exceedingly large number of all possible ns is extremely difficult, if not impos-

sible. In practice, however, it often suffices to determine only the expressions that

govern a limited number of moments, especially the first and second moments, of

the resultant population distribution. These expressions yield the means, variances,

and covariances that can be correlated or compared with the experimental data.

Moreover, Equation 12 is nonlinear, which prevents the moments from being evalu-

ated by averaging techniques or joint probability generating function techniques [9].

This difficulty is circumvented by resorting to the system-size expansion, a rational ap-

proximation technique based on the power series expansion [9,12,31]. The technique

gives rise to the deterministic macroscopic equations as well as the equations of fluctu-

ations for the master equation.

To apply the system-size expansion, a suitable expansion parameter must be identi-

fied in the master equation, specifically in the transition intensity functions. The expan-

sion parameter must govern the size of the fluctuations, and therefore, the magnitude

of the jumps, or transitions. The macroscopic features are determined by the average

behavior of all particles, while internal fluctuations are caused by the discrete nature of

matter. Hence, we expect the fluctuations to be relatively small when the system size is

large. The system size, Ω, has been proposed as an expansion parameter because it

measures the relative importance of the fluctuations [9,12,31]. In the current genetic

regulatory network, the total initial number of promoter population, or the total num-

ber of initial reactants, is chosen as Ω so that the noises estimated based on both the

master equation and Monte Carlo simulations discussed below represent the standard

deviations from the means.

For a linear system, fluctuations are of the order of Ω1/2 in a collection of Ω entities.

As a result, their effect on the macroscopic properties is of the order of Ω−1/2 [9,12]. In

the system under consideration, therefore, we expect that the joint probability, Pn(t),

will have a sharp maximum around the macroscopic value, n(t) =ΩΘ(t), with a width

of the order of Ω1/2. Here, Θ(t) is a vector where elements are the mean numbers of the

two protein populations, ∅(t) and θ(t) obtained through the solution of the macroscopic

equations as will be elaborated later. To exploit these characteristics of the system, a new

random vector Y(t) is defined as follows:

N1 tð Þ ¼ Ωϕ tð Þ þΩ1=2Y 1 tð Þ ð13Þ
N2 tð Þ ¼ Ωθ tð Þ þΩ1=2Y 2 tð Þ ð14Þ

The equations of realizations of these expressions are given, respectively, by
n1 tð Þ ¼ Ωϕ tð Þ þΩ1=2y1 tð Þ ð15Þ
n2 tð Þ ¼ Ωθ tð Þ þΩ1=2y2 tð Þ ð16Þ

Accordingly, the joint probability of n1 and n2 i.e., Pn(t), is now transformed into that
of y1 and y2, i.e., Ψ y(t). Subsequently, the new random vector, Y, the new joint probabil-

ity distribution, Ψ y(t), and the definition of the one-step operator, E, Equation 11, are

substituted into Equation 12. By expanding the right-hand side of the resultant expres-

sion into a Taylor’s series, the master equation in terms of the new variables is obtained,

see Appendix 1. All appendices to this paper can be found in the supporting materials

for this Journal.
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Collecting the terms of order Ω1/2 in the right-hand side of the expanded equation

gives rise to the following expressions governing the evolution of the macroscopic

equation of the system:

dϕ
dt

¼ α01
1þ K 0

a θ tð Þm − α2 ϕ tð Þ ð17Þ

dθ
dt

¼ α03
1þ K 0

b ϕ tð ÞM − α4 θ tð Þ ð18Þ

where the constants, α1
0 , Ka

0 , α3
0 , and Kb

0 correspond respectively to the parameters α1,

Ka, α3, and Kb, normalized with Ω or a specific power of Ω so that collected terms in

system size expansion have the same order of magnitude, i.e.,

α1 ¼ α01 Ω; Ka ¼ K 0
a Ω

−m ð19Þ

α3 ¼ α03 Ω; Kb ¼ K 0
b Ω

−M ð20Þ

Equations 17 and 18 are of the same forms as the macroscopic equations of Gardner [26].
Similarly, by collecting the terms of order Ω0 gives rise to the following linear

Fokker-Plank equation [9], see Appendix 1, that governs the first and the second mo-

ments associated with the fluctuations of the system:

∂Ψ
∂t

¼ −
X
i; j

A i j
∂
∂yi

yjΨ
� �

þ 1
2

X
i; j

Bi j
∂2Ψ
∂yi∂yj

 !
ð21Þ

where the two matrices A and B are

A ¼ A11 A12

A21 A22

� �
¼

− α2
− α01K

0
am θ tð Þð Þm−1

1þ K 0
a θ tð Þð Þm� 	2

− α03K
0
bM ϕ tð Þð ÞM−1

1þ K 0
b ϕ tð Þð ÞM

� �2 − α4

2
666664

3
777775 ð22Þ

B ¼ B11 B12

B21 B22

� �
¼

α01
1þ K 0

a θ tð Þð Þm þ α2ϕ tð Þ 0

0
α03

1þ K 0
b ϕ tð Þð ÞM þ α4θ tð Þ

2
664

3
775 ð23Þ

A Fokker-Planck equation is considered linear if the coefficient matrix A, the drift
term, is a linear function of Y and the coefficient matrix B, the diffusion term, is con-

stant [9]. Note that the macroscopic trajectories, N and 2, are functions of t only and

they can be obtained by integrating Equations 17 and 18. Thus, the coefficients of the

equation governing the fluctuations, A and B in Equations 22 and 23, are independent

of the fluctuations, Y. For a linear Fokker-Planck equation, the ordinary differential

equations governing the means and variances of the fluctuations, Y, can be derived by

taking the first and second moments of Equation 21.
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Taking the first moment of Equation 21 yields the expression governing the mean of

the fluctuations, Y:

d
dt

E Yk½ � ¼
X2
j¼1

AkjE Y j

 �

; k ¼ 1; 2

By substituting Equations 22 and 23 into the above expression gives rise to
d
dt

E Y 1½ � ¼ A11E Y 1½ � þ A12E Y 2½ � ¼ − α2E Y 1½ � − α01K
0
am θ tð Þð Þm−1

1þ K 0
a θ tð Þð Þm� 	2 E Y 2½ � ð24Þ

d
dt

E Y 2½ � ¼ A21E Y 1½ � þ A22E Y 2½ � ¼ − α03K
0
bM ϕ tð Þð ÞM−1

1þ K 0
b ϕ tð Þð ÞM

� �2 E Y 1½ � − α4E Y 2½ � ð25Þ

Similarly, taking the second moment of Equation 21 yields the expression governing

the second moment of the fluctuations, Y:

d
dt

E Y iY j

 � ¼X2

k¼1

AikE YkY j

 �þX2

k¼1

AjkE Y iY k½ � þ Bij

By substituting Equations 22 and 23 into the above expression gives rise to
d
dt

E Y 2
1


 � ¼ 2A11E Y 2
1


 �þ 2A12E Y 1Y 2½ � þ B11

¼ −2α2E Y 2
1


 �
−

α01K
0
am θ tð Þð Þm−1

1þ K 0
a θ tð Þð Þm� 	2 E Y 1Y 2½ �

þ α01
1þ K 0

a θ tð Þð Þm þ α2ϕ tð Þ

ð26Þ

d
dt

E Y 2
2


 � ¼ 2A22E Y 2
2


 � þ 2A21E Y 1Y 2½ � þ B22

¼ −2α4E Y 2
2


 �
−

α03K
0
bM ϕ tð Þð ÞM−1

1þ K 0
b ϕ tð Þð ÞM

� �2 E Y 1Y 2½ �

þ α03
1þ K 0

b ϕ tð Þð ÞM þ α4θ tð Þ

ð27Þ

d
dt

E Y 1Y 2½ � ¼ A11E Y 1Y 2½ � þ A12E Y 2
2


 � þ A21E Y 2
1


 � þ A22E Y 1Y 2½ �

¼ −α2E Y 1Y 2½ � − α01K
0
am θ tð Þð Þm−1

1þ K 0
a θ tð Þð Þm� 	2 E Y 2

2


 �

−
α03K

0
bM ϕ tð Þð ÞM−1

1þ K 0
b ϕ tð Þð ÞM

� �2 E Y 2
1


 �
− α4E Y 1Y 2½ �

ð28Þ

System size expansion based on Kurtz’s limit theorems

The approximation of the master equation discussed in the preceding section, i.e., system

size expansion method, can be derived and stated compactly in a general form based on
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Kurtz’s limit theorems [13-15] under the condition Ω→∞. First, the master equation,

Equation 11, can be written in the following continuous state, gain-loss form [9]:

∂P n; tð Þ
∂t

¼ ∫ W n;nþrð ÞP n; tð Þ−W n−r;nð ÞP n−r; tð Þ½ � dr ð29Þ

where W(n;n + r) is the transition probability from state n to state n + r per unit time.

Both n and r in Equation 29 are now treated as continuous varying vectors. The con-

vergence of the system size expansion procedure relies on two criteria for transition

probability rate: small jump and slow varying [9]. Mathematically, the small-jump

criterion implies that there is a small δ so that

W n; nþ rð Þ ≈ 0 for rj j > δ ð30Þ

and the slow varying assumption means that there is a small δ so that

W nþ Δn; rð Þ ≈W n; rð Þ for Δnj j < δ ð31Þ

To satisfy these criteria, the unit jumps associated with the mutually exclusive events
in the formulation of the master equation are replaced by jumps of size Ω−1, the system

size or the largeness parameter. Thus, the random vector N(t) = (n1(t),n2(t)) is replaced

by ~N tð Þ ¼ N tð Þ=Ω and time is replaced by ~t ¼ t
Ω= . The resultant master equation of

Equation 29 becomes

∂P ~n; tð Þ
∂~t

¼ ∫ ~W ~n; ~nþrð ÞP ~n; tð Þ− ~W ~n−r; ~nð ÞP ~n−r; tð Þ
 �
dr ð32Þ

Comparing Equations 10 and 29 yields the transition probability per unit time for the

current problem can be stated in the following form:

~W ~n; ~n þ r
Ω

� �
¼ ΩW n; nþ r

Ω

� �

¼ Ω

"
α01

1þ K 0
a~n2

m δ
~n 1;

1=Ω
δ ~n2ð Þ þ α2~n1δ~n 1; −1=Ω

δ ~n2ð Þ

þ α03
1þ K 0

b~n1
M δ ~n1ð Þδ

~n 2;
1=Ω

þ α4~n2δ ~n1ð Þδ
~n 2; −1=Ω

#
ð33Þ

where δ(n) and δi,j are Dirac and Kronecker delta functions, respectively. The four pa-

rameters on the right-hand side of Equation 33 are obtained from the definitions of

transition intensity functions.

Kurtz’s limit theorems state that, as Ω→∞ with an error of O(lnΩ/Ω), the statistical

properties of the master equation, Equation 32, can be approximated by the following

Fokker-Planck equation:

∂P ~n; ~tð Þ
∂~t

¼ −
X
i

∂
∂~ni

K 1ð Þ∞
i ~nð ÞP ~n; ~tð Þ

h i
þ 1

2

X
i; j

∂2

∂~ni ∂~nj
K 2ð Þ∞

i j ~nð ÞP ~n; ~tð Þ
h i

; ð34Þ

where the deterministic drift, K 1ð Þ∞
i ~nð Þ, and diffusion coefficients, K 2ð Þ∞

i j ~nð Þ, are

K 1ð Þ∞
i ~nð Þ ¼ ∫ri ~W ~n; ~n þ rð Þdri ð35Þ
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K 2ð Þ∞
i j ~nð Þ ¼ ∫∫ri rj ~W ~n; ~n þ rð Þdri drj ð36Þ

Substituting Equation 33 into Equation 35 yields the first moments of ~W :
K 1ð Þ∞
1 ~nð Þ ¼ Ω

α01
1þ K 0

a~n2
m −α2~n1

� �
¼ α1

1þ Kan2m
−α2n1 ð37Þ

K 1ð Þ∞
2 ~nð Þ ¼ Ω

α03
1þ K 0

b~n
M
1
−α4~n2

� �
¼ α1

1þ Kan2m
−α2n1 ð38Þ

Similarly, substituting Equation 33 into Equation 36 yields the following second
moments of ~W :

K 2ð Þ∞
11 ~nð Þ ¼ Ω

α01
1þ K 0

a~n
m
2
þ α2~n1

� �
¼ α1

1þ Kanm2
þ α2n1 ð39Þ

K 2ð Þ∞
22 ~nð Þ ¼ Ω

α03
1þ Kb

0~nM
1
þ α4~n2

� �
¼ α3

1þ KbnM1
þ α4n2 ð40Þ

K 2ð Þ∞
12 ~nð Þ ¼ 0 ð41Þ

K 2ð Þ∞
21 ~nð Þ ¼ 0 ð42Þ

The approximation of the master equation, Equation 12, can be found base on the
fact that the Fokker-Planck equation, Equation 34, can be obtained by integrating the

following nonlinear Langevin equation in Ito’s interpretation [9]

d~ni

d~t
¼ K 1ð Þ∞

i ~nð Þ þ ηi ~n; ~tð Þ ¼ K 1ð Þ∞
i ~nð Þ þ Ci ~nð ÞL ~tð Þ; ð43Þ

where the first term on the right-hand side of the above equation represents the determin-

istic, or macroscopic characteristic of the process, ηi ~n; ~tð Þ denotes a Gaussian white noise

having the following means and covariance matrix

E ηi ~n; ~tð Þ
 � ¼ 0 ð44Þ

E ηi ~n; ~tð Þηj ~n; ~tð Þ
h i

¼ K 2ð Þ∞
i j ~nð Þδ ~t−~t 0ð Þ ð45Þ

L ~tð Þ denotes a Gaussian white noise with a unit strength, and Ci(ñ) denotes the effects
of interactions of the noise and the system on the random variable. The discontinuity of

Gaussian white noise has been the source of evolution of several algorithms in interpret-

ing Ci(ñ) during the process, and thus the conversion of a Langevin equation to its

Fokker-Plank counterpart. In Ito’s algorithm, the value of Ci(ñ) before the arrival of white

noise is used in averaging. In Stratonovich’s algorithm, the averaged value of Ci(ñ) during

the time of noise is used in averaging, which yields an extra term in the macroscopic part

of the Fokker-Plank equation. Since L ~tð Þ is never infinitely sharp and it lasts a finite time,

the Ito and Stratonovich’s calculus are more appropriate in modeling internal and external

noises, respectively [9].

With this Langevin representation in hand, the equations derived in the last section,

i.e., Equations 17, 18, 22, and 23, can be readily obtained. Specifically, substituting

Equations 37 and 38 into Equation 43 and ignoring the noise term yields Equations 17

and 18. Since the drift coefficient in a Fokker-Planck equation, matrix A in Equation 21,

is the Jacobian matrix of the functions on the right-hand side Equations 17 and 18 [9],
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Equation 22 can be obtained by taking derivatives. Finally, it is obvious that the ele-

ments of the covariance matrix, Equations 39 through 42, are identical to those shown

in Equation 23.

System size expansion based on Kurtz’s theorems is substantially simpler than the

original procedure proposed by van Kampen [9]. This efficiency was previously utilized

by Aparicio and Solari [32] and Chua et al. [33] in their studies of stochastic population

dynamics of disease transmission and chemical vapor deposition, respectively.

It should be mentioned that the system size expansion method discussed in this and

last sections suffers several limitations. Simulation with the system-size expansion con-

verges to the steady state within its boundary of attraction just like its deterministic

counterpart, and it cannot be generate noise-induced transition, as it will be discussed

later in the simulation section [9]. The system size expansion near the steady-state

boundary of attraction (i.e., away from the steady state) yields noises that are not com-

patible to those generated from near the steady states [18].

Simulations

The genetic toggle switch model presented in the preceding section has been simulated

by two approaches. The first approach relies on the solution of the governing equations

for the first and second moments of the random variables derived from the master

equations. The second approach resorts to the event-driven Monte Carlo algorithm.

Simulation based on the master equations

To effectively analyze the impact of system parameters, the equations governing the

first and second moments are converted to dimensionless forms. Following Gardner’s

procedure [3], we introduce the following variables, with the assumption α2 = α4:

u ¼ ϕ tð Þ K 0
b

� 	1=M ð46Þ

v ¼ θ tð Þ K 0
a

� 	1=m ð47Þ
�t ¼ tα2 ¼ tα4 ð48Þ

Substituting these three variables into Equations 17 and 18 yields the following compact
set of equations:

du
d�t

¼ α″1
1þ vm

− u ð49Þ

dv
d�t

¼ α″2
1þ uM

− v ð50Þ

where

α″1 ¼ α01 K 0
b

� 	1=M
α2

ð51Þ

α″2 ¼ α03 K 0
a

� 	1=m
α4

ð52Þ

When the effective rates of synthesis of the two proteins are comparable, we have
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K 0
a

� 	1=m≅ K 0
b

� 	1=M ð53Þ

Then Equations 24 through 28 can be transformed into the following compact forms
d
d�t

E Y 1½ � ¼ − E Y 1½ � − α″1 m vm

v 1þ vmð Þ2 E Y 2½ � ð54Þ

d
d�t

E Y 2½ � ¼ −
α″2 M uM

u 1þ uMð Þ2 E Y 1½ � − E Y 2½ � ð55Þ

d
d�t

E Y 2
1


 � ¼ −2E Y 2
1


 �
−

α″1 m vm

v 1þ vmð Þ2 E Y 1Y 2½ � þ α″1
1þ vm

þ u ð56Þ

d
d�t

E Y 2
2


 � ¼ −2E Y 2
2


 �
−

α″2 M uM

u 1þ uMð Þ2 E Y 1Y 2½ � þ α″2
1þ uM

þ v ð57Þ

d
d�t

E Y 1Y 2½ � ¼ −E Y 1Y 2½ � − α″1 m vm

v 1þ vmð Þ2 E Y 2
2


 �
−

α″2 M uM

u 1þ uMð Þ2 E Y 2
1


 �
− E Y 1Y 2½ � ð58Þ

Equations 49, 50, and 54 through 58 can be integrated simultaneously to obtain the

statistical characteristics of the dynamical processes. Equations 49 and 50 yield the

means of the populations while Equations 54 and 55 yield the means of the fluctua-

tions, which are essentially zero due to the assumption of symmetric noises around

the means, i.e., Equations 13 and 14. Equations 56 through 58 generate the variance

and covariance of the two constituent populations. The integration was conducted in

Matlab by ode45, a subroutine based on Gear’s method for stiff sets of ordinary dif-

ferential equations.

As we will demonstrate later, some of the simulation results, including noise-induced

transitions, depend on the parameter values and initial conditions, which, in turn,

are closely related to the properties of the deterministic system, i.e., Equations 49

and 50. For a nonlinear system governed by Equations 49 and 50, the location of the

parameters α″1 and α″2 in the bifurcation diagram and the initial population in the

phase diagram have significant effects on the evolution of system’s state. In order to

analyze the process under selected conditions, the values of the four parameters used

for simulation, α″1 , α″2 , m, and M, are taken from published experimental results

[3,5,34,35] as well as the inference that can be drawn from the phase and bifurcation

diagrams. A thorough review of the protein and mRNA reaction rates involved in the

control mechanism can be found in Santallin and Mackey [36]. The values of several

of these variables can also be found in other regulatory modeling literature [7,37-39].

As shown in Figure 3, for m =M = 2 and α″1 ¼ α″2 ¼ 15:6 the traces of (u,v) by setting

the right-hand sides of Equations 49 and 50 being zero yield with three interceptions.

Liapunov stability analysis reveals that two of these steady states are stable, and the

one in the middle is unstable, i.e., a saddle node. The bifurcation analysis, for m =M = 2,

illustrates that the system has one or two stable steady states depending on the values of

α″1 and α″2 (see Figure 4 and [3]).

As marked in Figure 4, three possible sets of α″1 and α″2 are sufficient to characterize

the different cases of population dynamics: monostable, bistable, and bifurcation. Thus,



Figure 3 Phase plane drawn by setting right-hand side of Equations 49 and 50 be zero for m =M = 2,
α″1 = 15.6, and α″2 = 15.6. The diagram shows three steady states. Stability analysis reveals that two of
them are stable and one unstable.
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the following three sets of parameter values are chosen in our simulations for charac-

terizing the dynamics in different regions:

Case A, in bistable region: α″1 = 15.6 and α″2 = 15.6,

Case B, on bifurcation curve: α″1 = 15.6 and α″2 = 4.0,

Case C, in monostable region: α″1 = 15.6 and α″2 = 1.2.
Figure 4 Bifurcation diagram determined for large values of α″1 and α″, constructed by taking
slopes of lines as m and 1/M with m =M = 2. The following three representative sets of parameters are
chosen for the detailed simulations: Case A, in bistable region (α″ = 15.6 and α″2 = 15.6); Case B, on
bifurcation curve (α″1 = 15.6 and α″2 = 4.0); Case C, in monostable region (α″1 = 15.6 and α″2 = 1.2).
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We assume m = 2 and M = 2 for all the simulations presented herein.

Initial protein populations are also important to the evolution of the dynamics in

several aspects. It is established in nonlinear dynamics that different initial condi-

tions could lead to different steady states, and the evolution of the dynamics may be

altered significantly by small variation of initial conditions. In this work, we will

demonstrate that noise could induce system transition from one steady state to an-

other when the populations pass through the neighborhood of an unstable steady

state (or the saddle node) of a bistable system. Moreover, for very small initial popu-

lations, the numerical equations become invalid as the protein values tend to be-

come so small that they drive the bifurcation lines beyond the domain of application.

Thus, the choice of initial population should be such that it is between 10s and 100 s.

In the present work, the initial populations are chosen u(0) = 155 and v(0) = 154 for the

three cases discussed above. To further illustrate the effects of the initial populations, a

simulation is conducted with u(0) = 15, v(0) = 155, α
00
1 = 15.6, and α″2 = 15.6 for the bi-

stable system, or Case A. The population trajectories do not pass through the neighbor-

hood of the saddle node in this simulation, and possess no risk of noise-induced

transition.

It should be mentioned that the process of interest is characterized by the transition

intensity functions, k1, k2, α2, and α4, defining the probabilities of transitions of each

type of population per unit time. If the fraction of population converted per unit time

is taken to represent the intensity function, its significance is equivalent to the deter-

ministic rate constant of the specific rate. In other words, from the change in the

population of a particular protein type i due to the conversion of type i during the

time interval, (t, t + Δt), we have

−Ri ¼ lim
Δt→0

ni− ni−niλiΔt þ o Δtð Þ½ �
ΩΔt

¼ λi
ni
Ω
; ð59Þ

where Ω stands for the system size, i.e., the total initial population; and − Ri, the popula-

tion converted attributable to transition type i protein per unit time. A detailed discussion

of the relationship between the deterministic rate constant and the intensity function can

be found in [9].

Simulation based on Monte Carlo simulation

Linear or nonlinear dynamic processes have been simulated either deterministically or

stochastically by Monte Carlo procedures. It is worth noting that a well-developed class

of Monte Carlo simulation procedures essentially shares identical computational bases

with the master equation algorithm presented in the preceding sections. Specifically,

the assumptions of Markov property and temporal homogeneity of the random vari-

ables lead to the definitions of transition intensity functions [33,40,41]. As discussed in

the “Model Formulation” section, probability balances of various events on the basis of

these intensity functions give rise to the master equations. In the Monte Carlo simula-

tion, the system’s state is simulated by a step-wise, random-walk scheme based on the

same intensity functions.

Process systems or phenomena can be simulated by time-driven and event-driven

Monte Carlo procedures [42]. The difference between these two procedures is in the
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manner of updating the time clock of the evolution of the system. The time-driven

procedure advances the simulation clock by a pre-specified time increment, t, which is

sufficiently small so that at most, one event will occur in this interval. The probability of

an event occurring is determined by the nature and magnitudes of the transition intensity

functions. In contrast, the event-driven procedure updates the simulation clock by ran-

domly generating the waiting time, τw, which has an exponential distribution [43,44]; this

distribution signifies that a population transition takes place completely randomly. At the

end of each waiting interval, one event will occur, and the state to which the system will

transfer is also determined by the nature of the transition intensity functions.

The process of interest here, i.e., genetic toggle switch, has been simulated by the event-

driven procedure; it is usually computationally faster than the time-driven procedure. The

simulation starts with a given initial distribution of population; the essential task is to

obtain the probability distributions of the protein numbers at any subsequent times.

To determine the system transition in each time step, two random numbers are generated

for two different purposes. The first random number in (0, 1), i.e., r1, is for estimating the

waiting time during which a possible transition of the system’s state will take place. The

second random number in (0, 1), i.e., r2, is for identifying the transition type.

Waiting time

Let Tn be the random variable representing the waiting time of the population of the

system of interest at state n prior to its transition due to the transformation of a pro-

tein production or consumption. τw is the realization of Tn. Moreover, let Gn(τw) be the

probability that no transition takes place during τw. Thus,

Gn τwð Þ ¼ Pr τw≤Tnð Þ: ð60Þ

This can be expressed as (see derivation in Appendix 2)
Gn τwð Þ ¼ exp −
n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� 

τw

� �
ð61Þ

The complement of Gn(τw)

Hn τwð Þ ¼ 1−Gn τwð Þ ð62Þ

expresses the cumulative probability distribution of Tn up to τw. The probability density

function of Tn, i.e.,

h τwð Þ≡ dHn τwð Þ
dτw

: ð63Þ

Therefore, hn(τw) has the following exponential form (see Appendix 2)

hn τwð Þ ¼ n1α1
1þ Kan2m

þ n1α2 þ n2α3
1þ Kbn1M

þ n2α4

� �

exp −
n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� �
τw

� � ð64Þ

Note that Hn(τw) is the probability function of Tn.
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Equation 64 indicates that to estimate the waiting time of a protein-regulated gene

expression, τw, a sequence of exponentially distributed random numbers must be

generated. The sequences of the computer-generated random numbers, however, are

usually uniformly distributed in interval [0, 1]. This uniform distribution, therefore,

need be transformed into the exponential distribution, which can be accomplished

by defining a new random variable, denoted by U, whose realization, denoted by u,

assumes the value of Hn(τw) at τw [43,44], i.e.,

u ¼ Hn τwð Þ
¼ 1− exp −

n1α1
1þ Kan2m

þ n1α2 þ n2α3
1þ Kbn1M

þ n2α4

� �
τw

� � ð65Þ

or, inversely,

τw ¼ 1
n1α1

1þKan2m
þ n1α2 þ n2α3

1þKbn1M
þ n2α4

� � ln 1−uð Þ ð66Þ

It can be verified that if the waiting time, Tn, whose realization is τw, is exponentially
distributed, then the random variable, U, whose realization is u, is uniformly distributed

over interval [0, 1], see Appendix 3.

Probabilities of four possible transitions

After residing in state n = (n1,n2) for a waiting time of τw, the system will transfer to

one of its adjacent states. During the process, the transition intensity functions govern-

ing the four possible transitions of protein populations from state (n1,n2) to states (n1 −
1,n2), (n1 + 1,n2), (n1,n2 − 1), and (n1,n2 + 1) are α2, k1, α4, and k2, respectively. These

transitions are exact equivalents of the transitions from states (n1 + 1,n2), (n1 − 1,n2),

(n1,n2 + 1) and (n1,n2 − 1) to state (n1,n2), as shown in Figure 2. These four possible

transitions are mutually exclusive events. Moreover, as discussed in the last section,

one and only one of the four possible transitions takes place during the waiting time

determined by the random number r1. Thus, the probability of the system transferring

from (n1,n2) to (n1 − 1,n2) is

Q1 ¼
n1α2

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

þ n2α4
� � ð67Þ

The probability of the system transferring from state (n1,n2) to (n1 + 1,n2) is

Q2 ¼
n1α1

1þKan2m

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

þ n2α4
� � ð68Þ

The probability of the system transferring from state (n1,n2) to (n1,n2 − 1) is
Q3 ¼
n2α4

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

þ n2α4
� � ð69Þ
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Similarly, the probability of the system transferring from state (n1, n2) to (n1, n2 + 1) is

n2α3
Q4 ¼ 1þKbn1M

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

þ n2α4
� � ð70Þ

Since the sum of Q1 through Q4 is 1, the transition type can be identified by the randomly
generated number, r2. Specifically, r2 falling within the interval,

0;
n1α2

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

þ n2α4
� �

2
4

3
5 ð71Þ

implies that the population of type-1 protein decreases by 1, see Equation 67; r2 falling

within the interval,

n1α2
n1α1

1þKan2m
þ n1α2 þ n2α3

1þKbn1M
þ n2α4

� � ; n1α1
1þKan2m

þ n1α2
n1α1

1þKan2m
þ n1α2 þ n2α3

1þKbn1M
þ n2α4

� �
2
4

3
5 ð72Þ

implies that the population of type-1 protein increases by 1; r2 falling within the interval,

n1α1
1þKan2m

þ n1α2
n1α1

1þKan2m
þ n1α2 þ n2α3

1þKbn1M
þ n2α4

� � ; n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

þ n2α4
� �

2
4

3
5 ð73Þ

implies that the population of type-2 protein decreases by 1; r2 falling within the interval,

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

n1α1
1þKan2m

þ n1α2 þ n2α3
1þKbn1M

þ n2α4
� � ; 1
2
4

3
5 ð74Þ

implies that the population of type-2 protein increases by 1.

Simulation algorithm

The event-driven Monte Carlo procedure is conducted according to Rajamani [40]. A

step-wise description of the procedure is given below.

1. Define the initial populations of the two types of proteins, and let the system size,

Ω, be the sum of the two protein populations. This Ω will also be the total number

of independent simulations to be conducted before taking their statistics. Start the

random walk from this point.

2. Select the total length of time of each simulation, Tf has to be selected. For the

current work, Tf was chosen to be either 15 or 50 s.

3. Determine the length of the waiting time, τw. First, generate a random number, r1,

from a uniform distribution in [0, 1]; then, calculate τw, for a system’s transition

state n(t) = (n1(t),n2(t)) according to Equation 66.

4. Update the computer clock by letting t = t + τw.

5. Calculate the transition probabilities that the system will transfer from state n to

the other states Qi’s by Equations 67 through 70. Then, generate another random

number r2, from a uniform distribution in [0, 1]. Determine the transition type by

examining in which interval given by Equations 71 through 74 is r2 located.
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6. Repeat steps 3 to 5 until the total time exceeds Tf; this terminates one replication of

simulation.

7. Repeat steps 2 to 6 for Ω times, and store the resultant number in proteins of type

i during the jth replication at time t, nij(t). This yields the mean number of proteins

of type i at time t as

E Ni tð Þ½ � ¼

XΩ
j¼1

nij

Ω
ð75Þ

The variance of population of type i at time t can be calculated from its definition, i.
e.,

Var Ni tð Þ½ � ¼

XΩ
j¼1

nij−E Ni tð Þ½ �� 	2
Ω−1

ð76Þ

The covariance around the means between the two types of populations i and j, at
time t can be calculated from its definition, i.e.,

Cov Ni tð Þ;Nj tð Þ
 � ¼

XΩ
h¼1

XΩ
k¼1

nih−E Ni tð Þ½ �ð Þ njk−E Nj tð Þ
 �� 	
Ω − 1

ð77Þ

As mentioned at the outset of this section, both the Monte Carlo simulation and the
simulation based on the master equations adopted in the current work are rooted in

the identical set of transition intensity functions derived from the same set of assump-

tions. Thus, integrating the equations for the first and second moments of the master

equations, Equations 54 through 58 for the process, is expected to generate results

nearly identical to those from the Monte Carlo simulations, i.e., Equations 75 through 77.

Equations 75 to 77 are expected to be nearly identical to Equations 54 to 58 together with

49 to 50.

Results and discussion
The present stochastic analysis of the genetic toggle switch yields the transition prob-

abilities of mutually exclusive events through the definitions of the transition intensity

functions of protein production as well as degradation. This analysis renders it possible

to formulate the nonlinear master equations of the process as well as to derive the

event-driven Monte Carlo simulation. Even though each of these was simulated separ-

ately they portrayed interesting analogies.

The stochastic algorithms developed here allow us to analyze the stochastic nature of

the two-state toggle switch quantitatively. The master equations governing the numbers

of the two types of protein are formulated from stochastic population balance. The sto-

chastic pathways of the two proteins, i.e., their means and the fluctuations around these

means, have been numerically simulated independently by the algorithm derived from

the master equations, as well as by an event-driven Monte Carlo algorithm. Both algo-

rithms have given rise to the identical results. Moreover, these analyses render it pos-

sible to circumvent the possibility of noise-induced transitions.
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Simulation based on the master equations

Figures 5, 6, and 7 represent the temporal profiles of the Cases A through C discussed

earlier. The left-hand parts of these figures are the exploded portion of the more completed

simulations on the right. These simulations were conducted with m =M = 2, α″1 = 15.6, and

the same set of initial conditions, u(0) = 155 and v(0) = 154. These initial conditions

correspond to a point below the separatrix in the phase diagram, see Figure 3. The

value of α″2 varies to illustrate the characteristics of three different cases of dynamics:

in the bistable region, on the bifurcation curve, and in the monostable region. The

standard deviation envelopes are plotted around the macroscopic trajectories.

Case A, α″2 = 15.6, represents a bistable system, as marked in the bifurcation diagram

in Figure 4. Figure 5 presents the simulated results of this system based on the master

equations. As expected, the populations eventually reaches the stable steady state #2

marked in Figure 3 since the initial conditions consist a point below the separatrix, and

our analysis of the vector field depicting the flow of dynamics [45] suggests this out-

come. The protein populations decrease rapidly and stay in the proximity of the saddle

node for a while before they depart for their steady states, an observation consistent

with the classical dynamics. During this period, the populations of the two proteins are

very similar to each other. The fluctuations around the mean trajectories increase ini-

tially from zero and then decrease when they approach the steady states. In a stable

system, the standard deviation of the number of either type-1 or type-2 proteins attains

the maximum because the state of the system is usually well defined at the outset of

the process and the uncertainties decline eventually until it varnishes upon stabilization
Figure 5 Temporal evolution of protein populations with their standard deviation envelopes. These
are obtained by the master equation with initial protein concentrations u(0) = 155, v(0) = 154, m =M = 2,
α″1 = 15.6, and α″2 = 15.6 (bistable region). The left-hand part of this figure is the exploded portion of the
more completed simulations on the right.



Figure 6 Temporal evolution of protein populations with their standard deviation envelopes. These
are obtained by the master equation with initial protein concentrations u(0) = 155, v(0) = 154, m =M = 2,
α″1 = 15.6, and α″2 = 4.0 (on the bifurcation line). The left-hand part of this figure is the exploded portion of
the more completed simulations on the right.

Figure 7 Temporal evolution of protein populations with their standard deviation envelopes. These
are obtained by the master equation with initial protein concentrations u(0) = 155, v(0) = 154, m =M = 2,
α″ = 15.6, and α″2 = 1.2 (in monostable region). The left-hand part of this figure is the exploded portion of
the more completed simulations on the right.
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[46]. The uncertainty in the population of the type-2 protein in Figure 5 appears to re-

main constant; a special computer experiment was conducted with long simulation

time to ensure that it indeed decreases over time.

The formulator is often confronted with a myriad of interacting factors related to a

gene’s expression mechanisms before settling on a strategy to assess their impact. A

mathematical description of this complex process usually relies on a manageable num-

ber of system variables. This lumping procedure inevitably results in a high degree of

freedom and fluctuations, or uncertainties, in the predictions of populations of discrete

systems [9]. The behavior of an individual protein molecule in a discrete system with

such a high degree of freedom is thus difficult to predict even when the system is mon-

itored experimentally. The parameters in the equations, e.g., the transition intensity

functions of the master equation algorithm adopted here, are presumed to depend only

on the major variables of the system and to be independent of the variables of secondary

importance. Neglecting these secondary variables is, in essence, the source of internal, or

system, or minimal noises that should be appropriately analyzed stochastically. Thus, the

internal noises caused by the discrete nature of a system are inherent in the system and

they govern the minimum scattering expected of the random variable of interest. The ex-

perimentally observed scattering should always be larger than the predicted one induced

by internal noises because of inevitable external noises attributable to experimental errors

and imprecision of measuring devices. This implies that it is worth cautioning ourselves

not to replicate the experiments excessively in an attempt to reduce the scattering

far beyond what is predicted. It is interesting to note that fluctuations reported by

Gardner et al. are significantly higher than what master equations will predict. The

number of culture used in their fluorescence analysis was 40,000, and the actual

number of culture in the sample is much larger than this number. Therefore, the

noise levels reported by Gardner et al. [3] certainly involve not internal, but also ex-

ternal noises. External noises are the fluctuations created in an otherwise determinis-

tic system by the application of a random force, whose stochastic properties are

supposed to be known [9].

The two proteins do not have well-defined states as a deterministic model depicts

when they pass the saddle node. Instead, their populations are probabilistically distrib-

uted. The two proteins have not only similar populations but also similar uncertainties

in their populations. In fact, as shown in the left-hand side of Figure 5, the uncertain-

ties in their populations are in the same order of magnitude. These characteristics

imply that there is a high probability that the relative sizes of the two protein populations

are switched when the system approaches the unstable steady state. This switch brings

the populations to the region above the separatrix in the phase diagram in Figure 3, and

the vector field in that region eventually leads the process to the steady state #1 marked

in the same figure. The noise-induced phase transition has been examined in detail

by Nicolis and Turner [47], Malek Mansour et al. [48], and Horsthemke and Lefever

[49]. Nicolis and Turner have shown that the fluctuations enhanced at a ‘critical

point’ (populations closest to the instable steady state); the variances are of the order

of Ω−1/2, a result consistent with that derived by van Kampen for expanding the mas-

ter equation by system size expansion. Thus, systems with low populations are more

subjective to noise-induced transitions. The noise enhancement near the instability

is illuminated in Figure 5. Once the system moves away from the instability, the
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noises decrease and noise-induced transition becomes more difficult. Internal fluctu-

ations do not change the local stability of the system, and the position of transition

points is in no way modified by the presence of these fluctuations.

It should be mentioned that the parameter values for our simulation are carefully chosen

to illustrate the possibility of noise-induced transition. Gardner et al. [3] did not observe this

possibility probably because the populations of their system are very large and the difference

between the two protein populations at the critical point is large, as discussed earlier.

Case B, α″2 = 4.0, represents system on the bifurcation line, as marked in the bifur-

cation diagram in Figure 4. Gardner [3] has a good exposition on the dependence of bi-

furcation diagram and phase diagram on the parameters. There are two steady states

on the phase diagram, similar to Figure 3; one is stable and the other, unstable. Figure 6

presents the simulated results of this system based on the master equations. Similar to

Case A, the populations eventually reach the stable steady state. The populations do

not stay in the vicinity of the saddle node for a long time as they are in Case A. Although

the two protein populations are very close to each other and the fluctuations are of the

same order of the populations during this time period, one steady state characteristic

guarantees the system’s final destination.

Case C, α″2 = 1.2, is a monostable system, as marked in the bifurcation diagram in

Figure 4. Figure 7 presents the simulated results of this system based on the master

equations. Similar to Case B, the populations eventually reach the stable steady state.

Although the two protein populations have maximal fluctuations during the evolution

of the dynamics, but they eventually vanish to zero.

Figure 8 presents the results from a simulation very similar to Case A. It uses the

identical set of parameters for Case A and with a slightly different set of initial conditions:

u(0) = 14 and v(0) = 154. It is a bistable system and the initial conditions represent a point

above the separatrix in Figure 4. As expected, the process eventually reaches the steady

state #1 shown in Figure 3. Unlike Case A, however, this dynamics does not pass through

the proximity of the saddle node, and the fluctuations around the means do not permit

easy switching between the two populations, see Figure 8.

Simulation based on Monte Carlo procedure

Monte Carlo simulations have yielded results essentially indistinguishable from those

generated from the master equations. This is expected since the algorithms based on the

event-driven Monte Carlo procedure and master equations derived in the present work

are rooted in identical assumptions, i.e., the Markov property and temporal homogeneity

of the random variables. These assumptions lead to the definitions of transition intensity

functions that are the cornerstones of the formulation of the master equations and of the

Monte Carlo procedure.

The fact that the two algorithms have yielded essentially the same results implies that

both indeed define the evolution of dynamic process in a precisely equivalent way. The

master-equation algorithm generates the equations governing the statistical moments

of the process, which can be readily varied to cover a wide range of initial conditions,

whereas the Monte Carlo procedure will require far more computational time and stor-

age space under such circumstances.

Internal noise-induced transition was clearly observed during Monte Carlo simula-

tion for Case A. Figure 9 demonstrates the two traces from two independent Monte



Figure 8 Temporal evolution of protein populations with their standard deviation envelopes. These
are obtained by the master equation with initial protein concentrations u(0) = 14, v(0) = 154, m =M = 2,
α″1 = 15.6, and α″2 = 15.6 (bistable region). Comparison of the results here and those from Figure 4 suggests
that the initial conditions determine the ultimate steady state for a bistable system. The left-hand part of
this figure is the exploded portion of the more completed simulations on the right.

Figure 9 Temporal evolution of protein populations from two different simulations of the Monte
Carlo procedure. Initial protein concentrations: u(0) = 155, v(0) = 154, m =M = 2, α″1 = 15.6, and α″2 = 15.6
(in bistable region). Results show the noise-induced transition from one steady state to another takes place
when the process passes the metastable region.
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Carlo simulations with parameters and initial conditions identical to those for Case A.

These two independent Monte Carlo simulations result in two different steady states

that is a consequence of internal noise-induced transition. It should be mentioned that

results based on master equation, as shown in Figure 5, represent an averaged outcome

of independent Monte Carlo simulations of Ω times (Ω = 155 + 154 = 309 for this case),

which are indeed observed in our simulation experiments. As mentioned in the last

section, systems of small populations are susceptible to large internal fluctuations

(or uncertainties) in the evolution of their dynamics. The evolutions of protein statis-

tics shown in Figure 5 also illustrate the large uncertainties after the populations enter

the proximity of the saddle node. In fact, the uncertainty is of the same magnitude as

the mean number of particles. Internal fluctuations are inherent characteristics of

discrete systems that are beyond the regulation of external means. The results on the

right-hand side of Figure 9 show a clear transition in protein numbers in a particular

Monte Carlo simulation. The transition takes place soon after the populations enter

the proximity of the saddle node. It is caused by the fact that the populations of both

proteins are low and, therefore, there are susceptible to large internal fluctuations and

noise-induced transitions. Noise-induced transition has been discussed by Nicolis and

Turner [47], Malek Mansour et al. [48], and Horsthemke and Lefever [49].

As mentioned in the ‘Introduction’ section, the master equation and its system-size

expansion suffers a few limitations. One of such limitations is that the algorithm is valid

for the dynamics well within the boundary of attraction [9]. For a bistable dynamics

staring in a region outside this boundary, such as Case A, the Monte Carlo simulation

converges to two possible steady states. The master equation algorithm converges to

only one.

Some comparisons of the three algorithms are worth mentioning. The governing equa-

tions for the system size expansion can be derived in a straightforward manner, though the

detailed derivations may be cumbersome and time consuming. It requires only a minor

transformation of variable for some unstable stochastic processes, such as the diffusion

process, well beyond the initial transient period [9]. Unlike the Monte Carlo simulation, the

derived moment equations can be repeatedly integrated for different sets of parameters

and initial conditions. Consequently, system size expansion has been widely adopted in

the derivation of governing equation of stochastic processes governed by internal noises.

Kurtz’s algorithm is highly compact and convenient. The implementation of the rigor-

ous Kurtz algorithm requires knowledge about the relations among master, Langevin, and

Fokker-Planck equations. It allows direct derivation of the equations governing the mo-

ments. However, the algorithm merely describes the dynamics in the initial transient

period of unstable systems for selected processes, such as the diffusion process [9].

The Monte Carlo method is easy to implement because it bypasses all derivations of

equations. It is most efficient when the number of random variables is large and the

master equation is difficult to derive. Repeated simulations have to be carried out for

different sets of parameters and initial conditions. The required computational time

and disk space are usually high.

Conclusions
The current model adopts the essential concepts of a nonlinear toggle switch model for

analyzing a protein-regulated system. The master equation algorithm, along with its
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system size expansion, involves the stochastic probability balance of the two types of

populations. The resultant master equation should yield not only the deterministic evolu-

tion of protein populations during gene expression, but also the fluctuations, or uncer-

tainties inherited in the prediction or measurement. Kurtz’s limit theorems significantly

reduce the complex and laborious exercise of system size expansion. In fact, they will be

indispensable tools for the analysis of really complex genetic networks.

The validity of the model is amply demonstrated by numerically calculating the evolution

of population of both types and their fluctuations over time through two simulation algo-

rithms, one based on the master equations and the other based on the event-driven Monte

Carlo procedure. These two algorithms are implemented totally independently of each other

but with the same set of system parameters, i.e., the transition intensity functions. Hence, it

is indeed remarkable that the two algorithms have yielded essentially identical results.

Both simulation results demonstrate the possibility of noise-induced transition when

the dynamics passes through the proximity of the saddle node. It happens when the

protein populations are low and the noises are in the same order of magnitudes as the

populations. This property may have practical applications in developing gene therapy,

cell cycle control, and protein sensors.

Nomenclature
E, one-step operator; N1, random variable representing population of repressor 1; N2,

random variable representing population of repressor 2; n1, realization of random variable,

N1(t); n2, realization of random variable, N2(t); N, random vector, i.e., [N1(t),N2(t),N3(t)];

n, realization of random vector N(t); Pn, probability that the system is at state n at time

t; t, time; Y, random variable denoting the fluctuations about macroscopic behavior; y,

realization of random variable Y fluctuations; Q, the transition probability; u, Gardner’s con-

centration of repressor 1; v, Gardner’s concentration of repressor 2; K1, effective reaction

rate for repressor 1 formation; K2, effective reaction rate for repressor 2 formation.

Greek letters
α1, the rate of production of repressor 1; α2, the rate of production of repressor 2; α3,

the rate of degradation of repressor 1; α4, the rate of degradation of repressor 2; α01, the
effective rate of synthesis of repressor 1 on system size; α02, the effective rate of synthe-

sis of repressor 2 on system size; ∅, macroscopic number of repressor 1; θ, macroscopic

number of repressor 2; τw, the waiting time; λ, transition intensity function; Ψ, joint

probability distribution in terms of random vector Y; Ω, total number of repressors

or system size; β, the multimerization constant of repressor 1; γ, the multimerization

constant of repressor 2; Θ, the vector representing the two mean numbers of proteins in

system-size expansion.

Subscripts
1, repressor 1; 2, repressor 2

Appendices
Appendix 1: system-size expansion

The constituent populations at any time in the genetic toggle switch system can be rep-

resented by the random vector N(t) = [N1(t),N2(t)], their mean values can be taken as a
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deterministic vector Θ(t) = [ϕ(t), θ(t)] and their fluctuations can be taken as another

random vector given by Y(t), where Y(t) = [Y1(t), Y2(t)]. As stated in Equations 13 and

14 in the text:

N1 tð Þ ¼ Ωϕ tð Þ þΩ1=2Y 1 tð Þ ð78Þ

N2 tð Þ ¼ Ωθ tð Þ þΩ1=2Y 2 tð Þ ð79Þ

Their realizations of these expressions are given, respectively, by
n1 tð Þ ¼ Ωϕ tð Þ þΩ1=2y1 tð Þ ð80Þ

n2 tð Þ ¼ Ωθ tð Þ þΩ1=2y2 tð Þ ð81Þ

Accordingly, the joint probability of n1 and n2, Pn(t), is now transformed into that of

y1 and y2, i.e., Ψy(t).

Recall that in the context of deriving the master equation, the state or dependent

variable of interest is the joint probability of the population distribution, Pn(t), and the

realization of random variables at time t, i.e., n1 and n2, are invariant with respect to

time. Consequently, the time derivatives of Equations 80 and 81 are, respectively,

dy1
dt

¼ −Ω1=2 dϕ
dt

ð82Þ

dy2
dt

¼ −Ω1=2 dθ
dt

ð83Þ

For the convenience of the subsequent expansion of the master equation, Eq. 11 in
the text is restated below

dPn1; n2 tð Þ
dt

¼ α1
1þ Kan2m

Ε−1
n1 −1

� �
Pn1; n2 tð Þ þ Εn1−1ð Þα2 n1 Pn1; n2 tð Þ

þ α3
1þ Kbn1M

Ε−1
n2 −1

� �
Pn1; n2 tð Þ þ Εn2−1ð Þα4 n2 Pn1; n2 tð Þ

ð84Þ

Substituting Equations 82 and 83 into the right-hand side of the above expression
yields

dPn

dt
¼ dΨ y

dt
¼ ∂Ψ y

∂t
þ ∂Ψ y

∂y1

dy1
dt

þ ∂Ψ y

∂y2

dy2
dt

¼ ∂Ψ y

∂t
−
∂Ψ y

∂y1
Ω1=2 dϕ

dt
−
∂Ψ y

∂y2
Ω1=2 dθ

dt

ð85Þ

Without causing confusion, the subscript y of Ψy(t) is eliminated in the subsequent
discussion. The step operators, Εn1 and Ε−1
n1 , convert n1 to n1 + 1 and n1 − 1, respectively.

Similarly, Equation 80 suggests that Εn1 shifts y1 to y1 +Ω− 1/2. Therefore, the operations

of step operators in Equation 84 are equivalent to evaluating the values of target functions

at shifted points through the following Taylor series expansions, i.e.,

Εn1 ¼ 1þΩ−1=2 ∂
∂y1

þΩ−1

2
∂2

∂y21
þ… ð86Þ

Ε−1
n1 ¼ 1−Ω−1=2 ∂

∂y1
þΩ−1

2
∂2

∂y21
−… ð87Þ
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Εn2 ¼ 1þΩ−1=2 ∂
∂y2

þΩ−1

2
∂2

∂y22
þ… ð88Þ

Ε−1
n2 ¼ 1−Ω−1=2 ∂

∂y2
þΩ−1

2
∂2

∂y22
−… ð89Þ

Substituting Equations 85 through 89 into 84 yields

∂Ψ
∂t

−Ω
1=2 dϕ

dt
∂Ψ
∂y1

−Ω
1=2 dθ

dt
∂Ψ
∂y2

¼ α1

1þ Ka Ωθ tð Þ þΩ
1=2y2 tð Þ

h im 1−Ω
−1=2 ∂

∂y1
þΩ−1

2
∂2

∂y12
−⋅⋅⋅−1

� �
Ψ

þ α2 1þΩ
−1=2 ∂

∂y1
þΩ−1

2
∂2

∂y12
þ ⋅⋅⋅−1

� �
Ωϕ tð Þ þΩ

1=2y1 tð Þ
� �

Ψ

þ α3

1þ Kb Ωϕ tð Þ þΩ
1=2y1 tð Þ

h iM 1−Ω−1=2 ∂
∂y2

þΩ−1

2
∂2

∂y22
−⋅⋅⋅−1

� �
Ψ

þ α4 1þΩ
−1=2 ∂

∂y2
þΩ−1

2
∂2

∂y22
þ ⋅⋅⋅−1

� �
Ωθ tð Þ þΩ

1=2y2 tð Þ
� �

Ψ

ð90Þ

In order to collect the terms of same power of Ω in the subsequent expansion, the

Ω dependence of the parameters in the above equation have to be examined and con-

verted to their Ω -independent counterparts. The definitions of α1 and α3 in the ‘Model

formulation’ section suggest that they are proportional to the system size, Ω, i.e.,

α1 ¼ α01 Ω; α3 ¼ α03 Ω; ð91Þ

where α01 and α03 are independent of the system size, Ω. Moreover, the definitions of

equilibrium constants, Ka and Kb, for the gene repression, G + m R ⇆ GRm, in the

beginning of the ‘Model formulation’ section suggest

Ka ¼ K 0
a Ω

−m; Kb ¼ K 0
b Ω

−M; ð92Þ

where K 0
a and K 0

b are independent of the system size, Ω.

Substituting Equations 91 and 92 into Equation 90 gives

∂Ψ
∂t

−Ω
1=2 dϕ

dt
∂Ψ
∂y1

−Ω
1=2 dθ

dt
∂Ψ
∂y2

¼ α01 Ω

1þ K 0
a Ω

−m Ωθ tð Þ þΩ
1=2y2 tð Þ

h im −Ω
−1=2 ∂

∂y1
þΩ−1

2
∂2

∂y12
−⋅⋅⋅

� �
Ψ

þ α2 Ω
−1=2 ∂

∂y1
þΩ−1

2
∂2

∂y12
þ ⋅⋅⋅

� �
Ωϕ tð Þ þΩ

1=2y1 tð Þ
� �

Ψ

þ α03 Ω

1þ K 0
b Ω

−M Ωϕ tð Þ þΩ
1=2y1 tð Þ

h iM −Ω
−1=2 ∂

∂y2
þΩ−1

2
∂2

∂y22
−⋅⋅⋅

� �
Ψ

þ α4 Ω
−1=2 ∂

∂y2
þΩ−1

2
∂2

∂y22
þ ⋅⋅⋅

� �
Ωθ tð Þ þΩ

1=2y2 tð Þ
� �

Ψ

ð93Þ
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The first and third terms on the right-hand side of the above expression can be ex-

panded in power of Ω through known power and binomial expansions. Specifically, for

small K 0
a Ω

−m Ωθ tð Þ þΩ
1=2y2 tð Þ

h im
, we have

1

1þ K 0
a Ω

−m Ωθ tð Þ þΩ
1=2y2 tð Þ

h im
¼ 1 − K 0

a Ω
−m Ωθ tð Þ þΩ

1=2y2 tð Þ
h im

þ K 0
a Ω

−m Ωθ tð Þ þΩ
1=2y2 tð Þ

h imn o2
−þ …

¼ 1 − K 0
a Ω

−m
Xm
i¼0

m
i

� �
Ωθ tð Þð Þm−i Ω

1=2y2 tð Þ
� �i� �

þ K 0
a Ω

−m
� 	2X2m

i¼0

2m
i

� �
Ωθ tð Þð Þ2m−i Ω

1=2y2 tð Þ
� �i� �

− K 0
a Ω

−m
� 	3X3m

i¼0

3m
i

� �
Ωθ tð Þð Þ3m−i Ω

1=2y2 tð Þ
� �i� �

þ …

ð94Þ

where
m
i

� �
denotes a binomial coefficient. Lumping the terms of the same power of

Ω in the above expansion gives

1

1þ K 0
a Ω

−m Ωθ tð Þ þΩ
1=2y2 tð Þ

h im
¼ 1−K 0

a Ω
−m Ωmθm þmΩm−1θm−1y2Ω

−1=2 þ…

� �

þ K 0
a

� 	2
Ω−2m Ω2mθ2m þ 2mΩ2m−1θ2m−1y2Ω

−1=2 þ…

� �

þ K 0
a

� 	3
Ω−3m Ω3mθ3m þ 3mΩ3m−1θ3m−1y2Ω

−1=2 þ…

� �
þ …

¼ 1−K 0
aθ

m þ K 0
a

� 	2
θ2m− K 0

a

� 	3
θ3m þ −…

� �
Ω0

− K 0
aθ

m−1−2 K 0
a

� 	2
θ2m−1 þ 3 K 0

a

� 	3
θ3m−1−þ …

� �
my2Ω

−1=2 þ …

¼ 1
1þ K 0

aθ
m Ω0−

K 0
aθ

m−1

1þ K 0
aθ

m� 	2 m y2 Ω
−1=2 þ …

ð95Þ

Substituting the above expression into the first term on the right-hand side of

Equation 93 yields

α01 Ω

1þ K 0
a Ω

−m Ωθ tð Þ þΩ
1=2y2 tð Þ

h im −Ω
−1=2 ∂

∂y1
þΩ−1

2
∂2

∂y12
−⋅⋅⋅

� �
Ψ

¼ α01 Ω
1

1þ K 0
aθ

m Ω0−
K 0

aθ
m−1

1þ K 0
aθ

m� 	2 m y2 Ω
−1=2 þ …

 !

−Ω
−1=2 ∂Ψ

∂y1
þΩ−1

2
∂2Ψ
∂y12

−⋅⋅⋅
� �

þ …

¼ −α01
1þ K 0

a θ
m
∂Ψ
∂y1

Ω
1=2 þ α01K

0
aθ

m−1m y2
1þ K 0

aθ
m� 	2 ∂Ψ

∂y1
þ α01

2
1

1þ K 0
aθ

m
∂2Ψ
∂y12

 !
Ω0 þ …

ð96Þ

The expansion of the second term on the right-hand side of Equation 93 gives
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α2 Ω
−1=2 ∂

∂y1
þΩ−1

2
∂2

∂y12
þ ⋅⋅⋅

� �
Ωϕ tð Þ þΩ

1=2y1 tð Þ
� �

Ψ

¼ α2ϕ
∂Ψ
∂y1

Ω
1=2 þ α2 Ψ þ ϕ

2
∂2Ψ
∂y12

þ y1
∂Ψ
∂y1

� �
Ω0 þ …

ð97Þ

Following the same procedure, the third and fourth terms on the right-hand side of
Equation 93 can be expanded into the following power series of Ω
1

2= , respectively:

α03 Ω

1þ K 0
b Ω

−M Ωϕ tð Þ þΩ
1=2y1 tð Þ

h �
M

−Ω
−1=2 ∂

∂y2
þΩ−1

2
∂2

∂y22
−⋅⋅⋅

� �
Ψ

¼ −α03
1þ K 0

b ϕ
M

∂Ψ
∂y2

Ω
1=2 þ α03K

0
bθ

M−1My1
1þ K 0

bϕ
M

� 	2 ∂Ψ
∂y2

þ α03
2

1

1þ K 0
bϕ

M

∂2Ψ
∂y22

 !
Ω0 þ …

ð98Þ

and

α4 Ω
−1=2 ∂

∂y2
þΩ−1

2
∂2

∂y22
þ ⋅⋅⋅

� �
Ωθ tð Þ þΩ

1=2y2 tð Þ
� �

Ψ

¼ α4θ
∂Ψ
∂y2

Ω
1=2 þ α4 Ψ þ θ

2
∂2Ψ
∂y22

þ y2
∂Ψ
∂y2

� �
Ω0 þ …

ð99Þ

Substituting Equations 96 through 99 into Equation 93 and collecting the terms of

order Ω
1=2 on both sides of the Equation 100 yields the macroscopic, or the deter-

ministic, equations:

dϕ
dt

¼ α01
1þ K 0

a θ tð Þm − α2 ϕ tð Þ ð100Þ

dθ
dt

¼ α03
1þ K 0

b ϕ tð ÞM − α4 θ tð Þ ð101Þ

They are the Equations 17 and 18 in the text. By collecting terms of order Ω0 yields
∂Ψ
∂t

¼ α01
1þ K 0

aθ tð Þm þ α2ϕ tð Þ
� �

1
2
∂2

∂y21
Ψ þ α03

1þ K 0
bϕ tð ÞM þ α4θ tð Þ

 !
1
2
∂2

∂y22
Ψ

þ ∂
∂y1

α2y1Ψ þ α01K
0
am θ tð Þð Þm−1y2Ψ

1þ K 0
aθ tð Þm� 	2

 !

þ ∂
∂y2

α4y2Ψ þ α03K
0
bM ϕ tð Þð ÞM−1y1Ψ

1þ K 0
bϕ tð ÞM

� �2
0
B@

1
CA

ð102Þ

This equation can be rearranged in a linear Fokker-Plank equation form [9] as follows:
∂Ψ
∂t

¼ −
X
i; j

A i j
∂
∂yi

yjΨ
� �

þ 1
2

X
i; j

Bi j
∂2Ψ
∂yi∂yj

 !
ð103Þ

or
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∂Ψ
∂t

¼ −A 11
∂
∂y1

y1Ψð Þ −A 12
∂
∂y1

y2Ψð Þ −A 21
∂
∂y2

y1Ψð Þ

− A 22
∂
∂y2

y2Ψð Þ þ 1
2
B11

∂2Ψ
∂y21

þ 1
2
B22

∂2Ψ
∂y22

;
ð104Þ

where

A ¼ A11 A12

A21 A22

� �
¼

− α2
− α01K

0
am θ tð Þð Þm−1

1þ K 0
a θ tð Þð Þm� 	2

− α03K
0
bM ϕ tð Þð ÞM−1

1þ K 0
b ϕ tð Þð ÞM

� �2 − α4

2
666664

3
777775 ð105Þ

B ¼ B11 B12

B21 B22

� �
¼

α01
1þ K 0

a θ tð Þð Þm þ α2ϕ tð Þ 0

0
α03

1þ K 0
b ϕ tð Þð ÞM þ α4θ tð Þ

2
664

3
775 ð106Þ

Equations 103, 104, and 105 are Equations 21, 22, and 23 in the text, respectively.
Appendix 2: distribution functions of waiting time

Equation 9 in the text indicates that the probability of no transition in the small time

interval, (τw, τw + Δτw), is

Gn Δτwð Þ ¼ 1−
n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� 

Δτw

� �
þ o Δτwð Þ ð107Þ

The Markov property implies that succeeding time intervals, (0, τw) and (τw, τw + Δτw),

are independent of each other (30), thus

Gn τw þ Δτwð Þ ¼ Gn τwð ÞGn Δτwð Þ þ o Δτwð Þ
¼ Gn τwð Þ 1−

n1α1
1þ Kan2m

þ n1α2 þ n2α3
1þ Kbn1M

þ n2α4

� 

Δτw

� �
þ o Δτwð Þ

ð108Þ

Rearranging the above equation yields

Gn τw þ Δτwð Þ−Gn τwð Þ
¼ −Gn τwð Þ n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� 

Δτw

� �
þ o Δτwð Þ ð109Þ

Dividing the expression by taking the Δτw and taking the limits as Δτw→ 0 gives
Gn τwð Þ
dτw

¼ −Gn τwð Þ n1α1
1þ Kan2m

þ n1α2 þ n2α3
1þ Kbn1M

þ n2α4

� �
ð110Þ

By integrating this equation, with constant n, subject to the initial condition
Gn 0ð Þ ¼ 1 ð111Þ

we obtain

Gn τwð Þ ¼ exp −
n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� 

τw

� �
ð112Þ
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Chapter 14 of the book by Karlin and Taylor [43,44] contains a more rigorous proof

of Equation 112.

From the definition of Gn(τw), i.e., Equation 60 in the text, one can obtain a cumulative

distribution of the form

Gn τwð Þ ¼ Pr Tn≥τwð Þ
¼ 1−Hn τwð Þ

¼ 1−
Zτw
0

hn τwð Þ
ð113Þ

Since Hn(τw) is the cumulative probability distibution form 0 to τw, i.e. the probability

function of Tn at τw, hn(τw), which is the derivative of Hn(τw) with respect to τw, is the

probability-density function of Tn. Hence,

dGn τwð Þ
dτw

¼ hn τwð Þ ¼ dHn τwð Þ
dτw

ð114Þ

In light of Equations 113 and 114 give rise to

hn τwð Þ ¼ n1α1
1þ Kan2m

þ n1α2 þ n2α3
1þ Kbn1M

þ n2α4

� �

exp −
n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� 

τw

� � ð115Þ

Equations 112 and 115 are the Equations 61 and 64 in the text, respectively. The lat-
ter signifies that the probability density function for the population to make the next

transition is exponentially distributed.

Appendix 3: random number transformation

For convenience, Equation 65 in the text is reiterated below

u ¼ Hn τwð Þ
¼ 1− exp −

n1α1
1þ Kan2m

þ n1α2 þ n2α3
1þ Kbn1M

þ n2α4

� �
τw

� � ð116Þ

Obviously, u = 0 at τw = 0 and u = 1 when τw→∞. We are to prove that the random

variable, U, whose realization u, is uniformly distributed in [0, 1].

Since u increases with τw monotonically according to Equation 116, there is a one-to-one

correspondence between u and τw, thereby leading to the expression that can be visualized

as signifying that the probabilities of the same event in two different domains are identical;

this expression is

hn τwð Þdτw ¼ f uð Þdu ð117Þ

where hn(τw) and f(u) are the probability-density functions of Tn and U respectively.

For transforming a random variable, an equivalent form of Equation 117 is often given to

account for a random variation in either positive or negative direction as follows [41]:

f uð Þ ¼ h τwð Þ dτw
du

����
���� ð118Þ
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Equations 117 and 118 signifies that the probability-density functions of Tn, i.e., hn(τw),

is transformed into that of U, i.e., f(u), such that the probability represented by h(τw)|dτw|

and that represented by f(u)du are identical.

The function h(τw) derived from Appendix 2 and given in the text as Equation 64 is

hn τwð Þ ¼ n1α1
1þ Kan2m

þ n1α2 þ n2α3
1þ Kbn1M

þ n2α4

� �

exp −
n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� 

τw

� � ð119Þ

Solving Equation 116 for τw gives
τw ¼ 1
n1α1

1þKan2m
þ n1α2 þ n2α3

1þKbn1M
þ n2α4

� � ln 1−uð Þ ð120Þ

This is the Equation 66 in the text. By differentiating Equation 120 with respect to u
we obtain

dτw
du

¼ 1
n1α1

1þKan2m
þ n1α2 þ n2α3

1þKbn1M
þ n2α4

� �
1−uð Þ

ð121Þ

Substituting Equations 119 through 121 into Equation 118 leads to
Figure 10 The relations among H(τw), h(τw), F(u), and f(u).
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f uð Þ ¼ exp −
n1α1

1þ Kan2m
þ n1α2 þ n2α3

1þ Kbn1M
þ n2α4

� 

τw

� �
1

1−u

¼ exp ln 1−uð Þð Þ 1
1−u¼ 1

ð122Þ

The values of u is in the interval, [0, 1], as mentioned at the outset; consequently, the
probability density function of U, i.e., f(u), remains 1 throughout in the interval, [0, 1]

as expressed above. In other words, U, the realization of which is expressed in u, is a

random variable uniformly distributed over this interval; for convenience, the probability

function or cumulative probability distribution of U is F(u). The relationships among

H(τw), h(τw), F(u), and f(u) are illustrated in Figure 10.

Acknowledgements
Professor Michael Mossing of the Department of Chemistry and Biochemistry of the University of Mississippi provided
valuable advices during this study. Assad Mohammed and Oluseye Adeyemi provided valuable technical supports for
the completion of this work.

Received: 12 July 2013 Accepted: 27 November 2013
Published: 8 January 2014

References

1. Ptashne, MA: A genetic switch: phage [lambda] and higher organisms. Cell Press and Blackwell Scientific

Publications, Cambridge, Massachusetts (1992)
2. Oppenheim, A, Kobiler, O, Stavans, J, Adhya, S: Switches in bacteriophage lambda development. Annu. Rev. Genet.

39, 409–429 (2005)
3. Gardner, TS, Cantor, CR, Collins, JJ: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)
4. McAdams, HH, Arkin, A: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. 94, 814–819 (1997)
5. Arkin, A, Ross, J, McAdams, HH: Stochastic kinetic analysis of developmental pathway bifurcation in phage

λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)
6. Bower, JM, Bolouri, H: Computational modeling of genetic and biochemical network. The MIT Press, Cambridge,

Massachusetts (2000)
7. Hasty, J, Pradines, J, Dolnik, M, Collins, JJ: Noise based switches and amplifiers for gene expression. Proc. Natl.

Acad. Sci. 97, 2075–2080 (2000)
8. Oppenheim, I, Shuler, KE, Weiss, GH: Stochastic processes in chemical physics: the master equation. The MIT Press,

Cambridge, MA (1977)
9. Van Kampen, NG: Stochastic process in physics and chemistry, 2nd edn. Elsevier, Amsterdam, Netherlands (1992)
10. Gardiner, CW: Handbook of stochastic methods for physics, chemistry, and natural sciences, 2nd edn.

Springer-Verlag, Berlin, Germany (1998)
11. Widder, S, Schicho, J, Schuster, P: Dynamic patterns of gene regulation I: simple two-gene systems. J. Theor. Biol.

246, 395–419 (2007)
12. Van Kampen, NG: The expansion of the master equation. Adv. Chem. Phys. 34, 245–309 (1976)
13. Kurtz, TG: Limit theorems and diffusion approximations for density dependent Markov chains. Math. Program.

Study 5, 67–78 (1976)
14. Kurtz, TG: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6, 223–240 (1978)
15. Fox, RF, Keizer, J: Amplification of intrinsic fluctuations by chaotic dynamics in physical systems. Phys. Rev. A

43, 1709–1720 (1991)
16. Kepler, TB, Elston, TC: Stochasticity in transcriptional regulation: origins, consequences, and mathematical

representations. Biophy. J. 81, 3116–3136 (2001)
17. Scott, M, Ingallls, B, Kærn, M: Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks.

Chaos 16(026107), 1–15 (2006)
18. Tao, Y, Jia, Y, Dewey, TG: Stochastic fluctuations in gene expression far from equilibrium: omega expansion and

linear noise approximation. J. Chem. Phys. 122, 124108–124108 (2005)
19. Ito, Y, Uchida, K: Formulas for intrinsic noise evaluation in oscillatory genetic networks. J. Theor. Biol. 267, 223–234 (2010)
20. Ochab-Marcinek, A: Predicting the asymmetric response of a genetic switch to noise. J. Theor. Biol. 254, 37–44 (2008)
21. Yildirim, N, Mackey, M: Feedback regulation in the lactose operon: a mathematical modeling study and

comparison with experimental data. Biophys. J. 84, 2841–2851 (2003)
22. Turcotte, M, Garcia-Ojalvo, J, Süel, GM: A genetic timer through noise-induced stabilization of an unstable state.

Proc. Natl. Acad. Sci. U. S. A. 105, 15732–15737 (2008)
23. Schultz, D, Onuchic, JN, Wolynes, PG: Understanding stochastic simulations of the smallest genetic networks. J.

Chem. Phys. 126, 245102–245102 (2007)
24. Bruggeman, FJ, Blthgen, N, Westerhoff, HV: Noise management by molecular networks. PLoS Comput. Biol.

5, e1000506 (2009)
25. Ptashne, MA, Gann, A: Genes and signals. Cold Spring Harbor, New York (2002)
26. Gardner, TS: Design and construction of synthetic gene regulatory networks. Doctoral Dissertation, Department of

Biomedical Engineering, Boston University, Boston, Massachusetts (2000)
27. Goodwin, BC: Temporal organization in cells. Academic Press, London, UK (1963)



Chen Journal of Uncertainty Analysis and Applications 2014, 2:1 Page 38 of 38
http://www.juaa-journal.com/content/2/1/1
28. Goodwin, BC: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965)
29. Griffith, JS: Mathematics of cellular control processes. J. Theor. Biol. 20, 202–208 (1968)
30. Chen, WY, Bokka, S: Stochastic modeling of nonlinear epidemiology. J. Theor. Biol. 234, 455–470 (2005)
31. Van Kampen, NG: A power series expansion of the master equations. Can. J. Phys. 39, 551–567 (1961)
32. Aparicio, JP, Solari, HG: Population dynamics: poisson approximation and its relation to the Langevin proves.

Physical Rev. Lett. 86, 4183–4186 (2001)
33. Chua, ALS, Haselwandter, CA, Baggio, C, Vvedensky, DD: Langevin equations for fluctuating surfaces. Physical Rev.

E 72, 051103 (2005)
34. Reinitz, J, Vaisnys, JR: Theoretical and experimental analysis of the phage λ genetic switch implies missing levels of

co-operativity. J. Theor. Biol. 145, 295–318 (1990)
35. McAdams, HH, Shapiro, L: Circuit simulation of genetic networks. Science 269, 650–656 (1995)
36. Santillan, M, Mackey, MC: Dynamic behaviour in mathematical models of the tryptophan operon. Chaos

11, 261–268 (2001)
37. Orrell, D, Ramsey, S, Atauri, P, Bolouri, H: A method for estimating stochastic noise in large genetic regulatory

networks. Bioinf 21, 208–217 (2005)
38. Pedraza, JM, Oudenaarden, AV: Noise propagation in gene networks. Science 307, 1965–1969 (2005)
39. Walczak, AM, Sasai, M, Wolynes, PG: Self-consistent proteomic field theory of stochastic gene switches. Biophys. J.

88, 828–850 (2005)
40. Gillespie, DT: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)
41. Gillespie, DT: Markov processes. Academic Press, San Diego, California (1992)
42. Rajamani, K, Pate, WT, Kinneberg, DJ: Time-driven and event-driven Monte Carlo simulations of liquid-liquid

dispersions: a comparison. Ind. Eng. Chem. Fundam. 25, 746–752 (1986)
43. Karlin, S, Taylor, HM: A first course in stochastic processes, 2nd edn. Academic Press, New York (1975)
44. Karlin, S, Taylor, HM: A second course in stochastic processes. Academic Press, , New York (1981)
45. Hale, JK, Kocak, H: Dynamics and bifurcations. Springer-Verlag, New York (1991)
46. Carmichael, H: Statistical methods in quantum optics 1: master equations and Fokker-Planck equations,

pp. 158–162. Springer, Berlin (1999)
47. Nicolis, G, Turner, JW: Stochastic analysis of a nonequilibrium phase transition: some exact results.

Physics A89, 326–338 (1977)
48. Malek Mansour, M, Van den Broeck, C, Nicolis, G, Turner, JW: Asymptotic properties of Markovian master

equations. Ann. Phys. 131, 283–293 (1981)
49. Horsthemke, W, Lefever, R: Noise-induced transitions. Springer-Verlag, Berlin (1984)
doi:10.1186/2195-5468-2-1
Cite this article as: Chen: Stochasticity and noise-induced transition of genetic toggle switch. Journal of Uncertainty
Analysis and Applications 2014 2:1.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Introduction
	Model formulation
	Mathematical assumptions
	Transition intensity functions
	Master equations
	System-size expansion based on van Kampen’s procedure
	System size expansion based on Kurtz’s limit theorems
	Simulations
	Simulation based on the master equations
	Simulation based on Monte Carlo simulation
	Waiting time
	Probabilities of four possible transitions
	Simulation algorithm


	Results and discussion
	Simulation based on the master equations
	Simulation based on Monte Carlo procedure

	Conclusions
	Nomenclature
	Greek letters
	Subscripts
	Appendices
	Appendix 1: system-size expansion
	Appendix 2: distribution functions of waiting time
	Appendix 3: random number transformation

	Acknowledgements
	References

