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Abstract

The paper begins by reviewing a two-level hierarchical multicriteria routing model for
Multiprotocol Label Switching networks with two service classes (Quality of Service and
Best Effort services) and alternative routing, previously proposed by the authors. The
features of the considered resolution heuristic are described. Some key issues raised by
its complexity are discussed, as well as the major factors that constitute the sources of
imprecision, inaccuracy, and uncertainty of the model and the way in which they are
dealt with in the adopted resolution approach. Analytic and stochastic discrete-event
simulation experiments are performed for different test networks, including
experiments with a dynamic version of the routing method. This case study allows for
the evaluation of the inaccuracies intrinsic to the analytic/numerical resolution
procedures and of the uncertainty associated with the estimates of the mean of the
stochastic traffic flows. An analysis focused on key robustness aspects of the model is
also carried out.
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Introduction andmotivation
In modern multiservice networks, multiple and heterogeneous Quality of Service (QoS)
routing requirements have to be taken into account. Therefore, the routing models, which
are designed to calculate and select sequences of network resources, have to satisfy certain
QoS constraints while seeking to optimize route-related objectives. Formulating rout-
ing problems in these types of networks as multiple objective optimization problems is
potentially advantageous, as the trade-offs among distinct performancemetrics and other
network cost function(s) can be pursued in a consistent manner when these multiple
objective formulations are used.
Reviews on multicriteria routing models for communication networks are presented

in [1] (in a broader context of multicriteria analysis applications) and in [2], which also
discusses some key methodological issues and includes multiple research papers in this
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area. More recently, a complete conceptual framework in multiple criteria routing models
in QoS/IP networks, considering a reference point-based approach is proposed in [3].
A meta-model for hierarchical multiobjective network-wide routing in Multiprotocol

Label Switching (MPLS) networks is presented in [4]. In this approach, two classes of ser-
vices, QoS and BE (Best Effort) type flows, and different types of traffic flows in each
class are considered. A hierarchical optimization with two optimization levels, including
fairness objectives, is considered: the first-priority objective functions (o.f.s) refer to the
network-level objectives of QoS flows, namely the total expected revenue and the max-
imal value of the mean blocking of all types of QoS flows; the second-priority o.f.s refer
to performance metrics for the different types of QoS services and the total expected
revenue associated with the BE traffic flows.
In [5], a heuristic approach (HMOR-S2PAS - Hierarchical Multiobjective Routing con-

sidering 2 classes of Service with a Pareto Archive Strategy), devised to find ‘good’
solutions in the sense of multiobjective optimization (see [6]) to this hierarchical multiob-
jective routing optimization problem, is proposed and applied to two test networks used
in a benchmarking case study, for various traffic matrices for each network. Remember
that in the context of multiobjective optimization, the concept of optimal solution (usually
unfeasible) is replaced by the concept of non-dominated (or Pareto optimal) solutions. A
non-dominated solution may be defined as a feasible solution such that it is not possible
to improve the value of an o.f. without worsening the value of at least one of the other o.f.s.
In [7], the same heuristic approach is applied to two other networks with more con-

nectivity than the networks in [5]. The results of computational experiments using an
analytical model and stochastic discrete-event simulation (with a static routing model
where the network routing plan never changes) are presented, in order to evaluate the
performance of the proposed heuristic in terms of the effect of the used route calculation
and selection procedures.
Throughout the study of the routing model and the implementation of the resolu-

tion procedure, some factors of imprecision, inaccuracy (or inaccurate determination),
and uncertainty (IIU, for short) of the routing model and their effects on the results of
the routing method are taken into account by the authors. In this work, these factors
are systematized and analyzed, having in mind their great importance in the context of
the model. A broad discussion of modeling issues concerning IIU aspects in relation to
multicriteria analysis is in [8].
In this work, a new set of stochastic simulation experiments with the heuristic approach

proposed in [5] are presented in order to evaluate the inaccuracies intrinsic to the ana-
lytic/numerical resolution procedures. A state-dependent periodic-type dynamic routing
model (where the network routing plan is updated as a function of the measured offered
traffic in the network) is considered in these experiments. Different simulation parame-
ters have a direct influence on the robustness of the results obtained with the dynamic
model simulation. In particular, the effects in the model results of the uncertainty asso-
ciated with the moving average estimates of the offered traffic in the network and the
influence of the routing plan update time interval are analyzed, allowing for a robustness
analysis focused on key robustness aspects of the model.
The paper is organized as follows. The two-level hierarchical multiobjective alternative

routing model with two service classes and the features of the considered heuristic are
briefly reviewed in the next section. Still in the same section, an analysis of the IIU factors
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associated with key instances of the model and its resolution and their potential effects
on the heuristic results, is provided. The results obtained with this procedure, by using
analytic and discrete-event simulation experiments for four test networks, are shown and
analyzed in relation to the IIU factors, in the following section. These experiments pro-
vide some preliminary conclusions on the robustness of the method concerning some
of the IIU factors. Conclusions are drawn in the last section. The paper ends with an
Appendix with the specification of the notation used in the model and an Appendix with
the formalization of the heuristic resolution approach.

Review of themultiobjective routingmodel and the heuristic resolution
approach

Themultiobjective routing model

Themodel addressed in this paper may be considered an application of the multiobjective
modeling framework (or ‘meta-model’) for MPLS networks proposed in [4], as previ-
ously noted. It is a network-wide routing optimization approach (that is, the main o.f.s
depend explicitly on all traffic flows in the network), in the form of a hierarchical multi-
objective optimization model, which takes into account the nature and relations between
the adopted o.f.s related to the different types of traffic flows associated with different
services.
Two classes of services are considered: QoS, corresponding to services with certain

guaranteed QoS levels (represented through the set SQ) and considered in the model
as first-priority flows; BE (represented through the set SB), regarded as second-priority
flows, where the corresponding traffic flows are routed seeking the best possible quality
of service to be obtained but not at the cost of the quality of service of the traffic flows
belonging to SQ. The traffic flows of each service type s ∈ SQ or s ∈ SB may differ in
important attributes, such as the required bandwidth.
The hierarchical multiobjective routing optimization model tackled here has two levels

with several o.f.s in each level. At the first level, the first-priority o.f.s are considered:
WQ (the total expected network revenue associated with QoS traffic flows) and BMm|Q
(the worst average performance among QoS services, represented by the maximal aver-
age blocking probability among all QoS service types). These objectives are formulated
at the network level for the QoS traffic and allow us to take into account the com-
bined effect of all types of traffic flows in the network. The second level includes the
second-priority o.f.s concerned with average performance metrics of the QoS traffic
flows associated with the different types of QoS services (represented by Bms|Q, the
mean blocking probabilities for flows of type s ∈ SQ, and BMs|Q, the maximal block-
ing probability defined over all flows of type s ∈ SQ) as well as WB, which represents
the total expected network revenue associated with BE traffic flows. At both levels of
optimization, min−max objectives constituting ‘fairness’ objectives are explicitly con-
sidered: minR{BMm|Q} at the first level, and minR{BMs|Q} at the second level, where R
denotes the routing plan (set of feasible node-to-node loopless paths) for all offered
flows.
The considered two-level hierarchical optimization problem for two service classes

P-M2-S2 (‘Problem - Multiobjective with 2 optimization hierarchical levels - with 2
Service classes’) is
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Problem P-M2-S2

1st level
{
QoS: Network objectives maxR{WQ}

minR{BMm|Q}

2nd level

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
QoS: Service objectives minR{Bms|Q}

minR{BMs|Q}
∀s ∈ SQ

BE: Network objective maxR{WB}
subject to equations of the underlying traffic model.
The notation and basic formulae for the calculation of these o.f.s are in an Appendix at

the end of the paper.
Note that in the formulation of P-M2-S2, WQ (together with BMm|Q) is a first-priority

o.f., while WB is a second-level o.f. This assures that the routing of BE traffic, in a quasi-
stationary situation, will not be made at the cost of the decrease in revenue or at the
expense of an increase in the maximal blocking probability of QoS traffic flows. Never-
theless, it is important to note that while QoS and BE traffic flows are treated separately
in terms of o.f.s so as to take into account their different priority in the routing optimiza-
tion, the interactions among all traffic flows are fully represented in the model. In fact,
the contributions of all the traffic flows which may use every link of the network are used
to obtain the blocking probabilities B( fs).
A full description of the traffic modeling stochastic approach used in the routing model

can be seen in [4]. In the considered basic teletraffic model, the blocking probabilities Bks,
for micro-flows of service type s in link lk , are calculated by Bks = Bs

(
dk , ρk ,Ck

)
, with

Bs representing the function (implicit in the teletraffic stochastic model) that expresses
the marginal blocking probabilities, Bks, in terms of equivalent effective bandwidths dks
for all service types, reduced traffic loads ρks offered by flows of type s to lk and the
link capacity Ck . With this type of approximation (see [9]), the calculation of {Bks} can
be made by efficient and robust numerical algorithms, which are essential in a network-
wide routing optimizationmodel of this type, for tractability reasons. In this situation, the
classical Kaufman (or Roberts) algorithm ([10,11]) can be used to calculate the functions
Bs for small values of Ck . For larger values of Ck , approximations based on the uniform
asymptotic approximation (UAA) in [12] are used, having in mind its efficiency in these
situations.
The decision variables R = ∪|S|

s=1R(s) represent the network routing plans, that is, the
set of all the feasible routes (i.e., node-to-node loopless paths) for all traffic flows, with
R(s) = ∪fs∈FsR( fs), s ∈ SQ ∪ SB and R( fs) = (rp( fs)), p = 1, · · · ,M with M = 2 in our
model. That is, an alternative routing principle is used: for each flow fs the connection
request attempts the first choice route r1( fs); if it is blocked the second choice route r2( fs)
is tried. A request will be blocked only if r2( fs) is also blocked.
The very high complexity of the routing problem P-M2-S2 stems from two major fac-

tors: all o.f.s are strongly interdependent (via the
{
B( fs)

}
), and all the o.f. parameters and

(discrete) decision variables R (network route plans) are also interdependent in terms of
their effects.
Considering the form of P-M2-S2, one may conclude on the great intractability of this

problem. Note that there are possible conflicts between the o.f.s in P-M2-S2: in many
routing situations, themaximization ofWQ leads to a deterioration on some B( fs), s ∈ SQ,
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for certain traffic flows with low intensity and this tends to increase BMs|Q and Bms|Q,
and consequently, BMm|Q. This is a major factor that justifies the interest and poten-
tial advantage in using multiobjective approaches when dealing with this type of routing
methods.

The heuristic resolution approach

The theoretical foundations of a specialized heuristic strategy for finding ‘good’ compro-
mise solutions to the very complex bi-level hierarchical multiobjective alternative routing
optimization problem, are presented in [13]. In [5], a heuristic procedure (HMOR-S2PAS),
devised to seek non-dominated solutions to this problem, is proposed and applied to test
networks used in a benchmarking case study, for various traffic matrices. This heuristic
resolution approach is briefly reviewed in this section.
This heuristic is based on the recurrent calculation of solutions to an auxiliary

constrained bi-objective shortest path problem P(2)
s2 , formulated for every end-to-end

flow fs,

min
r( fs)∈D( fs)

⎧⎨
⎩mn(r( fs)) =

∑
lk∈r( fs)

mn
ks

⎫⎬
⎭

n=1;2

The two metrics mn to be minimized are the marginal implied costs m1
ks = cQ(B)

ks and
the marginal blocking probabilities m2

ks = − log(1 − Bks) for flows of service type s on
link lk . These metrics are chosen because the metric blocking probability tends, at a net-
work level, to minimize the maximal node-to-node blocking probabilities B( fs), while the
metric implied cost tends to maximize the total average revenueWT in a single class mul-
tiservice loss network ([14,15]). The set of all feasible loopless paths for flow fs, D( fs),
satisfies specific traffic engineering constraints for flows of type s. By using this approach,
the efficiency of different candidate routes in the context of a multicriteria routing frame-
work of this type can be compared by taking into account both the loss probabilities
experienced along the candidate routes and the knock-on effects upon the other routes in
the network, effects which are associated with the acceptance of a call on that given route.
Such effects can be measured exactly through the marginal implied costs for QoS(BE)
traffic, cQ(B)

ks , associated with the acceptance of a connection (or ‘call’) of traffic fs of any
service type s ∈ S on a link lk , that can be defined as the expected value of the traffic
loss induced on all QoS(BE) traffic flows resulting from the capacity decrease in link lk
(see [13]).
In the heuristic, the auxiliary constrained shortest path problem P(2)

s2 is solved by an
algorithmic approach, MMRA-S2 (Modified Multiobjective Routing Algorithm for mul-
tiservice networks, considering 2 classes of Service) in [13], which aims at finding a ‘best’
compromise path from a set of non-dominated solutions, according to a system of prefer-
ences. The path computation and selection are fully automated; therefore, the system of
preferences is embedded in the working of the algorithm. This is implemented by defin-
ing preference regions in the o.f. space obtained from aspiration and reservation levels
(preference thresholds) defined for the two o.f.s ([14,15]), as will be explained later.
The candidate solutions

(
r1( fs), r2( fs)

)
for each fs are generated using MMRA-S2. They

are selected (or rejected) according to specific criteria, to be ‘tuned’ throughout the
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execution of the heuristic. A maximal number of arcs Ds per route for each service type s
is previously defined and a feasible route set D( fs) is obtained for each fs.
Notice that the successive application ofMMRA-S2 to every traffic flow does not lead to

an effective resolution approach to the network routing problem P-M2-S2, as anticipated
by the theoretical analysis of the model and confirmed by experimentation. This results
from an instability phenomenon arising in such path selection procedure, expressed by
the fact that the route sets R often tend to oscillate between specific solutions some of
which may lead to poor global network performance under the prescribed metrics. This
instability phenomenon is associated with the complexity and interdependencies in the
addressed problem P-M2-S2, namely the interdependencies between

{
cQ(B)

ks

}
and {Bks}

and between these two sets and the current network route set R.
Therefore, it is necessary to search for the subset of the path set, the elements of

which should be possibly changed in the next route improvement cycle, which consti-
tutes another core idea of the heuristic approach. A criterion for choosing candidate paths
for possible routing improvement by increasing order of a function ξ( fs) of the current(
r1( fs), r2( fs)

)
is proposed in [16]. Preference (concerning the potential value in chang-

ing the second choice route when seeking to improveWQ orWB) is given to the flows for
which the route r1( fs) has a low implied cost and the route r2( fs) has a high implied cost,
or to the flows which currently have worse end-to-end blocking probability.
In a basic version of the heuristic, HMOR-S2, each new solution is obtained by process-

ing the current best solution. A basic searching strategy is to seek for routing solutions
R(s) for each service s ∈ S , in order to achieve a better performance in terms of WB (if
s ∈ SB) or Bms|Q and BMs|Q (if s ∈ SQ), while respecting the hierarchy of o.f.s. This also
means that network resources are left available for traffic flows of other services so that
the solutions selected at each step of the procedure may improve the first-priority o.f.s
WQ and BMm|Q. The heuristic is designed in order to seek, firstly for each QoS service
and, secondly, for each BE service, solutions which dominate the current one, in terms of
Bms|Q and BMs|Q for QoS services and in terms ofWB for BE services. These solutions are
accepted only if they do not lead to the worsening of any of the network functions WQ
and BMm|Q.
Due to these strict limitations imposed on the acceptance of a new solution, there is

the realization that some potentially interesting solutions to the routing problem are not
further pursued. Therefore, throughout the execution of the basic heuristic some possibly
interesting solutions are stored and later checked, seeking to find a ‘best’ possible solution
to the problem in hand [5].
The steps of this heuristic resolution approach are explicitly written out in an Appendix

at the end of the paper.

Dealing with imprecision, inaccuracy, and uncertainty in the model

The development of the routing model and the implementation and application of the
resolution procedure put in evidence the importance of IIU factors of the routing model
and their impacts on the results of the routing method. In this subsection, an analysis and
a systematization of these factors in the context of the model are presented. In Table 1, a
summary of the sources of IIU is presented. Also, the way these aspects are dealt with in
our resolution approach are discussed (and summarized in Table 1) or a brief explanation
as to why these aspects do not have a significant impact on the final results is provided.
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Table 1 Sources of IIU and how they are dealt with in the heuristic

Sources of IIU Effect Dealing with IIU

High complexity of the routing problem Inaccuracy (the Different mechanisms of the heuristic
P-M2-S2 solutions are resolution in its present version (HMOR-S2PAS)

inherently
approximate)

Simplifications and approximations Imprecision The focus is on the relative value of the results
assumed in the stochastic model for of the traffic model; small differences between o.f.
the traffic in the links, leading to an values can be disregarded when comparing solutions
approximate model, unavoidable for (this is a achieved by using adequate numerical traffic
computational tractability reasons calculation procedures); scenario evaluation with

different traffic matrices

Instability phenomenon potentially Imprecision Criterion for choosing candidate paths for possible
arising in the path selection procedure and uncertainty routing improvement, embedded in the main
if the MMRA-S2 is applied successively to heuristic ‘optimization’ cycle
all the end-to-end flows of each
service type

Numerical errors in the calculations of Imprecision ‘Robust’ and well-tested numerical algorithms
marginal implied costs and blocking (namely the Kaufman/Roberts algorithm and
probabilities of all the flows, propagating fixed-point iterators)
throughout the resolution procedure

Stochastic nature of the traffic offered External Periodical update of traffic flows means via a
to the network uncertainty statistical estimate (first-order moving average)

based on real-time measurements; sensitivity/
robustness analysis; scenarios evaluation.

Uncertainties in the identification Specific form Definition of dynamic preference thresholds
of the ‘virtual decision maker’ in a of internal in the o.f. space, combined with the use
fully automated decision application uncertainty of reference points
environment

Imprecision factors

The imprecision factors stem mainly from the approximations inherent to the analytic
traffic model (underlying the optimization model), namely a superposition of indepen-
dent Poisson flows and independent occupations of the links. A general description
of the stochastic traffic models associated with this issue can be seen in ([17], Chap-
ter 6). An exact model which might be in principle applied to these networks is in
[18], which is based on the consideration of MMPPs (Markov Modulated Poisson
Processes) for representing the superposition of the overflows (resulting from the alter-
native routing) from independent Poisson processes. The type of considered simplifi-
cation leads inevitably to intrinsic imprecisions in the values of the traffic parameters
which are reflected in the calculation of the o.f. values. Still, if a more accurate and
realistic representation of the traffic flows is used, better estimates of the blocking
probabilities will be achieved. Nonetheless, the approximations in our model can be
considered appropriate and, above all, absolutely necessary in this context, for practi-
cal reasons. In fact, if more exact stochastic models are used to represent the traffic
flows and to calculate the blocking probabilities in overflow conditions such as the
one in [18], the computational burden will be too heavy since the analytical model
has to be numerically solved many times during the execution of the heuristic and
the routing method will become intractable in terms of memory and processing time
requirements.
Some imprecision also arises from the numerical errors, associated with the resolution

of the system of equations of the traffic model which propagate throughout the resolution
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procedure, as the resolution of the traffic model has to be performed many times
(in the calculations of marginal implied costs and blocking probabilities of all the flows).
Tominimize the latter imprecision effects, some ‘robust’ and well-tested classical numeri-
cal algorithms (namely the Kaufman/Roberts algorithm ([10,11]) and fixed-point iterators
([19])) are used to estimate the blocking probabilities in the system. Moreover, these two
types of errors do not compromise the inequality relations between the o.f. values, as the
aim of the routing optimization procedure is just the comparison of routing solutions
in terms of the values of the o.f.s. That is, the focus of the tackled multiobjective opti-
mization model is on the relative value of the results of the traffic model rather than on
the absolute accuracy of such values. Also, small differences between o.f. values can be
disregarded when comparing solutions.
Further imprecision effects stem from an instability phenomenon which may poten-

tially arise in the path selection procedure. In fact, the route sets R, if obtained by
successive application of MMRA-S2 to every traffic flow, often tend to oscillate between
certain solutions some of which may lead to poor global network performance under the
prescribed metrics, thus leading to uncertainty in the results. The experimentations con-
firm that the successive application of MMRA-S2 to every traffic flow does not lead to an
effective resolution approach to the network routing problem P-M2-S2. For dealing with
this issue in a successful manner, detailed analysis and extensive experimentation with
the heuristic have led to the proposal of a criterion for choosing candidate paths for pos-
sible routing improvement by increasing order of a function ξ( fs) of the current routes of
a flow fs, giving preference (concerning the potential value in changing the routes when
seeking to improve the QoS(BE) traffic revenue) to the flows for which the first route has
a low implied cost and the second route has a high implied cost, or to the flows which
currently have worse end-to-end blocking probability.

Inaccuracy factors

The inaccuracies are a consequence of the high complexity of the routing problem
P-M2-S2 stemming from the combinatorial nature of the global routing multiobjective
optimization problem and are related to two major factors specific to the described
model: all o.f.s are strongly interdependent (via the B( fs)) and all the o.f. parameters and
(discrete) decision variables R (network route plans) are also interdependent in terms of
their effects in the problem solutions. These interdependencies result from the fact that
all the specified o.f.s depend on all traffic flow patterns in the global network, which may
change significantly with any alteration in any route choice for any given node-to-node
flow. This mechanism generates potential instability in the global routing solutions, as
analyzed in a similar yet simpler model in [15]. Note that all these interdependencies are
defined explicitly or implicitly through the underlying traffic model.
Also, note that even in the simplest degenerated case (single service with single-

criterion optimization and no alternative routing), the problem is NP-complete in the
strong sense, as proved in [20]. This high complexity leads to inaccurate results, because
the solutions of the routing problem are inherently approximate. In fact, when heuristic
solution techniques are employed, the resolution method does not calculate all the non-
dominated solutions and even for those selected solutions which are computed there is no
certainty that they are not potentially dominated by other solutions. Concerning the pos-
sibility of not detecting the condition of certain weakly dominated solutionsa this may be
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explained by small variations in the values of some o.f.s for certain solution(s) close to the
current one (for example, by changing a single route for a given flow), solution(s) which,
in some cases, may not be detected by the heuristic. It must be remarked that this occur-
rence is rare but in principle may arise. The mechanisms of the heuristic resolution in its
present version (HMOR-S2PAS), as described in the previous sub-section, are devised to
deal with this issue in order to minimize the impact of these inaccuracies in the quality of
the obtained compromise solutions.

Uncertainty factors

As for the uncertainty issues, they are raised mainly by the stochastic nature of the offered
traffic and the related estimation procedures performed throughout the stochastic simu-
lation experiments with the proposed heuristic. In the classification framework discussed
in [21], this type of uncertainty may be considered as an ‘external uncertainty’, as it relates
to a form of uncertainty that results from environmental conditions (the stochastic traf-
fic load conditions in the network) of the model that cannot be controlled by the decision
maker.
A particular form of ‘internal uncertainty’ (in the sense discussed in [21]) may be

identified in the context of this model. This type of ‘uncertainty’ has to do with the iden-
tification and representation of the decision maker preferences. Noting that the model
is supposed to be applied in an automated manner and following our previous expe-
rience in this area [5], we have developed a solution selection procedure based on the
definition of dynamic preference thresholds in the o.f. space, combined with the use
of reference points, inspired by the methodology described in [22]. This corresponds
to imbedding the preferences of a ‘virtual decision maker’ in the form of a specific,
problem-oriented, procedure of selection of non-dominated solutions. The effectiveness
of such solutions is tested a posteriori using a simulation test-bed, applied in various
typical application scenarios. For further details on the solution selection procedure,
see [5].
In order to evaluate the effect of these uncertainty factors in the model results, an

experimental study consisting of stochastic simulation experiments is performed. In the
discrete event stochastic simulation experiments performed with a static routing model,
a measurement of the degree of uncertainty of the o.f. values can be obtained by applying
a classical statistical procedure (batch means with independent replications). As for the
state-dependent periodic-type dynamic routing model, the traffic flow means are peri-
odically updated via a statistical estimate, namely a first-order moving average, based
on real-time measurements, dependent on a parameter b (fixed a priori), as explained
in the ‘Simulation experiments’ section, which is another source of statistical uncer-
tainty. This requires a sensitivity/robustness analysis, for the evaluation of the influence
of this parameter and of the routing plan update time interval on the final global routing
solution.
Note that the problem that is being considered here is not a ‘classical’ problem of deci-

sion under uncertainty as discussed in depth in [21]. A classical approach to that type
of problem is the use of expected utility theory to planning under uncertainty, while our
model may be considered as a specific type of multicriteria optimization model with
stochastic variables. In the model, the o.f.s are means or probabilities defined in a classical
probability theory framework.
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Experimental study
In this section, the analytical and simulation results obtained with the HMOR-S2PAS
heuristic in four different networks are presented. The analytical results are obtained by
a single run of the heuristic and the results for the QoS flows revenue WQ may be com-
pared with theoretical bounds for the same function. As for the simulation results, they
allow for a more realistic assessment of the results of the heuristic having in mind the
combined effects of the analyzed IIU factors.
This set of experiments represents a set of scenarios [21], in the sense that each exper-

iment has its specific features and allows for the analysis of relevant working conditions
that can be encountered in actual networks. Notice however that the use of scenarios in
this context is not for the evaluation and development of alternative solutions (a tech-
nique often used in multiattribute models, as extensively analyzed in [21]), but rather to
explore the different possibilities that may arise in the routing context, having in mind
to test the robustness and effectiveness (in terms of performance) of the solution selec-
tion procedure. This is achieved by considering scenarios of implementation of static and
dynamic versions of the model and the consideration of three situations of load/overload
conditions.
Two types of simulation are considered, one corresponding to a static routing model

where the routing plan calculated by the heuristic is never changed regardless of the
random variations in offered traffic throughout the simulation, for a given matrix of
mean traffic offered in statistical equilibrium. The other corresponds to a periodic type
state-dependent dynamic routing model, where the routing plans are updated periodi-
cally as a function of real-time traffic measurements, by using the heuristic HMOR-S2
repeatedly. Dynamic routing in a telecommunications network is a well-known routing
principle where the most recent information on the network conditions is taken into
account in order to find appropriate paths for the connection requests in the network.
This is especially important when there are significant fluctuations of the offered traffic
in various parts of the network, in particular as a result of overload or network failures.
A comprehensive text on dynamic routing in telecommunication networks can be seen
in [23].
For each of these two types of simulation, we consider three relevant network scenarios

regarding the random fluctuations of traffic that are typical of stochastic traffic models:
a deterministic scenario; a scenario where calls arrive according to a Poisson process,
service times follow an exponential distribution and the network is critically loaded; a
scenario where traffic flows have a higher ‘variability.’ The analysis of the results of each of
these scenarios in each of the types of simulation gives an insight on the possible effects
of inaccuracies intrinsic to the model and to the analytic/numerical resolution method on
the results of the heuristic resolution procedure and also enables the verification of the
effectiveness of the selected solutions, hence implementing a specific form of robustness
analysis.

Application of the model to a network case study

The benchmarking case study considered here is based on the one in [24], where a model
for traffic routing and admission control in multiservice, multipriority networks support-
ing traffic with different QoS requirements, is proposed. Deterministic models are used
in the calculation of paths, in particular mathematical programming models based on
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Multicommodity Flows (MCFs). These models can be adapted to a stochastic traffic envi-
ronment by using a simple technique: the requested values of the flow bandwidths in
the MCF model are compensated with a factor α ≥ 0.0, so as to model the effect of
the random fluctuations of the traffic that are typical of stochastic traffic models. In the
application example in [24], three values of α are proposed: α = 0.0 corresponds to the
deterministic approach; α = 0.5 is the compensation factor when calls arrive according
to a Poisson process, service times follow an exponential distribution and the network is
critically loaded; and α = 1.0 for traffic flows with higher ‘variability.’
The o.f.s of this problem, to be maximized, are the revenues WQ and WB, associated

with QoS and BE flows. A bi-criteria lexicographic optimization formulation including
admission control for BE traffic is considered, concerning the revenues WQ and WB, so
that the improvements inWB are to be found under the constraint that the optimal value
ofWQ is maintained.
In the deterministic flow-based model in [24], a base matrix T = [Tij] with offered

bandwidth values from node i to node j [Mbps] is given. A multiplier ms ∈ [0.0; 1.0] with∑
s∈S ms = 1.0 is applied to these matrix values to obtain the offered bandwidth of each

flow fs with service type s. The transformation of this type of matrix into a matrix of
offered traffic A( fs), used in our stochastic traffic model, is achieved by A( fs) ≈ msTij

dsu0 −
α

√
msTij
dsu0 [Erl] if

msTij
dsu0 > α2 and both T( fs) = msTij and A( fs) are high. Otherwise, A( fs) ≈

msTij
dsu0 [Erl] where u0 = 16 kbps is a basic unit of transmission [bit/s].

NetworkM
The routing model in [24] and the one considered here can be applied to the test network
M depicted in Figure 1. It has |N | = 8 nodes, with ten pairs of nodes linked by a direct arc
and a total of |L| = 20 unidirectional arcs, giving an average node degree for this network
of δM = 2.5. The bandwidth of each arc C′

k [Mbps] is shown in Figure 1. The number
of channels Ck is Ck =

⌈C′
k

u0

⌉
, with basic unit capacity u0. A total of |S| = 4 service

types with the features displayed in Table 2 are considered. The values of the required
effective bandwidths ds = d′

s
u0 [channels] ∀s ∈ S are also in the table (where d′

s is the
required bandwidth in kbps). The expected revenue for a call of type s is assumed to be
ws = ds,∀s ∈ S . The average duration of a type s call is hs andDs represents the maximum
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Figure 1 Test networkM. This test network (with the indication of the bandwidth of each arc C′
k , in Mbps)

is in [24].
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number of arcs for a route of a type s call. The application example in [24] provides upper
boundsWmax

Q for the optimal value of the QoS traffic revenueWQ in our model.

Network E
In another set of tests, the considered routing model is applied to another test network E
(depicted in Figure 2), so as to further grasp the potential of the proposed heuristic strat-
egy. Network E has |N | = 10 nodes, with 12 pairs of nodes linked by a direct arc and a
total of |L| = 24 unidirectional arcs, giving an average node degree for this network of
δE = 2.4. The bandwidth of each arc C′

k (Mbps) is shown in Figure 2. This test network
is based on the networkO, in [25], dimensioned for extremely low blocking probabilities.
This network O has a topology similar to the one in Figure 3, with a capacity of C′

k = 50
Mbps for each arc, which is equivalent to a capacity of Ck = C′

k
u0 = 3125 channels. The

changes in the network by eliminating a few links allow for the achievement of slightly
higher blocking probabilities. The traffic matrix remains the same as in the original refer-
ence ([25]). The information on the network and on the traffic matrix is used as an input
to the routing model considered here. A comparison of the traffic that is offered to each
of the networksM and E for each α shows that the offered load is lower in E .
The service features are the same as for the tests with networkM and they are displayed

in Table 2. Notice that the network diameter of network E (equal to 4) is higher than the
network diameter of networkM (equal to 3), which will influence the value of Ds. These
networks have similar density since their average node degree δ is practically the same.
In [25], no results concerning any of the o.f.s considered here are provided, as their

multiobjective routing model is radically different from the one considered here. The only
results that can be extracted from the proposedmodel in [25] are approximate ideal values
for the QoS flows revenue,W ideal

Q .

Networks G andH
For the final set of tests, the considered routing model is applied to test networks G and
H, for which the topology is depicted in Figure 3. They have |N | = 10 nodes, with 16
pairs of nodes linked by a direct arc and a total of |L| = 32 unidirectional arcs, giving
an average node degree for these networks of δG = δH = 3.2. These networks have
greater density than networks M and E . The bandwidth of each arc C′

k (Mbps) for each
of the networks (obtained by employing a very simple network dimensioning algorithm)
is shown in Tables 3 and 4.
The test networks G and H can be obtained after a redimensioning of the original net-

work O given in [25]. The offered traffic matrix remains the same as in [25]. A value βs
for the mean blocking probabilities for flows of type s, Bms, is established, with a possible
variation of �B.

Table 2 Service features on the test networks

Service Class
d′
s ds ws

hs Ds (arcs) ms
(kbps) (ch.) (s) M E G,H

1 - video QoS 640 40 40 600 3 4 3 0.1

2 - Premium data QoS 384 24 24 300 4 5 4 0.25

3 - voice QoS 16 1 1 60 3 4 3 0.4

4 - data BE 384 24 24 300 7 9 9 0.25
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Figure 2 Test network E . This test network (with the indication of the bandwidth of each arc C′
k , in Mbps) is

in [25].

Considering a routing method for network O using only the shortest path direct rout-
ing (typical of Internet conventional routing algorithms), the mean blocking probabilities
Bms are calculated. Once these values are known, they are compared with the estab-
lished values at the beginning of the algorithm. If for service s, Bms > βs then the
links in paths for flows of service s have their capacity increased. On the contrary, if for
service s, Bms < �Bβs, then the links in paths for flows of service s have their capac-
ity decreased. The algorithm proceeds iteratively until it converges (which means that
�Bβs < Bms < βs,∀s ∈ S). Sometimes, the algorithm oscillates between two different
solutions, preventing it from converging. Therefore, a maximum number of runs has to
be established, so as to avoid this situation.
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Figure 3 Network topology for test networksG andH. For information on this network topology, see [25].
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Table 3 Bandwidth of each arc C′
k , in Mbps, for the test networkG

� 0 1 2 3 4 5 6 7 8 9

0 40.64 44.384 40.64

1 40.64 35.024

2 35.024 35.024 36.896 38.768

3 44.384 35.024 42.512 38.768

4 40.64 42.512 44.384 40.64

5 38.768 44.384 38.768

6 38.768 46.256 40.64

7 40.64 46.256 38.768

8 36.896 40.64 38.768 44.384

9 38.768 44.384

This very simple network dimensioning algorithm can be used for the dimensioning of
test networks G and H, for βs = 0.1 and βs = 0.12, respectively, with �B = 0.9, that
is, a situation of very high blocking is considered, associated with traffic overload for all
services, for α = 0.0. The purpose is to carry out comparisons of the performance of the
considered static and dynamic routing methods in overload conditions (α = 0.0) and in
low and very low blocking conditions for the QoS traffic for α = 0.5 and α = 1.0. The
original network O is not used in this study because it is dimensioned for extremely low
blocking probabilities.
The traffic matrix T = [Tij] with offered total bandwidth values from node i to node

j [Mbps] remains the same as in the original reference ([25]). As with the tests performed
for network E , the modified version of the network and the traffic matrix are the only data
taken from [25]. This information is used as an input to the routing model considered
here.
These two networks G and H have more connectivity than networks M and E . The

service features are the same as for the tests with the other networks. The ideal optimal
values for the QoS flows revenue, W ideal

Q , are calculated from the data in [25] and can be
used for comparison purposes, as done for network E .

Analytical experiments

In the analytical study, the HMOR-S2 heuristic (basic version of the heuristic without
storage of non-dominated solutions) is run once, followed by a run of the HMOR-S2PAS
heuristic.

Table 4 Bandwidth of each arc C′
k , in Mbps, for the test networkH

� 0 1 2 3 4 5 6 7 8 9

0 39.6 43.76 39.6

1 39.6 33.36

2 33.36 33.36 35.44 37.52

3 43.76 33.36 41.68 37.52

4 39.6 41.68 43.76 39.6

5 37.52 43.76 37.52

6 37.52 45.84 39.6

7 39.6 45.84 37.52

8 35.44 39.6 37.52 43.76

9 37.52 43.76
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The initial solution is typical of Internet routing conventional algorithms: only one path
for each flow (i.e., without an alternative path) is considered; the initial solution is the
same for all the services s ∈ S and the paths are symmetrical; the path for every flow fs is
the shortest one (that is, the one with minimum number of arcs); if there is more than one
shortest path, the one withmaximal bottleneck bandwidth (i.e., theminimal capacity of its
arcs) is chosen; if there is more than one shortest path with equal bottleneck bandwidth,
the choice is arbitrary.
The routing plan obtained at the end of the HMOR-S2 run for each specific α is the

initial solution of HMOR-S2PAS. This heuristic is run only once. For the archived routing
plans obtained at the end of this single run, values for all the o.f.s are computed and the
‘best’ possible solution in the best possible preference region is chosen to be the final solu-
tion of the algorithm, using a reference point-based procedure as the solution selection
mechanism, as in [5].
For the experiments with HMOR-S2PAS, an archive of size 5 is considered, chosen

empirically after extensive experimentation. Here, the practical conclusion is that an
increase in the archive size will not necessarily lead to better final results because at the
end of the heuristic run (when the final solution is chosen from those in the archive) the
top 5 solutions tend to be the same regardless of the archive size (≥ 5).

Simulation experiments

Simulation experiments, with static and dynamic routing methods using the solutions
provided by the heuristic, can also be carried out. The purpose of this simulation study is
the validation of the routing model results and the evaluation of the errors intrinsic to the
analytical model which provides the estimates for the o.f.s.
In a first set of experiments, the discrete-event stochastic simulation is applied to a static

routing model, where the routing plan is the final solution obtained after the HMOR-
S2PAS run. This routing plan does not change throughout the simulation regardless of
the random variations of traffic offered to the network. After an initialization phase that
lasts for a time twarm−up (that should be long enough to guarantee that the system state
at the end of the initialization phase is representative of the steady-state behavior of the
system), information on the number of offered calls and carried calls in the network for
each flow fs, s ∈ S , is gathered, until the end of the simulation. With this information,
B( fs), s ∈ S and subsequently, the values of the upper- and lower-level o.f.s related to
blocking probabilities can be estimated. The calculation of the expected revenues is based
on the number of carried calls in the network.
In the periodic and state-dependent dynamic version of the routing method considered

here, the network state is assessed periodically and the gathered information on that state
is used to periodically choose the most appropriate paths in the network, according to
the HMOR-S2 routing algorithm. In the time interval [nτ ; (n + 1)τ [, the estimate of the
average traffic offered to the network by the flow fs is given by x̃n( fs), obtained from a first
order moving average iteration of the type

x̃n( fs) = (1 − b)x̃n−1( fs) + bX̃n−1( fs),

where X̃n−1( fs) is an estimator of the average value of the traffic offered by fs to the net-
work in the previous interval [(n − 1)τ ; nτ [. The value of b ∈] 0.0; 1.0[ is a compromise
between the need to obtain a quick response of the estimator to rapid fluctuations in
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X̃( fs) and the stability of the long-run variations and should be settled by extensive exper-
imentation with the simulation model. The parameter τ is both the update period of the
estimates of the offered traffic and the update period of the network routing plans. Note
that the process of path choice should take a short time, when compared to τ .
The routingmethod seeks to obtain new routing plans adapted to the changing network

working conditions resulting from the random fluctuations of traffic intensities. Taking
into account the features and great complexity of the routing model, the choice of the
‘start-up’ routing solution of the dynamic method is of great importance concerning its
performance. The start-up solution is the final solution obtained after the HMOR-S2PAS
is run. The availability of a good estimate of the initial nominal traffic matrix is a necessary
requirement of this dynamic routing method. Having in mind the periodically updated
characteristics of the offered traffic, the ‘best’ possible set of paths is chosen so as to
improve the multidimensional network performance, as specified by the multiobjective
routing model.
A first phase of simulation, the initialization phase, lasts for a time twarm-up = t0 + t1. In

a first stage that lasts t0, only periodical updates of the estimate of the offered traffic are
performed, with period τ . After that time t0, the offered traffic estimates are assumed to
be representative of a steady-state behavior. Afterwards, during a time t1, the estimate of
the offered traffic is still performed with a period τ , along with periodical updates of the
routing plan, with the same period τ .
After the warm-up time, both updates are still performed with the indicated period and

based on information on the number of offered calls and effectively carried calls in the
network for each flow fs, s ∈ S gathered from real-time measurements, until the end of
the simulation. Using this information, a calculation of B( fs) estimates (s ∈ S) can be
made, as well as a calculation of the values of all the upper- and lower-level o.f.s related
to blocking probabilities. As for the revenues, the knowledge of the effectively carried
calls in the network allows for the calculation of the carried traffic estimates, hence the
calculation of revenues follows straightforwardly.

Comments on the experimental results

In Tables 5, 6, 7, and 8, the analytical values of each o.f. are displayed, together with the
simulation results (average value ± half length of the 95% confidence interval) for these
functions. The revenue values have two decimal places and the blocking probability values
have three significant figures.
In the simulation experiments, a total of six seed files for randomnumber generation are

used, so the number of the performed independent runs is R = 6, for each α. To illustrate
the way in which the 95% confidence interval is calculated, take the example of the QoS
revenue, WQ. An estimate of its average value is ŴQ = 1

R
∑R

i=1WQ|i and an estimate of

its variance is σ̂ 2(ŴQ) =
∑R

i=1(WQ|i−ŴQ)2

R(R−1) whereWQ|i is the QoS revenue value for the i-th
run, i = 1, · · · ,R. Considering a two-sided Student t-distribution, the confidence interval
forWQ is ŴQ ± t0.025;R−1σ̂ (ŴQ) where the critical value of t is t0.025;R−1 = t0.025;5 = 2.57
(see [26], Table A.4).
For the static model simulation, different values for the warm-up time can be tried,

and the results displayed in the tables correspond to those obtained with twarm-up = 8 h
for a total simulation time of 48 h. For the dynamic model simulation (which represents
an innovative aspect of the extensive study conducted with this routing model in these



G
irão-Silva

etal.JournalofU
ncertainty

A
nalysisand

A
pplications

2014,2:3
Page

17
of31

http
://w

w
w
.juaa-journal.com

/content/2/1/3

Table 5 Average o.f. values for the simulation of the static and the dynamic routingmodel

α O.f.
Initial Analytical Static routing Dynamic routing model results

solution results model results τ = 10m τ = 20m τ = 30m

0.0

WQ 54,803.69 64,905.26a 64,774.12 ± 68.28 64,776.24 ± 76.03 64,774.68 ± 68.46 64,750.27 ± 61.42
BMm|Q 0.413 0.0752 0.0773 ± 0.00356 0.0774 ± 0.00363 0.0771 ± 0.00333 0.0793 ± 0.00302

Bm1|Q 0.413 0.0752 0.0773 ± 0.00356 0.0774 ± 0.00363 0.0771 ± 0.00333 0.0793 ± 0.00302
Bm2|Q 0.314 0.0184 0.0236 ± 0.000576 0.0235 ± 0.000655 0.0237 ± 0.000601 0.0238 ± 0.000696
Bm3|Q 0.0198 0.00184 0.00200 ± 0.0000499 0.00200 ± 0.0000445 0.00200 ± 0.0000567 0.00204 ± 0.0000592
BM1|Q 0.912 0.708 0.706 ± 0.00912 0.702 ± 0.0145 0.704 ± 0.0115 0.682 ± 0.0198
BM2|Q 0.766 0.103 0.110 ± 0.00600 0.108 ± 0.0154 0.111 ± 0.00488 0.0916 ± 0.00800
BM3|Q 0.0585 0.0301 0.0303 ± 0.000146 0.0300 ± 0.000287 0.0303 ± 0.000384 0.0292 ± 0.000978
WB 15,106.57 17,039.20 17,017.10 ± 39.32 17,030.28 ± 57.28 17,015.51 ± 39.62 17,059.73 ± 42.35

0.5

WQ 51,785.21 60,739.76b 60,676.12 ± 61.43 60,659.89 ± 53.91 60,675.17 ± 66.08 60,287.27 ± 57.93
BMm|Q 0.413 0.0278 0.0306 ± 0.00145 0.0317 ± 0.00146 0.0308 ± 0.00149 0.0533 ± 0.00158

Bm1|Q 0.413 0.0278 0.0306 ± 0.00145 0.0317 ± 0.00146 0.0308 ± 0.00149 0.0533 ± 0.00158
Bm2|Q 0.296 0.00230 0.00463 ± 0.000355 0.00511 ± 0.000556 0.00460 ± 0.000674 0.0163 ± 0.000714
Bm3|Q 0.0174 0.000857 0.000922 ± 0.0000167 0.000904 ± 0.0000179 0.000912 ± 0.0000156 0.00105 ± 0.0000369
BM1|Q 0.882 0.629 0.626 ± 0.0196 0.622 ± 0.0243 0.628 ± 0.0207 0.481 ± 0.0280
BM2|Q 0.722 0.00959 0.0158 ± 0.00216 0.0166 ± 0.00142 0.0155 ± 0.00130 0.0552 ± 0.00348
BM3|Q 0.0517 0.0244 0.0245 ± 0.000261 0.0239 ± 0.000315 0.0244 ± 0.000236 0.0171 ± 0.000325
WB 13,787.49 16,685.60 16,696.08 ± 40.87 16,757.72 ± 80.12 16,702.89 ± 72.29 17,562.04 ± 41.26

1.0

WQ 49,010.41 56,106.51c 56,036.04 ± 45.53 56,044.88 ± 66.47 56,036.66 ± 49.07 55,895.41 ± 61.80
BMm|Q 0.405 0.0256 0.0274 ± 0.00174 0.0271 ± 0.00319 0.0273 ± 0.00121 0.0375 ± 0.00219

Bm1|Q 0.405 0.0256 0.0274 ± 0.00174 0.0271 ± 0.00319 0.0273 ± 0.00121 0.0375 ± 0.00219
Bm2|Q 0.275 0.00499 0.00805 ± 0.000619 0.00772 ± 0.00123 0.00803 ± 0.000747 0.0131 ± 0.00110
Bm3|Q 0.0150 0.000567 0.000643 ± 0.0000157 0.000590 ± 0.0000498 0.000640 ± 0.0000154 0.000686 ± 0.0000270
BM1|Q 0.841 0.556 0.552 ± 0.0304 0.495 ± 0.0826 0.555 ± 0.0262 0.354 ± 0.0517
BM2|Q 0.667 0.0186 0.0310 ± 0.00318 0.0298 ± 0.00504 0.0310 ± 0.00446 0.0492 ± 0.00497
BM3|Q 0.0446 0.0200 0.0201 ± 0.000295 0.0168 ± 0.00444 0.0202 ± 0.000248 0.0110 ± 0.000972
WB 12,445.64 16,465.58 16,436.45 ± 17.45 16,443.61 ± 81.71 16,438.56 ± 16.88 16,690.18 ± 50.64

Average o.f. values, and 95% confidence intervals, for the simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with t0 = t1 = 4 h, update period τ and b = 0.3), a total simulation time of 48 h
on the test networkM, for different values of α, when the HMOR-S2 is used to update the routing plan. a99.62%; b99.85%; c99.59% of the upper boundsWQ

max for the optimal value of the QoS traffic revenueWQ in [24].
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Table 6 Average o.f. values for simulation of the static and the dynamic routingmodel

α O.f.
Initial Analytical Static routing Dynamic routing model results

solution results model results τ = 10m τ = 20m τ = 30m

0.0

WQ 20,636.78 21,596.83a 21,587.85 ± 34.78 21,605.44 ± 37.10 21,617.39 ± 38.95 21,617.09 ± 35.60
BMm|Q 0.138 0.0220 0.0238 ± 0.00130 0.0245 ± 0.00202 0.0224 ± 0.00148 0.0219 ± 0.00140

Bm1|Q 0.138 0.0220 0.0238 ± 0.00130 0.0245 ± 0.00202 0.0224 ± 0.00148 0.0219 ± 0.00140
Bm2|Q 0.0872 0.00655 0.00779 ± 0.000317 0.00507 ± 0.000480 0.00432 ± 0.000205 0.00457 ± 0.000923
Bm3|Q 0.00394 0.000390 0.000399 ± 0.0000138 0.000423 ± 2.79·10−5 0.000375 ± 2.00·10−5 0.000365 ± 2.32·10−5

BM1|Q 0.410 0.130 0.137 ± 0.0156 0.165 ± 0.0250 0.156 ± 0.0195 0.138 ± 0.0122
BM2|Q 0.268 0.0920 0.0952 ± 0.0105 0.0162 ± 0.00137 0.0209 ± 0.00379 0.0303 ± 0.0225
BM3|Q 0.0127 0.00312 0.00296 ± 0.000193 0.00377 ± 0.000302 0.00336 ± 0.000281 0.00325 ± 0.000220
WB 6,606.51 6,940.64 6,954.27 ± 7.20 7,114.88 ± 25.83 7,053.08 ± 14.05 7,046.89 ± 43.31

0.5

WQ 17,599.15 17,685.84b 17,683.50 ± 15.54 17,683.45 ± 15.52 17,683.54 ± 15.54 17,683.51 ± 15.54
BMm|Q 0.0194 3.22·10−5 2.23·10−5 ± 5.46·10−5 6.35·10−5 ± 7.22·10−5 5.02·10−7 ± 3.66·10−7 2.16·10−5 ± 5.45·10−5

Bm1|Q 0.0194 3.22·10−5 2.14·10−5 ± 5.50·10−5 6.32·10−5 ± 7.26·10−5 0 2.13·10−5 ± 5.47·10−5

Bm2|Q 0.0107 1.47·10−8 0 0 0 0
Bm3|Q 0.000419 2.50·10−6 1.09·10−6 ± 7.54·10−7 7.08·10−7 ± 2.97·10−7 5.02·10−7 ± 3.66·10−7 4.08·10−7 ± 2.13·10−7

BM1|Q 0.0911 0.000701 0.00235 ± 0.00603 0.00277 ± 0.00335 0 0.00347 ± 0.00892
BM2|Q 0.0534 6.05·10−8 0 0 0 0
BM3|Q 0.00215 1.31·10−5 2.17·10−5 ± 1.81·10−5 3.35·10−5 ± 2.18·10−5 1.60·10−5 ± 1.08·10−5 1.74·10−5 ± 6.86·10−6

WB 5,239.94 5,296.26 5,297.08 ± 12.94 5,297.31 ± 12.77 5,297.23 ± 12.72 5,297.24 ± 12.86

1.0

WQ 16,027.90 16,028.14c 16,077.61 ± 15.03 16,077.61 ± 15.03 16,077.61 ± 15.03 16,077.61 ± 15.03
BMm|Q 5.04·10−5 9·10−10 0 0 0 0

Bm1|Q 5.04·10−5 9·10−10 0 0 0 0
Bm2|Q 3.75·10−5 < 1 · 10−10 0 0 0 0
Bm3|Q 1.21·10−6 < 1 · 10−10 0 0 0 0
BM1|Q 0.000400 8.7·10−10 0 0 0 0
BM2|Q 0.000209 < 1 · 10−10 0 0 0 0
BM3|Q 7.17·10−6 < 1 · 10−10 0 0 0 0
WB 3,355.75 3,355.88 3,350.97 ± 24.92 3,350.97 ± 24.92 3,350.97 ± 24.92 3,350.97 ± 24.92

Average o.f. values, and 95% confidence intervals, for simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with t0 = t1 = 4 h, update period τ and b = 0.3), a total simulation time of 48 h on
the test network E , for different values of α, when the HMOR-S2 is used to update the routing plan. a99.47%; b100%; c99.75% of the approximate ideal values for the QoS flows revenue,WQ

ideal, from the data in [25].
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Table 7 Average o.f. values for simulation of the static and the dynamic routingmodel

α O.f.
Initial Analytical Static routing Dynamic routing model results

solution results model results τ = 10m τ = 20m τ = 30m

0.0

WQ 20,859.85 21,690.16a 21,690.52 ± 37.22 21,688.67 ± 37.15 21,693.07 ± 37.19 21,693.46 ± 37.81
BMm|Q 0.110 0.00545 0.00619 ± 0.00119 0.00713 ± 0.000937 0.00591 ± 0.000643 0.00574 ± 0.00133

Bm1|Q 0.110 0.00545 0.00619 ± 0.00119 0.00713 ± 0.000937 0.00591 ± 0.000643 0.00574 ± 0.00133
Bm2|Q 0.0689 0.000465 0.000828 ± 0.000124 0.000944 ± 0.000213 0.000849 ± 0.000140 0.000816 ± 0.000193
Bm3|Q 0.00308 0.000275 0.000288 ± 2.64·10−5 0.000141 ± 2.11·10−5 0.000125 ± 2.68·10−5 0.000155 ± 2.85·10−5

BM1|Q 0.555 0.0613 0.0771 ± 0.0117 0.0723 ± 0.0282 0.0520 ± 0.00627 0.0509 ± 0.0214
BM2|Q 0.378 0.00699 0.00794 ± 0.00174 0.00522 ± 0.00139 0.00475 ± 0.00129 0.00430 ± 0.000795
BM3|Q 0.0190 0.00287 0.00288 ± 0.000312 0.00126 ± 0.000142 0.00103 ± 0.000274 0.000909 ± 0.000228
WB 6,738.68 7,158.14 7,161.10 ± 11.67 7,205.94 ± 19.96 7,172.37 ± 16.34 7,173.99 ± 11.71

0.5

WQ 17,611.81 17,685.89b 17,683.53 ± 15.54 17,683.54 ± 15.54 17,683.51 ± 15.56 17,683.51 ± 15.47
BMm|Q 0.0160 1.04·10−5 8.59·10−7 ± 8.23·10−7 0 2.15·10−5 ± 5.52·10−5 2.09·10−5 ± 5.36·10−5

Bm1|Q 0.0160 1.04·10−5 0 0 2.15·10−5 ± 5.52·10−5 2.09·10−5 ± 5.36·10−5

Bm2|Q 0.00926 7.2·10−9 0 0 0 0
Bm3|Q 0.000371 6.25·10−7 8.59·10−7 ± 8.23·10−7 0 5.64·10−8 ± 1.27·10−7 1.38·10−7 ± 3.00·10−7

BM1|Q 0.147 0.000128 0 0 0.00292 ± 0.00751 0.000891 ± 0.00229
BM2|Q 0.0866 4.45·10−7 0 0 0 0
BM3|Q 0.00353 4.46·10−6 2.24·10−5 ± 1.72·10−5 0 2.26·10−6 ± 4.94·10−6 5.68·10−6 ± 9.32·10−6

WB 5,247.65 5,296.57 5,297.18 ± 12.84 5,297.31 ± 12.80 5,297.33 ± 12.79 5,297.23 ± 12.86

1.0

WQ 16,025.69 16,028.14c 16,077.61 ± 15.03 16,077.61 ± 15.03 16,077.61 ± 15.03 16,077.61 ± 15.03
BMm|Q 0.000577 5·10−10 0 0 0 0

Bm1|Q 0.000577 5·10−10 0 0 0 0
Bm2|Q 0.000334 < 1 · 10−10 0 0 0 0
Bm3|Q 1.16·10−5 < 1 · 10−10 0 0 0 0
BM1|Q 0.00650 1.27·10−8 0 0 0 0
BM2|Q 0.00347 < 1 · 10−10 0 0 0 0
BM3|Q 0.000123 2·10−10 0 0 0 0
WB 3,354.76 3,355.88 3,350.97 ± 24.92 3,350.97 ± 24.92 3,350.97 ± 24.92 3,350.97 ± 24.92

Average o.f. values, and 95% confidence intervals, for simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with t0 = t1 = 4 h, update period τ and b = 0.3), a total simulation time of 48 h on
the test networkG, for different values of α, when the HMOR-S2 is used to update the routing plan. a99.90%; b100%; c99.75% of the approximate ideal values for the QoS flows revenue,WQ

ideal, from the data in [25].
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Table 8 Average o.f. values for simulation of the static and the dynamic routingmodel

α O.f.
Initial Analytical Static routing Dynamic routing model results

solution results model results τ = 10m τ = 20m τ = 30m

0.0

WQ 20,358.90 21,616.01a 21,597.91 ± 30.13 21,606.57 ± 44.40 21,616.80 ± 35.49 21,610.35 ± 34.71
BMm|Q 0.169 0.0224 0.0245 ± 0.00175 0.0245 ± 0.00173 0.0216 ± 0.00141 0.0225 ± 0.00146

Bm1|Q 0.169 0.0224 0.0245 ± 0.00175 0.0245 ± 0.00173 0.0216 ± 0.00141 0.0225 ± 0.00146
Bm2|Q 0.111 0.00341 0.00580 ± 0.000523 0.00492 ± 0.000528 0.00456 ± 0.000432 0.00506 ± 0.000633
Bm3|Q 0.00536 0.000596 0.000601 ± 4.99·10−5 0.000417 ± 6.38·10−5 0.000461 ± 7.60·10−5 0.000491 ± 9.88·10−5

BM1|Q 0.711 0.146 0.157 ± 0.0231 0.161 ± 0.0326 0.148 ± 0.0176 0.151 ± 0.0277
BM2|Q 0.518 0.0145 0.0215 ± 0.00229 0.0192 ± 0.00232 0.0203 ± 0.00429 0.0183 ± 0.00445
BM3|Q 0.0293 0.00362 0.00376 ± 0.000476 0.00339 ± 0.000239 0.00299 ± 0.000433 0.00315 ± 0.000510
WB 6,434.17 6,927.67 6,935.83 ± 10.55 7,027.38 ± 34.64 6,991.64 ± 8.57 6,971.23 ± 20.73

0.5

WQ 17,419.40 17,685.82b 17,683.45 ± 15.55 17,683.50 ± 15.56 17,683.50 ± 15.55 17,683.49 ± 15.55
BMm|Q 0.0558 4.86·10−5 4.55·10−5 ± 0.000109 2.23·10−5 ± 5.38·10−5 2.23·10−5 ± 5.46·10−5 2.27·10−5 ± 5.44·10−5

Bm1|Q 0.0558 4.86·10−5 4.28·10−5 ± 0.000110 2.12·10−5 ± 5.44·10−5 2.14·10−5 ± 5.50·10−5 2.14·10−5 ± 5.50·10−5

Bm2|Q 0.0335 1.78·10−7 0 0 0 0
Bm3|Q 0.00143 2.27·10−6 3.28·10−6 ± 1.41·10−6 1.27·10−6 ± 7.82·10−7 1.21·10−6 ± 8.71·10−7 1.66·10−6 ± 5.64·10−7

BM1|Q 0.327 0.000910 0.00273 ± 0.00702 0.000850 ± 0.00219 0.00179 ± 0.00461 0.00179 ± 0.00461
BM2|Q 0.205 9.58·10−7 0 0 0 0
BM3|Q 0.00906 1.61·10−5 3.56·10−5 ± 9.78·10−6 4.35·10−5 ± 1.69·10−5 2.93·10−5 ± 1.54·10−5 2.94·10−5 ± 1.61·10−5

WB 5,119.13 5,295.76 5,296.16 ± 13.30 5,297.13 ± 12.82 5,296.73 ± 12.83 5,296.48 ± 13.08

1.0

WQ 15,998.35 16,028.14c 16,077.61 ± 15.03 16,077.61 ± 15.03 16,077.61 ± 15.03 16,077.61 ± 15.03
BMm|Q 0.00678 1.78·10−8 0 0 0 0

Bm1|Q 0.00678 1.78·10−8 0 0 0 0
Bm2|Q 0.00416 < 1 · 10−10 0 0 0 0
Bm3|Q 0.000153 1.6·10−9 0 0 0 0
BM1|Q 0.0530 4.76·10−7 0 0 0 0
BM2|Q 0.0298 < 1 · 10−10 0 0 0 0
BM3|Q 0.00113 1.10·10−8 0 0 0 0
WB 3,341.90 3,355.88 3,350.97 ± 24.92 3,350.97 ± 24.92 3,350.97 ± 24.92 3,350.97 ± 24.92

Average o.f. values, and 95% confidence intervals, for simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with t0 = t1 = 4 h, update period τ and b = 0.3), a total simulation time of 48 h on
the test networkH, for different values of α, when the HMOR-S2 is used to update the routing plan. a99.56%; b100%; c99.75% of the approximate ideal values for the QoS flows revenue,WQ

ideal, from the data in [25].
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networks), different values for the times t0 and t1, for τ and for b can be tried, and the
results displayed in the tables correspond to those obtained with t0 = t1 = 4 h; different
values of τ ; b = 0.3; total simulation time of 48 h.

Analytical results

The resolution heuristic manages to start off with an initial solution with poor values for
the o.f.s and still finish with a solution with significantly better values. The values for all
the o.f.s for all values of α are improved through the heuristic. The QoS revenue of the
final solutions is only slightly worse than that of the ideal optimal solutions, as expected.
Therefore, we can consider that the resolution heuristic has managed to find an adequate
‘good’ compromise routing solution to the routing problem P-M2-S2. In fact, these exper-
imental results for three traffic matrices for each network show that the expected QoS
revenue obtained with our heuristic is never less than 99.47% of that upper bound while a
substantial improvement on the other o.f.s can be obtained with respect to the initial solu-
tion, using only shortest path first choice routing, typical of Internet routing conventional
algorithms.

Simulation results

The analytical results and the corresponding static routingmodel simulation results are of
similar magnitude, but the analytical results tend to be better, as expected. In particular,
considering the results obtained for network M, the analytical results for the QoS flows
revenue WQ are clearly better than the corresponding static routing model simulation
results, for all the values of α. Generally speaking, for this network, the analytical results
are not inside the 95% confidence interval of the static routing model simulation results
and only for α = 0.0 do we get a result where a first-level o.f. (BMm|Q) analytical value is
in the corresponding confidence interval. Remember that the simulation results for the
routing model are average values of performance in a great number of routing update
intervals, while the analytical results are obtained in ideal steady-state traffic conditions
and use approximate teletraffic sub-models.
For the other networks, the analytical and the simulation results forWQ are much closer

and the analytical result for that o.f. is inside the 95% confidence interval for α = 0.0 and
α = 0.5. For α = 1.0, the analytical value ofWQ is actually worse than the corresponding
simulation result. In this situation of lower traffic load in networks E ,G,H, there are many
instances throughout the executed simulations where the blocking estimate for certain
services is 0, meaning that all the offered calls of those services are actually carried. This
is the reason why so high values of the estimate of the QoS traffic revenue are obtained,
surpassing the analytical values. Note that these are situations where the occurrence of
blocking is a rare event. It is well known in statistics that in these cases, the uncertainty in
the estimates is very high, as reflected in the very high relative half length of the calculated
95% confidence intervals of the blocking probabilities.
The differences between the analytical and the simulation results for the static rout-

ing model are mainly due to the imprecision effects intrinsic to the analytic/numerical
solution, in particular those associated with the simplifications of the traffic model, and
the associated error propagation. The analytical model is a simplification which tends
to underestimate the blocking probabilities in the network (and therefore to overesti-
mate the revenues), because the overflow traffic is treated as Poisson traffic. This error
propagates throughout the complex and lengthy numerical calculations associated with
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the solution of the traffic model, involving the solution of large systems of implicit non-
linear equations. Further simplifications assumed in the stochastic model for the traffic in
the links are a superposition of independent Poisson flows and an independent occupa-
tion of the links. Although we envisage that a more precise and realistic representation of
the traffic flows allows for better estimates of the blocking probabilities, the approxima-
tions in our model can be deemed appropriate and actually unavoidable in this context.
This results from a compromise between the precision of the representation of the traffic
flows and the computational burden of the numerical resolutions throughout the exe-
cution of the heuristic algorithm. For this reason, some robust and well-tested classical
numerical algorithms (the Kaufman/Roberts algorithm and fixed-point iterators) are used
to estimate the blocking probabilities of this system. It is important to note that as previ-
ously mentioned the type of error introduced by this approach does not compromise the
inequality relations between the o.f. values. In fact, the focus of the optimization model is
on the relative value of the results of the traffic model rather than on the absolute accuracy
of such values, as explained in the sub-section on Dealing with IIU in the model.
The stochastic nature of the traffic offered to the network leads to some uncertainty in

the results. In particular, for the state-dependent periodic-type dynamic routing model,
the traffic flow means are periodically updated (with period τ ) via a statistical estimate
(first-order moving average) based on real-time measurements, dependent on a param-
eter b. The influence of these parameters on the final global routing solution can be
analyzed.
In a first set of experiments, the update period τ is fixed and different values are tested

for b. This parameter has to be set in order to reflect a compromise between the stability
of the estimate and the quick response to variations in the partial estimate of the aver-
age value of the traffic offered by a flow to the network in the previous interval, X̃. The
best results for the first-level o.f.s can be obtained with b = 0.3 (those are the values dis-
played in Tables 5, 6, 7, and 8). For b = 0.4, the results are only slightly worse. However,
for smaller values and for higher values of b, the results forWQ and BMm|Q are worse than
those displayed in the tables. An increase(decrease) in b means that the estimate of the
average traffic offered to the network by a flow, x̃, gives more(less) importance to infor-
mation on the previous interval and less(more) importance to the previous estimates of
traffic obtained throughout the duration of the experiment. These results show that a
balance between these two aspects is clearly desirable and no excessive weight should be
attributed to either of them. However, as the best results are obtained with b < 0.5, it
appears that the stability of the estimate is slightly more important than a rapid response
to variations in the offered traffic. Note that these results are in accordance with the traf-
fic engineering recommendations in [27] . Notice that the possibility of network changes
or sudden strong alterations in traffic patterns are not being considered in this study. This
type of events would have required the traffic estimate to be able to respond better to
very rapid variations in the offered traffic, so a value of b > 0.5 would have been expected
to be more appropriate in that situation. Probably, that would have been the case if the
network traffic in the simulation model was not modeled as Poisson traffic but rather
as self-similar traffic, with its typical bursts of traffic (see for instance [28]), a situation
out of the scope of the present study. In a second set of experiments, the parameter b is
kept at 0.3 and different values are tested for the update period τ . The best results for the
first-level o.f.s are those obtained with τ = 10, 20, 30 m (these values are displayed in
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Tables 5, 6, 7, and 8). Only for these parameter values is the dynamic routing model capa-
ble of attaining the performance values corresponding to the analytic upper bounds for
the static solution. For other parameter values, the experimental results are not so good.
A final remark on the confidence intervals for each o.f.: their length is of the same order

for both the static and the dynamic routing model.
The results for network M, which is not dimensioned for low blocking probabilities,

have shown that for a smaller value of τ (5 m), the results for WQ and BMm|Q are slightly
worse than those displayed in Table 5. However, for a higher value of τ (30 m), the results
are also worse (see Table 5). Therefore, in situations of high blocking probability, there is
no need to update the traffic estimate too often (with update periods of the order of only
a few minutes), but a very long update period is also undesirable. Notice that a value of
b = 0.3 means that the update information focuses more on themedium/long term rather
than on the short term, as the estimate of the average traffic offered to the network by a
flow incorporates more information on the estimates of traffic that have been obtained
throughout the duration of the experiment, rather than on the previous interval. In very
long intervals, slight changes in the offered traffic pattern are more likely to occur and
these tend to be disregarded, if the update periods are very long (30 min or more) because
of the lower importance given to the information on the specific previous interval, in the
traffic estimate.
For higher values of α (corresponding to lower load), we realize that the simulation

results for each of the networks E ,G,H are the same regardless of the value of τ . As
mentioned earlier, these networks, for α = 0.5 and α = 1.0, are dimensioned for low
blocking probabilities, and the blocking estimates are close to 0 in many cases, as all the
offered calls tend to be carried. In this case, the total expected network revenues associ-
ated with QoS and BE traffic flows tend to have maximum values regardless of the value
of τ .
In global terms and as expected, the results obtained with the dynamic routing model

are better (or approximately the same in the worst case) than those obtained with the
static routing model. This is especially noticeable for α = 0.0 for all the networks, which
is the situation of higher load. This shows that in situations of higher load, the dynamic
model is well calibrated for these networks, in terms of the choice of the initial routing
solutions to be used by the heuristic and the choice of the routing updating period. In the
dynamic routing model, the routing plan is adjusted throughout the simulation run, in
accordance with the traffic random fluctuations around the average values corresponding
to the nominal traffic matrix defined in steady-state conditions.
The o.f. values are intrinsically imprecise, due to the simplifications and approximations

assumed in the stochastic model for the traffic in the links, and to the numerical errors
associated with the resolution of the system of equations of the traffic model which prop-
agate throughout the resolution procedure. Still, the representation of the traffic flows as
independent Poisson processes and the independence in the occupations of the links may
be considered a good compromise between the exactness of the traffic model and the
computational burden for solving the analytical model.
Other imprecision effects are due to an instability phenomenon which may potentially

arise in the path selection procedure, when all the network routes are liable to change.
To avoid oscillations between certain solutions that can possibly lead to a poor global
network performance, the core algorithm that seeks new routing solutions (MMRA-S2)
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is applied only to specific traffic flows that are carefully chosen (according to the value of
ξ( fs), as mentioned earlier), so as to try and improve the o.f. values.
The inaccuracy in the o.f. values may be considered inevitable, due to the very great

combinatorial complexity of the optimization model including strong interdependencies
among key mathematical entities of the model. The heuristic resolution has different
mechanisms, throughout the improvement cycles of the o.f.s, which try to deal with these
complex interdependencies, in order to minimize the impact of these inaccuracies in the
quality of the obtained compromise solutions.

Conclusions
In this paper, a stochastic two-level hierarchical multiobjective routing model for MPLS
networks with two service classes and alternative routing was reviewed and analyzed con-
cerning sources of imprecision, inaccuracy (or inaccurate determination), and uncertainty
(IIU). Key issues raised by its high complexity were discussed in a systematic manner, as
well as the major factors that constitute the sources of IIU of the model. The mechanisms
used by the developed resolution heuristic approach to deal with these issues were also
described.
The most important innovative aspect of this paper was the presentation of analyti-

cal and stochastic simulation experiments (both for static and dynamic versions of the
routing model), enabling the evaluation of inaccuracies intrinsic to the model and to the
analytic/numerical resolution method, as well as the evaluation of a particular form of
‘internal uncertainty’ associated with the necessity of representing a system of preferences
(of a ‘virtual decision maker’) in a fully automated application. The possible effects of
these inaccuracies on the results of the heuristic resolution procedure were discussed as
well as the forms of minimizing their impacts on the heuristic effectiveness. Furthermore,
the experimental study, using discrete-event stochastic simulation, enabled the validation
of the routingmodel results and the evaluation of effects in themodel results of the uncer-
tainty associated with the offered traffic estimates, in a dynamic version of the routing
method.
The analysis of these types of IIU factors, their effects on the results of the resolution

approach of the routing optimizationmodel, and the described general type of procedures
for dealing with these issues are in our opinion relevant to other routing models with
similar features. That is, we think that dealing with these issues in a proper manner is
an important task in the context of multiobjective routing models, based on network-
wide optimization approaches (where the combined effect and interactions among the
traffic flows have to be explicitly represented) and using a stochastic representation of
the traffic flows. Having in mind the high complexity and heavy numerical costs of the
addressed model, probably several of the methods and techniques used for dealing with
these IIU issues, may be adapted to various network routing models of similar nature.
This is naturally an important task that justifies future works on IIU issues (and the ways
to deal with these issues) focused on specific types of stochastic network-wide routing
optimization models.

Endnote
aA weakly dominated solution is a feasible solution such that there is at least another

feasible solution with better values for some of the o.f.s and equal values for the other
o.f.s.



Girão-Silva et al. Journal of Uncertainty Analysis and Applications 2014, 2:3 Page 25 of 31
http://www.juaa-journal.com/content/2/1/3

Appendix
Notation used in the model

The notations used in the model are shown in Table 9.

Table 9 Notation used in themodel

Notations Description

O.f. calculation

WQ(B) = ∑
s∈SQ(B)

Acsws Total expected network revenue associated with QoS(BE)
traffic flows

BMm|Q = maxs∈SQ {Bms} Maximal average blocking probability among all QoS service
types

Bms|Q = 1
Aos

∑
fs∈Fs

A( fs)B( fs) Mean blocking probabilities for flows of type s ∈ SQ

BMs|Q = maxfs∈Fs {B( fs)} Maximal blocking probability defined over all flows of
type s ∈ SQ

Blocking probabilities calculation

B( fs) Node-to-node blocking probability for all flows fs ∈ Fs

Bks = Bs

(
dk , ρk , Ck

)
Blocking probabilities for micro-flows of service type s in
link lk

Bs Basic function (implicit in the teletraffic analytical model)
to calculate Bks

Decision variables

R = ∪|S|
s=1R(s) Network routing plans

R(s) = ∪fs∈Fs R( fs), s ∈ SQ ∪ SB Set of all the feasible routes for the traffic flows of type s

R( fs) = (rp( fs)), p = 1, · · · ,M First, second, · · · ,M-th choice route for flow fs

Path metrics and auxiliary parameters - MMRA-S2

m1
ks = cQ(B)

ks Marginal implied costs

m2
ks = − log(1 − Bks) Marginal blocking probabilities

D( fs) Set of all feasible loopless paths for flow fs

Simulation parameters

T = [Tij] Base matrix with offered bandwidth values
from node i to node j (Mbps)

α Compensation parameter

t0 Duration of the first stage of the initialization phase,
where only periodical updates of the estimate
of the offered traffic are performed

t1 Duration of the second stage of the initialization phase,
where periodical updates of the estimate of the offered
traffic and of the routing plan are performed

twarm-up = t0 + t1 Duration of the initialization phase

τ Update period of the estimates of the offered traffic
and of the network routing plans

x̃n( fs) = (1 − b)x̃n−1( fs) + bX̃n−1( fs) Estimate of the average traffic offered to the network
by the flow fs in the time interval [nτ ; (n + 1)τ [

X̃n−1( fs) Estimator of the average value of the traffic offered
by fs to the network in the previous interval [(n − 1)τ ; nτ [

b Compromise value between the need to obtain a quick
response of the estimator to rapid fluctuations in X̃( fs)
and the stability of the long-run variations

Miscellany of auxiliary parameters

fs Flow of service type s

SQ(B) Set of QoS(BE) service types

Aos Total traffic offered by flows of type s

Acs Carried traffic for service type s
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Table 9 Notation used in themodel (continued)

A( fs) Mean traffic offered associated with fs ∈ Fs

ws Expected revenue per call of service type s

ρks Reduced traffic loads offered by flows of type s to lk

ρk = (
ρk1, · · · , ρk|S|

)
Vector of reduced traffic loads

dks Equivalent effective bandwidths for flows of type s in lk

dk = (
dk1, · · · , dk|S|

)
Vector of equivalent effective bandwidths

d′
s Required bandwidth for service s (kbps)

ds = d′
s

u0
Required effective bandwidth for service s (channels)

M,E ,G ,H Test networks

|N | Number of nodes in the network

|L| Number of unidirectional links in the network

C′
k Link bandwidth (Mbps)

Ck =
⌈
C′
k

u0

⌉
Link capacity (channels)

u0 Basic unit capacity

hs Average duration of a type s call

Ds Maximum number of arcs for a type s call

ξ( fs) Function for choosing candidate paths for flow fs
for possible routing improvement

δ Average node degree of a network

Formalization of the heuristic resolution approach

The formalization of the heuristic approach (HMOR-S2PAS –HierarchicalMultiobjective
Routing considering 2 classes of Service with a Pareto Archive Strategy) follows.
The versionwithout the Pareto archive, i.e., HMOR-S2, is equivalent to this one, without

steps VII; VIII.11b•− Add Ra to the archive · · · ; VIII.11b• Else {and instructions therein};
VIII.11b•− Add Ra to the archive · · · ; VIII.11b• Else {and instructions therein}; X.
As for the ‘core’ algorithmMMRA-S2, it is basically an adaptation to the present model

of the bi-objective constrained shortest path algorithm in [29] which is an extension of
the algorithm in [14] to a multiservice environment.

HMOR-S2PAS
I. Ra ← Ro
II. Compute B andWQ,BMm|Q for Ra
III.Wo

Q ← WQ,Bo
Mm|Q ← BMm|Q

IV. R∗ ← Ra
V. Compute B for Ra
ComputeWQ,BMm|Q,Bms|Q,BMs|Q(∀s ∈ SQ),WB for Ra

VI. max{WQ} ← WQ, min{BMm|Q} ← BMm|Q
min{Bms|Q} ← Bms|Q, min{BMs|Q} ← BMs|Q(∀s ∈ SQ) and max{WB} ← WB

VII. Add Ra to the archive
VIII. For nPaths = |F | to nPaths = 1

1. For ape = 0 to ape = 1

(a) If ape = 0, zAPR ← 1.0
Else, zAPR ← 0.01 · nPaths

(b) For s = 1 to s = |S|
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i. For nCycles = 1 to nCycles = 0

A. Compute B and cQ, s ∈ SQ or cB, s ∈ SB for Ra
B. Compute and order the values of the function ξ( fs),

with ξ( fs) = FL( fs) if nCycles = 1 and ξ( fs) =
FQ(B)

C ( fs) if nCycles = 0
C. Find the nPaths flows with lower value of ξ( fs)
D. Compute with MMRA-S2 new candidate paths for

the corresponding O-D pairs and define a new set of
first and second choice paths for the service s, Ra(s),
according to the rules established for each service

E. Compute B for Ra

Compute Bms|Q,BMs|Q if s∈SQ orWB if s∈ SB for Ra

ComputeWQ,BMm|Q
F. If s ∈ SQ then

• If [(Bms|Q < min{Bms|Q} and BMs|Q <

min{BMs|Q}) and (WQ > max{WQ} and
BMm|Q < min{BMm|Q})] then

– min{Bms|Q} ← Bms|Q,min{BMs|Q} ←
BMs|Q

– max{WQ} ← WQ, min{BMm|Q} ←
BMm|Q

– R∗(s) ← Ra(s)
– Add Ra to the archive (If it is already

full, the priority regions of the solutions
in the archive must be evaluated and the
first solution found in the worst region
of the archive should be removed first.)

• Else,

– If [(Bms|Q > min{Bms|Q} and BMs|Q >

min{BMs|Q}) and (WQ < max{WQ} and
BMm|Q > min{BMm|Q})] then
* (Discard Ra)

– Else,
* If there is at least one solution X in the
archive for which [(Bms|Q > Bms|Q(X)

and BMs|Q > BMs|Q(X)) and (WQ <

WQ(X) and BMm|Q > BMm|Q(X))],
i.e. X dominates Ra in terms of the o.f.
of interest,

† (Discard Ra)
* Else (Ra and the solutions in the
archive are non-dominated)

† If the archive is not full,
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‡ Add Ra to the archive
† Else
‡ Evaluate the priority regions of
Ra and the solutions in the
archive;

‡ If Ra is in the worst priority
region
◦ (Discard Ra)

‡ Else,
◦ Remove the first solution
found in the worst region of
the archive;

◦ Add Ra to the archive

G. Else (s ∈ SB)

• If [(WB > max{WB}) and (WQ > max{WQ}
and BMm|Q < min{BMm|Q})] then

– max{WB} ← WB
– max{WQ} ← WQ, min{BMm|Q} ←

BMm|Q
– R∗(s) ← Ra(s)
– Add Ra to the archive (If it is already

full, the priority regions of the solutions
in the archive must be evaluated and the
first solution found in the worst region
of the archive should be removed first.)

• Else,

– If [(WB < max{WB}) and (WQ < max{WQ}
and BMm|Q > min{BMm|Q})]
* (Discard Ra)

– Else,
* If there is at least one solution X in the
archive for which [(WB < WB(X)) and
(WQ < WQ(X) and BMm|Q > BMm|Q(X))],
i.e. X dominates Ra in terms of the o.f.
of interest,

† (Discard Ra)
* Else (Ra and the solutions in the
archive are non-dominated)

† If the archive is not full,
‡ Add Ra to the archive

† Else
‡ Evaluate the priority regions of
Ra and the solutions in the
archive;
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‡ If Ra is in the worst priority
region
◦ (Discard Ra)

‡ Else,
◦ Remove the first solution
found in the worst region of
the archive;

◦ Add Ra to the archive

H. Ra(s) ← R∗(s)

End of the cycle For (nCycles)

End of the cycle For (s)

End of the cycle For (ape)

End of the cycle For (nPaths)

IX. IfWo
Q > max{WQ} or Bo

Mm|Q < min{BMm|Q} then
1. The best solution is Ro.

X. Else,

1. Evaluate the priority regions of the solutions in the archive;
2. The final solution is found in the best region of the archive, using a reference

point-based procedure.

XI. Compute the o.f. values for the final solution.

MMRA-S2

I. For each link lk in the network, compute the path metrics: marginal implied costs
m1

ks = cQ(B)

ks and marginal blocking probabilitiesm2
ks = − log(1 − Bks), where

s ∈ SQ(B).
II. Compute average values cQ(B)

av (s) = 1
|L|

∑
lk∈L cQ(B)

ks and Bavlog(s) = 1
|L|

∑
lk∈L

(− log(1 − Bks)).
III. Compute the weights ε

Q(B)
1 (s) = Bavlog (s)

cQ(B)
av (s)+Bavlog (s)

and ε
Q(B)
2 (s) = cQ(B)

av (s)
cQ(B)
av (s)+Bavlog (s)

.

IV. For each link lk in the network, compute a cost of the link given by a weighted sum
ε
Q(B)
1 (s)cQ(B)

ks + ε
Q(B)
2 (s)(− log(1 − Bks)).

V. Solve the problemminr( fs)∈D( fs)
{∑

lk∈r( fs)
(
ε
Q(B)
1 (s)cQ(B)

ks + ε
Q(B)
2 (s)(− log(1 − Bks))

)}
,

fs ∈ Fs, s ∈ S using MPS [30], which allows for the computation of a set of κ paths
for each flow fs ∈ Fs for which the paths may change, ordered according to this
cost function.

VI. Identify the priority region to which each of the possible paths belongs to, where
the first priority region is A, then B2 and B1, followed by C and finally D. The limits
of the priority regions (Figure 4) are given by

− log(1 − Breq(s)) = −Ds log(1 − B−(s)) − log(1 − Bac(s)) = −Ds log(1 − B+(s))

creq(s) = Dsc−(s) cac(s) = Dsc+(s)
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Figure 4 Priority regions. These priority regions are used to rank the possible paths.

where
B−(s) = Bav(s) − �B(s) B+(s) = Bav(s) + �B(s)

Bav(s) = 1
|L|

∑
lk∈L Bks �B(s) = Bav(s)−minlk∈L{Bks}

2

c−(s) = cav(s) − �c(s) c+(s) = cav(s) + �c(s)

cav(s) =
{
cQav(s) (QoS flow)

cBav(s) (BE flow)
�c(s) =

⎧⎪⎨
⎪⎩

cav(s)−minlk∈L{cQks}
2 (QoS flow)

cav(s)−minlk∈L{cBks}
2 (BE flow)

VII. The first choice route for each flow, r1( fs), is a non-dominated solution in the best
possible priority region with the lowest value of implied cost.

VIII. Consider all the arc-disjoint solutions from r1( fs).
IX. The second choice route for each flow, r2( fs), is a non-dominated solution in the

best possible priority region with the lowest value of implied cost.
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