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Abstract

The paper begins by reviewing a two-level hierarchical multicriteria routing model for
Multiprotocol Label Switching networks with two service classes (Quality of Service and
Best Effort services) and alternative routing, previously proposed by the authors. The
features of the considered resolution heuristic are described. Some key issues raised by
its complexity are discussed, as well as the major factors that constitute the sources of
imprecision, inaccuracy, and uncertainty of the model and the way in which they are
dealt with in the adopted resolution approach. Analytic and stochastic discrete-event
simulation experiments are performed for different test networks, including
experiments with a dynamic version of the routing method. This case study allows for
the evaluation of the inaccuracies intrinsic to the analytic/numerical resolution
procedures and of the uncertainty associated with the estimates of the mean of the
stochastic traffic flows. An analysis focused on key robustness aspects of the model is
also carried out.

Keywords: Routing models; Multiobjective optimization; Telecommunication
networks; Simulation; Sources of uncertainty

AMS Subject Classification: Primary 90B50; secondary 90B18; 90B15

Introduction and motivation

In modern multiservice networks, multiple and heterogeneous Quality of Service (QoS)
routing requirements have to be taken into account. Therefore, the routing models, which
are designed to calculate and select sequences of network resources, have to satisfy certain
QoS constraints while seeking to optimize route-related objectives. Formulating rout-
ing problems in these types of networks as multiple objective optimization problems is
potentially advantageous, as the trade-offs among distinct performance metrics and other
network cost function(s) can be pursued in a consistent manner when these multiple
objective formulations are used.

Reviews on multicriteria routing models for communication networks are presented
in [1] (in a broader context of multicriteria analysis applications) and in [2], which also
discusses some key methodological issues and includes multiple research papers in this
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area. More recently, a complete conceptual framework in multiple criteria routing models
in QoS/IP networks, considering a reference point-based approach is proposed in [3].

A meta-model for hierarchical multiobjective network-wide routing in Multiprotocol
Label Switching (MPLS) networks is presented in [4]. In this approach, two classes of ser-
vices, QoS and BE (Best Effort) type flows, and different types of traffic flows in each
class are considered. A hierarchical optimization with two optimization levels, including
fairness objectives, is considered: the first-priority objective functions (o.f.s) refer to the
network-level objectives of QoS flows, namely the total expected revenue and the max-
imal value of the mean blocking of all types of QoS flows; the second-priority o.f.s refer
to performance metrics for the different types of QoS services and the total expected
revenue associated with the BE traffic flows.

In [5], a heuristic approach (HMOR-S2pas - Hierarchical Multiobjective Routing con-
sidering 2 classes of Service with a Pareto Archive Strategy), devised to find ‘good’
solutions in the sense of multiobjective optimization (see [6]) to this hierarchical multiob-
jective routing optimization problem, is proposed and applied to two test networks used
in a benchmarking case study, for various traffic matrices for each network. Remember
that in the context of multiobjective optimization, the concept of optimal solution (usually
unfeasible) is replaced by the concept of non-dominated (or Pareto optimal) solutions. A
non-dominated solution may be defined as a feasible solution such that it is not possible
to improve the value of an o.f. without worsening the value of at least one of the other o.f:s.

In [7], the same heuristic approach is applied to two other networks with more con-
nectivity than the networks in [5]. The results of computational experiments using an
analytical model and stochastic discrete-event simulation (with a static routing model
where the network routing plan never changes) are presented, in order to evaluate the
performance of the proposed heuristic in terms of the effect of the used route calculation
and selection procedures.

Throughout the study of the routing model and the implementation of the resolu-
tion procedure, some factors of imprecision, inaccuracy (or inaccurate determination),
and uncertainty (IIU, for short) of the routing model and their effects on the results of
the routing method are taken into account by the authors. In this work, these factors
are systematized and analyzed, having in mind their great importance in the context of
the model. A broad discussion of modeling issues concerning IIU aspects in relation to
multicriteria analysis is in [8].

In this work, a new set of stochastic simulation experiments with the heuristic approach
proposed in [5] are presented in order to evaluate the inaccuracies intrinsic to the ana-
lytic/numerical resolution procedures. A state-dependent periodic-type dynamic routing
model (where the network routing plan is updated as a function of the measured offered
traffic in the network) is considered in these experiments. Different simulation parame-
ters have a direct influence on the robustness of the results obtained with the dynamic
model simulation. In particular, the effects in the model results of the uncertainty asso-
ciated with the moving average estimates of the offered traffic in the network and the
influence of the routing plan update time interval are analyzed, allowing for a robustness
analysis focused on key robustness aspects of the model.

The paper is organized as follows. The two-level hierarchical multiobjective alternative
routing model with two service classes and the features of the considered heuristic are
briefly reviewed in the next section. Still in the same section, an analysis of the ITU factors
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associated with key instances of the model and its resolution and their potential effects
on the heuristic results, is provided. The results obtained with this procedure, by using
analytic and discrete-event simulation experiments for four test networks, are shown and
analyzed in relation to the IIU factors, in the following section. These experiments pro-
vide some preliminary conclusions on the robustness of the method concerning some
of the IIU factors. Conclusions are drawn in the last section. The paper ends with an
Appendix with the specification of the notation used in the model and an Appendix with
the formalization of the heuristic resolution approach.

Review of the multiobjective routing model and the heuristic resolution
approach

The multiobjective routing model

The model addressed in this paper may be considered an application of the multiobjective
modeling framework (or ‘meta-model’) for MPLS networks proposed in [4], as previ-
ously noted. It is a network-wide routing optimization approach (that is, the main o.f:s
depend explicitly on all traffic flows in the network), in the form of a hierarchical multi-
objective optimization model, which takes into account the nature and relations between
the adopted o.f:s related to the different types of traffic flows associated with different
services.

Two classes of services are considered: QoS, corresponding to services with certain
guaranteed QoS levels (represented through the set Sg) and considered in the model
as first-priority flows; BE (represented through the set Sp), regarded as second-priority
flows, where the corresponding traffic flows are routed seeking the best possible quality
of service to be obtained but not at the cost of the quality of service of the traffic flows
belonging to Sq. The traffic flows of each service type s € Sg or s € Sp may differ in
important attributes, such as the required bandwidth.

The hierarchical multiobjective routing optimization model tackled here has two levels
with several o.f.s in each level. At the first level, the first-priority o.f.s are considered:
W (the total expected network revenue associated with QoS traffic flows) and B0
(the worst average performance among QoS services, represented by the maximal aver-
age blocking probability among all QoS service types). These objectives are formulated
at the network level for the QoS traffic and allow us to take into account the com-
bined effect of all types of traffic flows in the network. The second level includes the
second-priority o.f.s concerned with average performance metrics of the QoS traffic
flows associated with the different types of QoS services (represented by By q, the
mean blocking probabilities for flows of type s € Sq, and B, the maximal block-
ing probability defined over all flows of type s € Sg) as well as Wpg, which represents
the total expected network revenue associated with BE traffic flows. At both levels of
optimization, min — max objectives constituting ‘fairness’ objectives are explicitly con-
sidered: ming{Bamq} at the first level, and ming{Bas o} at the second level, where R
denotes the routing plan (set of feasible node-to-node loopless paths) for all offered
flows.

The considered two-level hierarchical optimization problem for two service classes
P-M2-S2 (‘Problem - Multiobjective with 2 optimization hierarchical levels - with 2
Service classes’) is
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Problem P-M2-S2

QoS: Network objectives maxz{ W}

ming{Baim|Q}

1st level

QoS: Service objectives ming{Byu5 0}
ming{Bass|Q}
Vs € Sg

BE: Network objective maxz{ Wg}

2nd level

subject to equations of the underlying traffic model.

The notation and basic formulae for the calculation of these o.f.s are in an Appendix at
the end of the paper.

Note that in the formulation of P-M2-S2, W, (together with By, @) is a first-priority
o.f., while Wp is a second-level o.f. This assures that the routing of BE traffic, in a quasi-
stationary situation, will not be made at the cost of the decrease in revenue or at the
expense of an increase in the maximal blocking probability of QoS traffic flows. Never-
theless, it is important to note that while QoS and BE traffic flows are treated separately
in terms of o.f.s so as to take into account their different priority in the routing optimiza-
tion, the interactions among all traffic flows are fully represented in the model. In fact,
the contributions of all the traffic flows which may use every link of the network are used
to obtain the blocking probabilities B(f;).

A full description of the traffic modeling stochastic approach used in the routing model
can be seen in [4]. In the considered basic teletraffic model, the blocking probabilities By,
for micro-flows of service type s in link /i, are calculated by By, = B; (d?, 0k Cr ), with
B;s representing the function (implicit in the teletraffic stochastic model) that expresses
the marginal blocking probabilities, By, in terms of equivalent effective bandwidths dj
for all service types, reduced traffic loads pis offered by flows of type s to /; and the
link capacity Cj. With this type of approximation (see [9]), the calculation of {Bys} can
be made by efficient and robust numerical algorithms, which are essential in a network-
wide routing optimization model of this type, for tractability reasons. In this situation, the
classical Kaufman (or Roberts) algorithm ([10,11]) can be used to calculate the functions
B for small values of Cy. For larger values of Ci, approximations based on the uniform
asymptotic approximation (UAA) in [12] are used, having in mind its efficiency in these
situations.

The decision variables R = U‘s‘illR(s) represent the network routing plans, that is, the
set of all the feasible routes (i.e., node-to-node loopless paths) for all traffic flows, with
R(s) = Uger,R(fs),s € SqUSpand R(fy) = (P (f),p = 1,--- ,M with M = 2 in our
model. That is, an alternative routing principle is used: for each flow f; the connection
request attempts the first choice route r! ( f;); if it is blocked the second choice route r%(f;)
is tried. A request will be blocked only if r%(f;) is also blocked.

The very high complexity of the routing problem P-M2-S2 stems from two major fac-
tors: all o.f:s are strongly interdependent (via the {B( fs)}), and all the o.f. parameters and
(discrete) decision variables R (network route plans) are also interdependent in terms of
their effects.

Considering the form of P-M2-S2, one may conclude on the great intractability of this
problem. Note that there are possible conflicts between the o.f.s in P-M2-S2: in many
routing situations, the maximization of W, leads to a deterioration on some B(f5), s € Sg,
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for certain traffic flows with low intensity and this tends to increase Bago and Bius) @
and consequently, Bagy Q. This is a major factor that justifies the interest and poten-
tial advantage in using multiobjective approaches when dealing with this type of routing
methods.

The heuristic resolution approach
The theoretical foundations of a specialized heuristic strategy for finding ‘good’ compro-
mise solutions to the very complex bi-level hierarchical multiobjective alternative routing
optimization problem, are presented in [13]. In [5], a heuristic procedure (HMOR-S2p45),
devised to seek non-dominated solutions to this problem, is proposed and applied to test
networks used in a benchmarking case study, for various traffic matrices. This heuristic
resolution approach is briefly reviewed in this section.

This heuristic is based on the recurrent calculation of solutions to an auxiliary

constrained bi-objective shortest path problem PS(ZZ), formulated for every end-to-end
flow f;,

Min U = > mp
r(Js s
Iker(fs) n=1:2

The two metrics m" to be minimized are the marginal implied costs m}(s = CI?S(B) and

the marginal blocking probabilities m% . = —log(1 — Bys) for flows of service type s on
link /x. These metrics are chosen because the metric blocking probability tends, at a net-
work level, to minimize the maximal node-to-node blocking probabilities B( f;), while the
metric implied cost tends to maximize the total average revenue W7 in a single class mul-
tiservice loss network ([14,15]). The set of all feasible loopless paths for flow f;, D(f),
satisfies specific traffic engineering constraints for flows of type s. By using this approach,
the efficiency of different candidate routes in the context of a multicriteria routing frame-
work of this type can be compared by taking into account both the loss probabilities
experienced along the candidate routes and the knock-on effects upon the other routes in
the network, effects which are associated with the acceptance of a call on that given route.
Such effects can be measured exactly through the marginal implied costs for QoS(BE)
traffic, C]?S(B), associated with the acceptance of a connection (or ‘call’) of traffic f; of any
service type s € S on a link /i, that can be defined as the expected value of the traffic
loss induced on all QoS(BE) traffic flows resulting from the capacity decrease in link
(see [13]).

In the heuristic, the auxiliary constrained shortest path problem Ps(zz) is solved by an
algorithmic approach, MMRA-S2 (Modified Multiobjective Routing Algorithm for mul-
tiservice networks, considering 2 classes of Service) in [13], which aims at finding a ‘best’
compromise path from a set of non-dominated solutions, according to a system of prefer-
ences. The path computation and selection are fully automated; therefore, the system of
preferences is embedded in the working of the algorithm. This is implemented by defin-
ing preference regions in the o.f. space obtained from aspiration and reservation levels
(preference thresholds) defined for the two o.f.s ([14,15]), as will be explained later.

The candidate solutions (rl fs), rz(fs)) for each f; are generated using MMRA-S2. They
are selected (or rejected) according to specific criteria, to be ‘tuned’ throughout the
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execution of the heuristic. A maximal number of arcs D; per route for each service type s
is previously defined and a feasible route set D(f;) is obtained for each f;.

Notice that the successive application of MMRA-S2 to every traffic flow does not lead to
an effective resolution approach to the network routing problem P-M2-S2, as anticipated
by the theoretical analysis of the model and confirmed by experimentation. This results
from an instability phenomenon arising in such path selection procedure, expressed by
the fact that the route sets R often tend to oscillate between specific solutions some of
which may lead to poor global network performance under the prescribed metrics. This
instability phenomenon is associated with the complexity and interdependencies in the
addressed problem P-M2-S2, namely the interdependencies between {cgs(B)} and {By}
and between these two sets and the current network route set R.

Therefore, it is necessary to search for the subset of the path set, the elements of
which should be possibly changed in the next route improvement cycle, which consti-
tutes another core idea of the heuristic approach. A criterion for choosing candidate paths
for possible routing improvement by increasing order of a function £(f;) of the current
(rl (fe), 2 ( fs)) is proposed in [16]. Preference (concerning the potential value in chang-
ing the second choice route when seeking to improve W or Wp) is given to the flows for
which the route 7! (£;) has a low implied cost and the route 7%( f;) has a high implied cost,
or to the flows which currently have worse end-to-end blocking probability.

In a basic version of the heuristic, HMOR-S2, each new solution is obtained by process-
ing the current best solution. A basic searching strategy is to seek for routing solutions
R(s) for each service s € S, in order to achieve a better performance in terms of Wp (if
s € Sp) or By and By (if s € Sg), while respecting the hierarchy of o.f.s. This also
means that network resources are left available for traffic flows of other services so that
the solutions selected at each step of the procedure may improve the first-priority o.f.s
Wo and Bgm . The heuristic is designed in order to seek, firstly for each QoS service
and, secondly, for each BE service, solutions which dominate the current one, in terms of
Byus1q and By for QoS services and in terms of W for BE services. These solutions are
accepted only if they do not lead to the worsening of any of the network functions Wg
and Bjfmo-

Due to these strict limitations imposed on the acceptance of a new solution, there is
the realization that some potentially interesting solutions to the routing problem are not
further pursued. Therefore, throughout the execution of the basic heuristic some possibly
interesting solutions are stored and later checked, seeking to find a ‘best’ possible solution
to the problem in hand [5].

The steps of this heuristic resolution approach are explicitly written out in an Appendix
at the end of the paper.

Dealing with imprecision, inaccuracy, and uncertainty in the model

The development of the routing model and the implementation and application of the
resolution procedure put in evidence the importance of IIU factors of the routing model
and their impacts on the results of the routing method. In this subsection, an analysis and
a systematization of these factors in the context of the model are presented. In Table 1, a
summary of the sources of IIU is presented. Also, the way these aspects are dealt with in
our resolution approach are discussed (and summarized in Table 1) or a brief explanation
as to why these aspects do not have a significant impact on the final results is provided.
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Table 1 Sources of 1lU and how they are dealt with in the heuristic

Sources of lIU Effect

Dealing with IIlU

High complexity of the routing problem
P-M2-S2

Inaccuracy (the
solutions are
inherently
approximate)

Simplifications and approximations
assumed in the stochastic model for
the traffic in the links, leading to an
approximate model, unavoidable for
computational tractability reasons

Imprecision

Instability phenomenon potentially
arising in the path selection procedure

if the MMRA-S2 is applied successively to
all the end-to-end flows of each

service type

Imprecision
and uncertainty

Numerical errors in the calculations of Imprecision
marginal implied costs and blocking

probabilities of all the flows, propagating

throughout the resolution procedure

Stochastic nature of the traffic offered External

to the network uncertainty

Uncertainties in the identification
of the 'virtual decision maker’ in a
fully automated decision application

Specific form
of internal
uncertainty

Different mechanisms of the heuristic
resolution in its present version (HMOR-S2pas)

The focus is on the relative value of the results

of the traffic model; small differences between of.
values can be disregarded when comparing solutions
(this is a achieved by using adequate numerical traffic
calculation procedures); scenario evaluation with
different traffic matrices

Criterion for choosing candidate paths for possible
routing improvement, embedded in the main
heuristic ‘optimization’ cycle

‘Robust” and well-tested numerical algorithms
(namely the Kaufman/Roberts algorithm and
fixed-point iterators)

Periodical update of traffic flows means via a
statistical estimate (first-order moving average)
based on real-time measurements; sensitivity/
robustness analysis; scenarios evaluation.

Definition of dynamic preference thresholds
in the of. space, combined with the use
of reference points

environment

Imprecision factors
The imprecision factors stem mainly from the approximations inherent to the analytic
traffic model (underlying the optimization model), namely a superposition of indepen-
dent Poisson flows and independent occupations of the links. A general description
of the stochastic traffic models associated with this issue can be seen in ([17], Chap-
ter 6). An exact model which might be in principle applied to these networks is in
[18], which is based on the consideration of MMPPs (Markov Modulated Poisson
Processes) for representing the superposition of the overflows (resulting from the alter-
native routing) from independent Poisson processes. The type of considered simplifi-
cation leads inevitably to intrinsic imprecisions in the values of the traffic parameters
which are reflected in the calculation of the o.f. values. Still, if a more accurate and
realistic representation of the traffic flows is used, better estimates of the blocking
probabilities will be achieved. Nonetheless, the approximations in our model can be
considered appropriate and, above all, absolutely necessary in this context, for practi-
cal reasons. In fact, if more exact stochastic models are used to represent the traffic
flows and to calculate the blocking probabilities in overflow conditions such as the
one in [18], the computational burden will be too heavy since the analytical model
has to be numerically solved many times during the execution of the heuristic and
the routing method will become intractable in terms of memory and processing time
requirements.

Some imprecision also arises from the numerical errors, associated with the resolution
of the system of equations of the traffic model which propagate throughout the resolution
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procedure, as the resolution of the traffic model has to be performed many times
(in the calculations of marginal implied costs and blocking probabilities of all the flows).
To minimize the latter imprecision effects, some ‘robust’ and well-tested classical numeri-
cal algorithms (namely the Kaufman/Roberts algorithm ([10,11]) and fixed-point iterators
([19])) are used to estimate the blocking probabilities in the system. Moreover, these two
types of errors do not compromise the inequality relations between the o.f. values, as the
aim of the routing optimization procedure is just the comparison of routing solutions
in terms of the values of the o.f.s. That is, the focus of the tackled multiobjective opti-
mization model is on the relative value of the results of the traffic model rather than on
the absolute accuracy of such values. Also, small differences between o.f. values can be
disregarded when comparing solutions.

Further imprecision effects stem from an instability phenomenon which may poten-
tially arise in the path selection procedure. In fact, the route sets R, if obtained by
successive application of MMRA-S2 to every traffic flow, often tend to oscillate between
certain solutions some of which may lead to poor global network performance under the
prescribed metrics, thus leading to uncertainty in the results. The experimentations con-
firm that the successive application of MMRA-S2 to every traffic flow does not lead to an
effective resolution approach to the network routing problem P-M2-S2. For dealing with
this issue in a successful manner, detailed analysis and extensive experimentation with
the heuristic have led to the proposal of a criterion for choosing candidate paths for pos-
sible routing improvement by increasing order of a function £(f;) of the current routes of
a flow f;, giving preference (concerning the potential value in changing the routes when
seeking to improve the QoS(BE) traffic revenue) to the flows for which the first route has
a low implied cost and the second route has a high implied cost, or to the flows which

currently have worse end-to-end blocking probability.

Inaccuracy factors

The inaccuracies are a consequence of the high complexity of the routing problem
P-M2-S2 stemming from the combinatorial nature of the global routing multiobjective
optimization problem and are related to two major factors specific to the described
model: all o.f.s are strongly interdependent (via the B(f;)) and all the o.f. parameters and
(discrete) decision variables R (network route plans) are also interdependent in terms of
their effects in the problem solutions. These interdependencies result from the fact that
all the specified o.f.s depend on all traffic flow patterns in the global network, which may
change significantly with any alteration in any route choice for any given node-to-node
flow. This mechanism generates potential instability in the global routing solutions, as
analyzed in a similar yet simpler model in [15]. Note that all these interdependencies are
defined explicitly or implicitly through the underlying traffic model.

Also, note that even in the simplest degenerated case (single service with single-
criterion optimization and no alternative routing), the problem is NP-complete in the
strong sense, as proved in [20]. This high complexity leads to inaccurate results, because
the solutions of the routing problem are inherently approximate. In fact, when heuristic
solution techniques are employed, the resolution method does not calculate all the non-
dominated solutions and even for those selected solutions which are computed there is no
certainty that they are not potentially dominated by other solutions. Concerning the pos-
sibility of not detecting the condition of certain weakly dominated solutions® this may be
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explained by small variations in the values of some o.f.s for certain solution(s) close to the
current one (for example, by changing a single route for a given flow), solution(s) which,
in some cases, may not be detected by the heuristic. It must be remarked that this occur-
rence is rare but in principle may arise. The mechanisms of the heuristic resolution in its
present version (HMOR-S2pas), as described in the previous sub-section, are devised to
deal with this issue in order to minimize the impact of these inaccuracies in the quality of
the obtained compromise solutions.

Uncertainty factors

As for the uncertainty issues, they are raised mainly by the stochastic nature of the offered
traffic and the related estimation procedures performed throughout the stochastic simu-
lation experiments with the proposed heuristic. In the classification framework discussed
in [21], this type of uncertainty may be considered as an ‘external uncertainty’, as it relates
to a form of uncertainty that results from environmental conditions (the stochastic traf-
fic load conditions in the network) of the model that cannot be controlled by the decision
maker.

A particular form of ‘internal uncertainty’ (in the sense discussed in [21]) may be
identified in the context of this model. This type of ‘uncertainty’ has to do with the iden-
tification and representation of the decision maker preferences. Noting that the model
is supposed to be applied in an automated manner and following our previous expe-
rience in this area [5], we have developed a solution selection procedure based on the
definition of dynamic preference thresholds in the o.f. space, combined with the use
of reference points, inspired by the methodology described in [22]. This corresponds
to imbedding the preferences of a ‘virtual decision maker’ in the form of a specific,
problem-oriented, procedure of selection of non-dominated solutions. The effectiveness
of such solutions is tested a posteriori using a simulation test-bed, applied in various
typical application scenarios. For further details on the solution selection procedure,
see [5].

In order to evaluate the effect of these uncertainty factors in the model results, an
experimental study consisting of stochastic simulation experiments is performed. In the
discrete event stochastic simulation experiments performed with a static routing model,
a measurement of the degree of uncertainty of the o.f. values can be obtained by applying
a classical statistical procedure (batch means with independent replications). As for the
state-dependent periodic-type dynamic routing model, the traffic flow means are peri-
odically updated via a statistical estimate, namely a first-order moving average, based
on real-time measurements, dependent on a parameter b (fixed a priori), as explained
in the ‘Simulation experiments’ section, which is another source of statistical uncer-
tainty. This requires a sensitivity/robustness analysis, for the evaluation of the influence
of this parameter and of the routing plan update time interval on the final global routing
solution.

Note that the problem that is being considered here is not a ‘classical’ problem of deci-
sion under uncertainty as discussed in depth in [21]. A classical approach to that type
of problem is the use of expected utility theory to planning under uncertainty, while our
model may be considered as a specific type of multicriteria optimization model with
stochastic variables. In the model, the o.f.s are means or probabilities defined in a classical
probability theory framework.
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Experimental study

In this section, the analytical and simulation results obtained with the HMOR-S2pas
heuristic in four different networks are presented. The analytical results are obtained by
a single run of the heuristic and the results for the QoS flows revenue W may be com-
pared with theoretical bounds for the same function. As for the simulation results, they
allow for a more realistic assessment of the results of the heuristic having in mind the
combined effects of the analyzed IIU factors.

This set of experiments represents a set of scenarios [21], in the sense that each exper-
iment has its specific features and allows for the analysis of relevant working conditions
that can be encountered in actual networks. Notice however that the use of scenarios in
this context is not for the evaluation and development of alternative solutions (a tech-
nique often used in multiattribute models, as extensively analyzed in [21]), but rather to
explore the different possibilities that may arise in the routing context, having in mind
to test the robustness and effectiveness (in terms of performance) of the solution selec-
tion procedure. This is achieved by considering scenarios of implementation of static and
dynamic versions of the model and the consideration of three situations of load/overload
conditions.

Two types of simulation are considered, one corresponding to a static routing model
where the routing plan calculated by the heuristic is never changed regardless of the
random variations in offered traffic throughout the simulation, for a given matrix of
mean traffic offered in statistical equilibrium. The other corresponds to a periodic type
state-dependent dynamic routing model, where the routing plans are updated periodi-
cally as a function of real-time traffic measurements, by using the heuristic HMOR-S2
repeatedly. Dynamic routing in a telecommunications network is a well-known routing
principle where the most recent information on the network conditions is taken into
account in order to find appropriate paths for the connection requests in the network.
This is especially important when there are significant fluctuations of the offered traffic
in various parts of the network, in particular as a result of overload or network failures.
A comprehensive text on dynamic routing in telecommunication networks can be seen
in [23].

For each of these two types of simulation, we consider three relevant network scenarios
regarding the random fluctuations of traffic that are typical of stochastic traffic models:
a deterministic scenario; a scenario where calls arrive according to a Poisson process,
service times follow an exponential distribution and the network is critically loaded; a
scenario where traffic flows have a higher ‘variability’ The analysis of the results of each of
these scenarios in each of the types of simulation gives an insight on the possible effects
of inaccuracies intrinsic to the model and to the analytic/numerical resolution method on
the results of the heuristic resolution procedure and also enables the verification of the
effectiveness of the selected solutions, hence implementing a specific form of robustness
analysis.

Application of the model to a network case study

The benchmarking case study considered here is based on the one in [24], where a model
for traffic routing and admission control in multiservice, multipriority networks support-
ing traffic with different QoS requirements, is proposed. Deterministic models are used
in the calculation of paths, in particular mathematical programming models based on
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Multicommodity Flows (MCFs). These models can be adapted to a stochastic traffic envi-
ronment by using a simple technique: the requested values of the flow bandwidths in
the MCF model are compensated with a factor « > 0.0, so as to model the effect of
the random fluctuations of the traffic that are typical of stochastic traffic models. In the
application example in [24], three values of o are proposed: « = 0.0 corresponds to the
deterministic approach; @ = 0.5 is the compensation factor when calls arrive according
to a Poisson process, service times follow an exponential distribution and the network is
critically loaded; and o = 1.0 for traffic flows with higher ‘variability.’

The o.f:s of this problem, to be maximized, are the revenues W and W3, associated
with QoS and BE flows. A bi-criteria lexicographic optimization formulation including
admission control for BE traffic is considered, concerning the revenues Wg and W3, so
that the improvements in Wp are to be found under the constraint that the optimal value
of Wy is maintained.

In the deterministic flow-based model in [24], a base matrix T =[Tj] with offered
bandwidth values from node i to node j [Mbps] is given. A multiplier ;5 € [0.0; 1.0] with
Y ses Ms = 1.0 is applied to these matrix values to obtain the offered bandwidth of each
flow f; with service type s. The transformation of this type of matrix into a matrix of

offered traffic A(f;), used in our stochastic traffic model, is achieved by A(f;) ~ %5: —
o YZSSMT;’ [Erl] if VZ:—uT: > o and both T(f;) = m T;j and A(f;) are high. Otherwise, A(f;) ~
msTi/

o [Erl] where 129 = 16 kbps is a basic unit of transmission [bit/s].

Network M

The routing model in [24] and the one considered here can be applied to the test network
M depicted in Figure 1. It has |A/| = 8 nodes, with ten pairs of nodes linked by a direct arc
and a total of | £| = 20 unidirectional arcs, giving an average node degree for this network
of 5o = 2.5. The bandwidth of each arc C; [Mbps] is shown in Figure 1. The number

of channels Cy is C, = {%—I, with basic unit capacity ug. A total of |S| = 4 service
types with the features displayed in Table 2 are considered. The values of the required
effective bandwidths d; = Z—é [channels] Vs € S are also in the table (where d is the
required bandwidth in kbps). The expected revenue for a call of type s is assumed to be

ws = ds, Vs € S. The average duration of a type s call is s; and D; represents the maximum

155 2

310

C’E
155 310 (o

Figure 1 Test network M. This test network (with the indication of the bandwidth of each arc CL, in Mbps)
isin [24].
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number of arcs for a route of a type s call. The application example in [24] provides upper
bounds Wg‘ax for the optimal value of the QoS traffic revenue W, in our model.

Network £

In another set of tests, the considered routing model is applied to another test network £
(depicted in Figure 2), so as to further grasp the potential of the proposed heuristic strat-
egy. Network & has || = 10 nodes, with 12 pairs of nodes linked by a direct arc and a
total of |£| = 24 unidirectional arcs, giving an average node degree for this network of
8¢ = 2.4. The bandwidth of each arc C,’( (Mbps) is shown in Figure 2. This test network
is based on the network O, in [25], dimensioned for extremely low blocking probabilities.
This network O has a topology similar to the one in Figure 3, with a capacity of C; = 50

Mbps for each arc, which is equivalent to a capacity of C; = % = 3125 channels. The
changes in the network by eliminating a few links allow for the achievement of slightly
higher blocking probabilities. The traffic matrix remains the same as in the original refer-
ence ([25]). The information on the network and on the traffic matrix is used as an input
to the routing model considered here. A comparison of the traffic that is offered to each
of the networks M and & for each o shows that the offered load is lower in £.

The service features are the same as for the tests with network M and they are displayed
in Table 2. Notice that the network diameter of network £ (equal to 4) is higher than the
network diameter of network M (equal to 3), which will influence the value of D;. These
networks have similar density since their average node degree § is practically the same.

In [25], no results concerning any of the o.f.s considered here are provided, as their
multiobjective routing model is radically different from the one considered here. The only
results that can be extracted from the proposed model in [25] are approximate ideal values
for the QoS flows revenue, WiQdeal.

Networks G and H

For the final set of tests, the considered routing model is applied to test networks G and
‘H, for which the topology is depicted in Figure 3. They have |[N'| = 10 nodes, with 16
pairs of nodes linked by a direct arc and a total of |[£| = 32 unidirectional arcs, giving
an average node degree for these networks of g = 87, = 3.2. These networks have
greater density than networks M and &. The bandwidth of each arc C; (Mbps) for each
of the networks (obtained by employing a very simple network dimensioning algorithm)
is shown in Tables 3 and 4.

The test networks G and H can be obtained after a redimensioning of the original net-
work O given in [25]. The offered traffic matrix remains the same as in [25]. A value S
for the mean blocking probabilities for flows of type s, B, is established, with a possible
variation of Ag.

Table 2 Service features on the test networks

. d; ds hg D; (arcs)
Service Class Ws mg
(kbps) (ch.) (s) M & G H
1 -video QoS 640 40 40 600 3 4 3 0.1
2 - Premium data QoS 384 24 24 300 4 5 4 0.25
3 - voice QoS 16 1 1 60 3 4 3 04
4 -data BE 384 24 24 300 7 9 9 0.25
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Figure 2 Test network £. This test network (with the indication of the bandwidth of each arc C[(, in Mbps) is
in [25].

o

Considering a routing method for network O using only the shortest path direct rout-
ing (typical of Internet conventional routing algorithms), the mean blocking probabilities
B,,s are calculated. Once these values are known, they are compared with the estab-
lished values at the beginning of the algorithm. If for service s, Bs > fs then the
links in paths for flows of service s have their capacity increased. On the contrary, if for
service s, B,;s < Appfs, then the links in paths for flows of service s have their capac-
ity decreased. The algorithm proceeds iteratively until it converges (which means that
ABBs < Bus < Bs, Vs € S). Sometimes, the algorithm oscillates between two different
solutions, preventing it from converging. Therefore, a maximum number of runs has to

be established, so as to avoid this situation.
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Figure 3 Network topology for test networks G and H. For information on this network topology, see [25].
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Table 3 Bandwidth of each arc C;, in Mbps, for the test network G

r 0 1 2 3 4 5 6 7 8 9

0 40.64 44.384 40.64

1 40.64 35.024

2 35024 35.024 36.896 38.768
3 44.384 35.024 42512 38.768

4 40.64 42512 44.384 40.64

5 38.768 44.384 38.768

6 38.768 46.256 40.64

7 40.64 46.256 38.768

8 36.896 40.64 38.768 44.384
9 38.768 44384

This very simple network dimensioning algorithm can be used for the dimensioning of
test networks G and H, for B; = 0.1 and B; = 0.12, respectively, with Ag = 0.9, that
is, a situation of very high blocking is considered, associated with traffic overload for all
services, for « = 0.0. The purpose is to carry out comparisons of the performance of the
considered static and dynamic routing methods in overload conditions (¢ = 0.0) and in
low and very low blocking conditions for the QoS traffic for « = 0.5 and @ = 1.0. The
original network O is not used in this study because it is dimensioned for extremely low
blocking probabilities.

The traffic matrix T = [T};] with offered total bandwidth values from node i to node
j [Mbps] remains the same as in the original reference ([25]). As with the tests performed
for network &, the modified version of the network and the traffic matrix are the only data
taken from [25]. This information is used as an input to the routing model considered
here.

These two networks G and ‘H have more connectivity than networks M and £. The
service features are the same as for the tests with the other networks. The ideal optimal
values for the QoS flows revenue, Wgeal, are calculated from the data in [25] and can be
used for comparison purposes, as done for network &.

Analytical experiments

In the analytical study, the HMOR-S2 heuristic (basic version of the heuristic without
storage of non-dominated solutions) is run once, followed by a run of the HMOR-S2pas
heuristic.

Table 4 Bandwidth of each arc C}, in Mbps, for the test network H

r 0 1 2 3 4 5 6 7 8 9

0 39.6 43.76 39.6

1 396 3336

2 33.36 33.36 3544 37.52
3 43.76 33.36 41.68 37.52

4 396 41.68 43.76 396

5 37.52 43.76 37.52

6 3752 45.84 396

7 396 45.84 3752

8 3544 39.6 37.52 43.76
9 3752 43.76
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The initial solution is typical of Internet routing conventional algorithms: only one path
for each flow (i.e., without an alternative path) is considered; the initial solution is the
same for all the services s € S and the paths are symmetrical; the path for every flow f; is
the shortest one (that is, the one with minimum number of arcs); if there is more than one
shortest path, the one with maximal bottleneck bandwidth (i.e., the minimal capacity of its
arcs) is chosen; if there is more than one shortest path with equal bottleneck bandwidth,
the choice is arbitrary.

The routing plan obtained at the end of the HMOR-S2 run for each specific « is the
initial solution of HMOR-S2pas. This heuristic is run only once. For the archived routing
plans obtained at the end of this single run, values for all the o.f.s are computed and the
‘best’ possible solution in the best possible preference region is chosen to be the final solu-
tion of the algorithm, using a reference point-based procedure as the solution selection
mechanism, as in [5].

For the experiments with HMOR-S2pas, an archive of size 5 is considered, chosen
empirically after extensive experimentation. Here, the practical conclusion is that an
increase in the archive size will not necessarily lead to better final results because at the
end of the heuristic run (when the final solution is chosen from those in the archive) the
top 5 solutions tend to be the same regardless of the archive size (> 5).

Simulation experiments

Simulation experiments, with static and dynamic routing methods using the solutions
provided by the heuristic, can also be carried out. The purpose of this simulation study is
the validation of the routing model results and the evaluation of the errors intrinsic to the
analytical model which provides the estimates for the o.f:s.

In a first set of experiments, the discrete-event stochastic simulation is applied to a static
routing model, where the routing plan is the final solution obtained after the HMOR-
S2pas run. This routing plan does not change throughout the simulation regardless of
the random variations of traffic offered to the network. After an initialization phase that
lasts for a time f,y4rm—yp (that should be long enough to guarantee that the system state
at the end of the initialization phase is representative of the steady-state behavior of the
system), information on the number of offered calls and carried calls in the network for
each flow f;,s € S, is gathered, until the end of the simulation. With this information,
B(fs),s € S and subsequently, the values of the upper- and lower-level o.f.s related to
blocking probabilities can be estimated. The calculation of the expected revenues is based
on the number of carried calls in the network.

In the periodic and state-dependent dynamic version of the routing method considered
here, the network state is assessed periodically and the gathered information on that state
is used to periodically choose the most appropriate paths in the network, according to
the HMOR-S2 routing algorithm. In the time interval [n7; (n + 1)7[, the estimate of the
average traffic offered to the network by the flow f; is given by %, (f;), obtained from a first
order moving average iteration of the type

Fn(fs) = (1 = B)Fp1(fs) + bXyu—1(f),

where X,,_1(f;) is an estimator of the average value of the traffic offered by f; to the net-
work in the previous interval [(n — 1)t; nt[. The value of b €]0.0;1.0[ is a compromise
between the need to obtain a quick response of the estimator to rapid fluctuations in
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X(f;) and the stability of the long-run variations and should be settled by extensive exper-
imentation with the simulation model. The parameter 7 is both the update period of the
estimates of the offered traffic and the update period of the network routing plans. Note
that the process of path choice should take a short time, when compared to 7.

The routing method seeks to obtain new routing plans adapted to the changing network
working conditions resulting from the random fluctuations of traffic intensities. Taking
into account the features and great complexity of the routing model, the choice of the
‘start-up’ routing solution of the dynamic method is of great importance concerning its
performance. The start-up solution is the final solution obtained after the HMOR-S2pas
is run. The availability of a good estimate of the initial nominal traffic matrix is a necessary
requirement of this dynamic routing method. Having in mind the periodically updated
characteristics of the offered traffic, the ‘best’ possible set of paths is chosen so as to
improve the multidimensional network performance, as specified by the multiobjective
routing model.

A first phase of simulation, the initialization phase, lasts for a time fwarm-up = fo +£1. In
a first stage that lasts ¢y, only periodical updates of the estimate of the offered traffic are
performed, with period . After that time £y, the offered traffic estimates are assumed to
be representative of a steady-state behavior. Afterwards, during a time ¢;, the estimate of
the offered traffic is still performed with a period t, along with periodical updates of the
routing plan, with the same period 7.

After the warm-up time, both updates are still performed with the indicated period and
based on information on the number of offered calls and effectively carried calls in the
network for each flow f;,s € S gathered from real-time measurements, until the end of
the simulation. Using this information, a calculation of B(f;) estimates (s € &) can be
made, as well as a calculation of the values of all the upper- and lower-level o.f.s related
to blocking probabilities. As for the revenues, the knowledge of the effectively carried
calls in the network allows for the calculation of the carried traffic estimates, hence the
calculation of revenues follows straightforwardly.

Comments on the experimental results
In Tables 5, 6, 7, and 8, the analytical values of each o.f. are displayed, together with the
simulation results (average value & half length of the 95% confidence interval) for these
functions. The revenue values have two decimal places and the blocking probability values
have three significant figures.

In the simulation experiments, a total of six seed files for random number generation are
used, so the number of the performed independent runs is R = 6, for each «. To illustrate
the way in which the 95% confidence interval is calculated, take the example of the QoS

revenue, Wo. An estimate of its average value is WQ = % Zle Wi and an estimate of

T (Woi—Wo)
RR-1)

run,i =1,---,R. Considering a two-sided Student ¢-distribution, the confidence interval

its variance is &Z(WQ) = where W(); is the QoS revenue value for the i-th
for WQ is WQ + t()‘()25;R_16'(VAVQ) where the critical value of ¢ is 40.025;R—1 = £0.025;5 = 2.57
(see [26], Table A.4).

For the static model simulation, different values for the warm-up time can be tried,
and the results displayed in the tables correspond to those obtained with tyarm-up = 8 h
for a total simulation time of 48 h. For the dynamic model simulation (which represents
an innovative aspect of the extensive study conducted with this routing model in these



Table 5 Average o.f. values for the simulation of the static and the dynamic routing model

o of. Initial Analytical Static routing Dynamic routing model results
solution results model results T=10m T=20m T=30m
Wao 54,803.69 64,905.26° 64,774.12 £ 68.28 64,776.24 + 76.03 64,774.68 + 6846 64,750.27 £+ 61.42
Bummia 0413 0.0752 0.0773 + 0.00356 0.0774 £ 0.00363 0.0771 + 0.00333 0.0793 £ 0.00302
Bmijo 0413 0.0752 0.0773 £ 0.00356 0.0774 £ 0.00363 0.0771 £ 0.00333 0.0793 +£ 0.00302
Bm2jo 0314 0.0184 0.0236 £ 0.000576 0.0235 £ 0.000655 0.0237 +£ 0.000601 0.0238 £ 0.000696
00 Bm3jo 0.0198 0.00184 0.00200 £ 0.0000499 0.00200 £ 0.0000445 0.00200 =+ 0.0000567 0.00204 £ 0.0000592
B 0912 0.708 0.706 % 0.00912 0.702 £ 0.0145 0.704 £ 0.0115 0.682 £+ 0.0198
Bwmia 0.766 0.103 0.110 £ 0.00600 0.108 + 0.0154 0.111 4 0.00488 0.0916 £ 0.00800
Buwsio 0.0585 0.0301 0.0303 £ 0.000146 0.0300 +£ 0.000287 0.0303 £ 0.000384 0.0292 £ 0.000978
Wg 15,106.57 17,039.20 17,017.10 £ 39.32 17,030.28 £ 57.28 17,01551 £ 39.62 17,059.73 £ 42.35
Wo 51,785.21 60,739.76° 60,676.12 + 61.43 60,659.89 £ 53.91 60,675.17 £ 66.08 60,287.27 + 57.93
Bummia 0413 0.0278 0.0306 £ 0.00145 0.0317 £ 0.00146 0.0308 +£ 0.00149 0.0533 £ 0.00158
Bmio 0413 0.0278 0.0306 £ 0.00145 0.0317 £ 0.00146 0.0308 £ 0.00149 0.0533 £ 0.00158
Bm210 0.296 0.00230 0.00463 £ 0.000355 0.00511 £ 0.000556 0.00460 £ 0.000674 0.0163 £ 0.000714
05 Bm3jo 00174 0.000857 0.000922 + 0.0000167 0.000904 + 0.0000179 0.000912 + 0.0000156 0.00105 =+ 0.0000369
Bwio 0.882 0.629 0.626 £ 0.0196 0.622 £ 0.0243 0.628 £ 0.0207 0481 £ 0.0280
Bwnio 0.722 0.00959 0.0158 £ 0.00216 0.0166 £ 0.00142 0.0155 £ 0.00130 0.0552 +£ 0.00348
Bwmiq 0.0517 0.0244 0.0245 £ 0.000261 0.0239 £ 0.000315 0.0244 + 0.000236 0.0171 & 0.000325
We 13,787.49 16,685.60 16,696.08 + 40.87 16,757.72 £ 80.12 16,702.89 &+ 72.29 17,562.04 + 41.26
Wao 49,01041 56,106.51¢ 56,036.04 + 4553 56,044.88 + 66.47 56,036.66 + 49.07 5589541 + 61.80
Bummia 0.405 0.0256 0.0274 £ 0.00174 0.0271 £ 0.00319 0.0273 £ 0.00121 0.0375 £ 0.00219
Bmio 0405 0.0256 0.0274 + 0.00174 0.0271 & 000319 0.0273 + 0.00121 0.0375 & 0.00219
Bm2io 0.275 0.00499 0.00805 =+ 0.000619 0.00772 £ 0.00123 0.00803 =+ 0.000747 0.0131 £ 0.00110
10 Bmsjo 0.0150 0.000567 0.000643 = 0.0000157 0.000590 = 0.0000498 0.000640 = 0.0000154 0.000686 = 0.0000270
Bmia 0.841 0.556 0.552 £+ 0.0304 0495 + 0.0826 0.555 + 0.0262 0.354 + 0.0517
Buaia 0.667 0.0186 0.0310 + 0.00318 0.0298 + 0.00504 0.0310 + 0.00446 0.0492 & 0.00497
Bumaia 0.0446 0.0200 0.0201 £ 0.000295 0.0168 £ 0.00444 0.0202 £ 0.000248 0.0110 £ 0.000972
Wi 12,445 64 16,465.58 16,436.45 £ 1745 1644361 + 81.71 16,438.56 + 16.88 16,690.18 = 50.64

Average o.f. values, and 95% confidence intervals, for the simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with ty = t; = 4 h, update period 7 and b = 0.3), a total simulation time of 48 h
on the test network M, for different values of &, when the HMOR-S2 is used to update the routing plan. 299.62%; 99 .85%; ©99.59% of the upper bounds Wg2 for the optimal value of the QoS traffic revenue Wq in [24].
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Table 6 Average o.f. values for simulation of the static and the dynamic routing model

. of. Initial Analytical Static routing Dynamic routing model results
solution results model results T=10m T=20m T=30m

Wo 20,636.78 21,596.832 21,587.85 £ 34.78 21,60544 £ 37.10 2161739 £ 3895 21,617.09 £ 35.60
Bumia 0.138 0.0220 0.0238 £ 000130 0.0245 £ 0.00202 0.0224 £ 000148 0.0219 & 000140
Bmia 0.138 00220 00238 £ 0.00130 0.0245 + 0.00202 00224 £ 000148 0.0219 £ 000140
Bmoja 0.0872 0.00655 0.00779 & 0.000317 0.00507 % 0.000480 0.00432 & 0.000205 0.00457 & 0.000923

00 Bm3ia 000394 0.000390 0.000399 = 0.0000138 0000423 £ 2.79-107° 0000375 = 2.00-107° 0000365 + 232:107°
Bunq 0410 0.130 0.137 £ 00156 0.165 = 0.0250 0.156 & 0.0195 0.138 &£ 00122
Buaia 0268 00920 00952 £ 00105 00162 £ 0.00137 00209 % 0.00379 00303 & 00225
Buziq 00127 0.00312 0.00296 & 0.000193 0.00377 £ 0.000302 0.00336 & 0.000281 0.00325 & 0.000220
We 6,606.51 6,940.64 6,954.27 & 7.20 711488 £ 25.83 7,053.08 £ 14.05 7,046.89 + 4331
Wa 17,599.15 17,685.84° 17,683.50 + 1554 17,68345 £ 1552 17,683.54 + 1554 17,683.51 £ 1554
Bumiq 00194 322:107° 223107 £ 546-107° 635107 £ 7.22.107° 502:1077 £ 366:107/ 216107 £ 545.107°
Bmija 00194 322107 214107 £ 550-107° 632107 £ 7.26:107° 0 213107 £ 547-107°
Bmaio 0.0107 1471078 0 0 0 0

05 Bm3ja 0.000419 2501076 1.09-1076 4 7.54.10~/ 7.08-10~ + 2.97-10~7 5.02:10~7 £ 36610~/ 408-10~7 £ 2.13-10~/
Bunia 00911 0.000701 000235 % 0.00603 000277 + 000335 0 0.00347 + 0.00892
Bwaiq 0.0534 6.05-1078 0 0 0 0
Busjo 0.00215 131.107° 217-107° £ 1.81.10™ 335107 &£ 218107 1.60-107 & 1.08-1072 1.74-107> + 6.86-107°
We 5239.94 5296.26 5297.08 £ 12.94 529731 £12.77 529723 £12.72 5297.24 £ 12.86
Wa 16,027.90 16,028.14¢ 16,077.61 & 15.03 16,077.61 & 15.03 16,077.61 & 15.03 16077.61 £ 15.03
Bumia 504107 9.1071° 0 0 0 0
Bmijo 504-107° 9.10710 0 0 0 0
Bmaia 3751072 <1-10710 0 0 0 0

10 Bm3jo 1.21.1076 <1-1071° 0 0 0 0
Buia 0.000400 8.7-1071° 0 0 0 0
Buio 0.000209 <1-1071° 0 0 0 0
Busia 7171076 <1.10710 0 0 0 0
We 3,355.75 3355.88 335097 + 24.92 335097 + 24.92 335097 + 24.92 335097 + 24.92

Average of. values, and 95% confidence intervals, for simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with to =t =4 h, update period 7 and b = 0.3), a total simulation time of 48 h on
the test network &£, for different values of &, when the HMOR-S2 is used to update the routing plan. 299.47%; ©100%; ©99.75% of the approximate ideal values for the QoS flows revenue, Wi§¢?', from the data in [25].
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Table 7 Average o.f. values for simulation of the static and the dynamic routing model

oz of. Initial Analytical Static routing Dynamic routing model results
solution results model results T=10m T=20m T=30m

Wa 20,859.85 21,690.16° 21,690.52 & 37.22 2168867 £ 37.15 21,693.07 & 37.19 21,69346 & 37.81
Bumia 0.110 0.00545 000619 £ 0.00119 000713 £ 0.000937 000591 + 0.000643 000574 £+ 000133
Bmia 0.110 0.00545 000619 £ 0.00119 000713 = 0.000937 000591 % 0.000643 000574 £ 000133
Bmala 0.0689 0000465 0.000828 = 0.000124 0000944 £ 0000213 0.000849 = 0.000140 0.000816 = 0.000193

00 Bm3ja 0.00308 0.000275 0.000288 + 2.64-10™> 0.000141 £ 2.11-107> 0.000125 + 2.68-10™> 0.000155 + 2.85-107
Buiia 0555 00613 00771 £ 00117 00723 £ 00282 00520 % 0.00627 00509 £ 00214
Buaia 0378 0.00699 000794 £ 0.00174 000522 £ 0.00139 000475 £ 0.00129 0.00430 + 0.000795
Busia 00190 0.00287 000288 + 0.000312 000126 + 0.000142 000103 % 0.000274 0.000909 =+ 0.000228
We 6,738.68 7,158.14 716110 £ 11,67 7,205.94 & 19.96 717237 £ 16.34 717399 £ 11.71
Wa 17,611.81 17,685.89° 17,683.53 + 1554 17,683.54 £ 1554 17,68351 & 15.56 17,68351 & 1547
Bumio 0.0160 1.04.107° 8.59-1077 £ 823.10~/ 0 2.15-107° £552.107° 209-107° £536-107°
Bmijo 0.0160 1.04.107° 0 0 2.15-107° £ 552.107° 209-107° £536.107°
Bmala 0.00926 7.2:107° 0 0 0 0

05 Bmsio 0.000371 6.25:1077 8.59:1077 8231077 0 5641078 + 1271077 1.38-1077 £ 3.00:1077
Buiia 0.147 0000128 0 0 000292 % 0.00751 0.000891 = 0.00229
Buio 0.0866 4451077 0 0 0 0
Busia 0.00353 446-107° 224107 £ 1.72:107° 0 2.26:1076 4+ 4.94.1076 568:1076 £9.32:1076
We 5,247.65 5,296.57 5297.18 £ 12.84 5297.31 & 12.80 5297.33 £ 12.79 5297.23 + 12.86
Wa 16,025.69 16,028.14 16,077.61 £ 15.03 1607761 + 15.03 16,077.61 £ 15.03 16,077.61 & 15.03
Bumio 0.000577 510710 0 0 0 0
Bmijo 0.000577 5.10710 0 0 0 0
Bmaio 0.000334 <1-1071° 0 0 0 0

10 Bmsio 1.16:107° <1-1071° 0 0 0 0
Buijo 0.00650 1271078 0 0 0 0
Buaia 0.00347 <1.1071° 0 0 0 0
Busiq 0.000123 2.10710 0 0 0 0
We 3,354.76 3,355.88 3,350.97 £ 24.92 3,350.97 & 24.92 335097 & 24.92 335097 & 24.92

Average o-f. values, and 95% confidence intervals, for simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with to =t = 4 h, update period 7 and b = 0.3), a total simulation time of 48 h on
the test network G, for different values of &, when the HMOR-52 is used to update the routing plan. 299.90%; © 100%; ©99.75% of the approximate ideal values for the QoS flows revenue, W'gea', from the data in [25].
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Table 8 Average o.f. values for simulation of the static and the dynamic routing model

o of. Initial Analytical Static routing Dynamic routing model results
solution results model results T=10m T=20m T=30m

Wo 20,358.90 21,616.01° 21,597.91 £ 30.13 21,606.57 £ 44.40 21,616.80 £ 3549 21,610.35 £ 34.71
Bumiq 0.169 0.0224 0.0245 £ 000175 0.0245 £ 0.00173 0.0216 & 0.00141 0.0225 & 0.00146
Bmilg 0.169 0.0224 0.0245 £ 000175 0.0245 £ 0.00173 0.0216 & 0.00141 0.0225 & 0.00146
Bmaja 0.111 0.00341 0.00580 & 0.000523 0.00492 + 0.000528 0.00456 + 0.000432 0.00506 + 0.000633

00 Bm3ja 0.00536 0.000596 0.000601 & 4.99-107° 0.000417 & 638-107° 0.000461 & 7.60-107° 0.000491 4 9.88-107>
Bunq 0711 0.146 0.157 £ 0.0231 0.161 £ 0.0326 0.148 £ 00176 0.151 £ 00277
Bwaia 0518 00145 0.0215 & 000229 0.0192 & 0.00232 0.0203 & 0.00429 0.0183 = 0.00445
Busiq 0.0293 0.00362 0.00376 % 0.000476 0.00339 % 0.000239 0.00299 % 0.000433 0.00315 % 0.000510
We 6,434.17 6,927.67 6,935.83 £ 10.55 7.027.38 £ 34.64 6,991.64 £ 857 6,971.23 £ 20.73
Wa 1741940 17,685.82° 1768345 £ 1555 17,683.50 & 15.56 17,683.50 & 15.55 17,68349 £ 15.55
Bumiq 0.0558 486-107° 4.55-107° £ 0.000109 223107 £ 5381077 223107 £ 5461077 227107 £ 544.107°
Bmijo 0.0558 486-107° 428107 £ 0.000110 2.12-107° £ 544.107° 2.14-107° £ 550.107° 2.14-107° £ 550-107°
Bmara 0.0335 1.78-1077 0 0 0 0

05 Bm3jo 000143 227:107° 3281076 &+ 141.107¢ 127107 £ 7.82:1077 1211075 £ 8.71-1077 1.66-1075 £ 5.64-1077
Buiq 0327 0.000910 0.00273 % 0.00702 0.000850 % 0.00219 0.00179 & 0.00461 0.00179 & 0.00461
Bwaia 0.205 9.58-1077 0 0 0 0
Busia 0.00906 161.107> 3.56-107° + 9.78-10~° 435.107> 4+ 1.69-10° 293:.107° £ 1.54.10~° 294107 £ 16110~
We 5119.13 5295.76 5296.16 £ 13.30 5297.13 £12.82 5296.73 £12.83 529648 £ 13.08
Wo 15,998.35 16,028.14° 16077.61 & 15.03 16,077.61 & 15.03 16,077.61 & 15.03 16,077.61 & 15.03
Bumiq 0.00678 1.78-1078 0 0 0 0
Bmija 0.00678 1.78-1078 0 0 0 0
Bmoja 0.00416 <1-1071° 0 0 0 0

10 Bm3ja 0.000153 16-107° 0 0 0 0
Buiq 0.0530 4.76-1077 0 0 0 0
Bwia 0.0298 <1-10710 0 0 0 0
Busia 0.00113 1.10-1078 0 0 0 0
We 3341.90 3,355.88 335097 £ 24.92 335097 & 24.92 335097 & 24.92 335097 & 24.92

Average o.f. values, and 95% confidence intervals, for simulation of the static (with a warm-up time of 8 h) and the dynamic routing model (with ty = t; = 4 h, update period 7 and b = 0.3), a total simulation time of 48 h on
the test network 7, for different values of &, when the HMOR-S2 is used to update the routing plan. 299.56%; °100%; €99.75% of the approximate ideal values for the QoS flows revenue, W'gea', from the data in [25].
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networks), different values for the times ¢ and ¢, for T and for b can be tried, and the
results displayed in the tables correspond to those obtained with typ = ¢; = 4 h; different
values of t; b = 0.3; total simulation time of 48 h.

Analytical results

The resolution heuristic manages to start off with an initial solution with poor values for
the o.f.s and still finish with a solution with significantly better values. The values for all
the o.f:s for all values of « are improved through the heuristic. The QoS revenue of the
final solutions is only slightly worse than that of the ideal optimal solutions, as expected.
Therefore, we can consider that the resolution heuristic has managed to find an adequate
‘good’ compromise routing solution to the routing problem P-M2-S2. In fact, these exper-
imental results for three traffic matrices for each network show that the expected QoS
revenue obtained with our heuristic is never less than 99.47% of that upper bound while a
substantial improvement on the other o.f.s can be obtained with respect to the initial solu-
tion, using only shortest path first choice routing, typical of Internet routing conventional
algorithms.

Simulation results

The analytical results and the corresponding static routing model simulation results are of
similar magnitude, but the analytical results tend to be better, as expected. In particular,
considering the results obtained for network M, the analytical results for the QoS flows
revenue Wy are clearly better than the corresponding static routing model simulation
results, for all the values of a. Generally speaking, for this network, the analytical results
are not inside the 95% confidence interval of the static routing model simulation results
and only for « = 0.0 do we get a result where a first-level o.f. (Bag, ) analytical value is
in the corresponding confidence interval. Remember that the simulation results for the
routing model are average values of performance in a great number of routing update
intervals, while the analytical results are obtained in ideal steady-state traffic conditions
and use approximate teletraffic sub-models.

For the other networks, the analytical and the simulation results for W are much closer
and the analytical result for that o.f. is inside the 95% confidence interval for « = 0.0 and
a = 0.5. For & = 1.0, the analytical value of W(, is actually worse than the corresponding
simulation result. In this situation of lower traffic load in networks &, G, H, there are many
instances throughout the executed simulations where the blocking estimate for certain
services is 0, meaning that all the offered calls of those services are actually carried. This
is the reason why so high values of the estimate of the QoS traffic revenue are obtained,
surpassing the analytical values. Note that these are situations where the occurrence of
blocking is a rare event. It is well known in statistics that in these cases, the uncertainty in
the estimates is very high, as reflected in the very high relative half length of the calculated
95% confidence intervals of the blocking probabilities.

The differences between the analytical and the simulation results for the static rout-
ing model are mainly due to the imprecision effects intrinsic to the analytic/numerical
solution, in particular those associated with the simplifications of the traffic model, and
the associated error propagation. The analytical model is a simplification which tends
to underestimate the blocking probabilities in the network (and therefore to overesti-
mate the revenues), because the overflow traffic is treated as Poisson traffic. This error
propagates throughout the complex and lengthy numerical calculations associated with



Girdo-Silva et al. Journal of Uncertainty Analysis and Applications 2014, 2:3 Page 22 of 31
http://www juaa-journal.com/content/2/1/3

the solution of the traffic model, involving the solution of large systems of implicit non-
linear equations. Further simplifications assumed in the stochastic model for the traffic in
the links are a superposition of independent Poisson flows and an independent occupa-
tion of the links. Although we envisage that a more precise and realistic representation of
the traffic flows allows for better estimates of the blocking probabilities, the approxima-
tions in our model can be deemed appropriate and actually unavoidable in this context.
This results from a compromise between the precision of the representation of the traffic
flows and the computational burden of the numerical resolutions throughout the exe-
cution of the heuristic algorithm. For this reason, some robust and well-tested classical
numerical algorithms (the Kaufman/Roberts algorithm and fixed-point iterators) are used
to estimate the blocking probabilities of this system. It is important to note that as previ-
ously mentioned the type of error introduced by this approach does not compromise the
inequality relations between the o.f. values. In fact, the focus of the optimization model is
on the relative value of the results of the traffic model rather than on the absolute accuracy
of such values, as explained in the sub-section on Dealing with IIU in the model.

The stochastic nature of the traffic offered to the network leads to some uncertainty in
the results. In particular, for the state-dependent periodic-type dynamic routing model,
the traffic flow means are periodically updated (with period 7) via a statistical estimate
(first-order moving average) based on real-time measurements, dependent on a param-
eter b. The influence of these parameters on the final global routing solution can be
analyzed.

In a first set of experiments, the update period 7 is fixed and different values are tested
for b. This parameter has to be set in order to reflect a compromise between the stability
of the estimate and the quick response to variations in the partial estimate of the aver-
age value of the traffic offered by a flow to the network in the previous interval, X. The
best results for the first-level o.f.s can be obtained with b = 0.3 (those are the values dis-
played in Tables 5, 6, 7, and 8). For b = 0.4, the results are only slightly worse. However,
for smaller values and for higher values of b, the results for W and B, are worse than
those displayed in the tables. An increase(decrease) in b means that the estimate of the
average traffic offered to the network by a flow, x, gives more(less) importance to infor-
mation on the previous interval and less(more) importance to the previous estimates of
traffic obtained throughout the duration of the experiment. These results show that a
balance between these two aspects is clearly desirable and no excessive weight should be
attributed to either of them. However, as the best results are obtained with » < 0.5, it
appears that the stability of the estimate is slightly more important than a rapid response
to variations in the offered traffic. Note that these results are in accordance with the traf-
fic engineering recommendations in [27] . Notice that the possibility of network changes
or sudden strong alterations in traffic patterns are not being considered in this study. This
type of events would have required the traffic estimate to be able to respond better to
very rapid variations in the offered traffic, so a value of b > 0.5 would have been expected
to be more appropriate in that situation. Probably, that would have been the case if the
network traffic in the simulation model was not modeled as Poisson traffic but rather
as self-similar traffic, with its typical bursts of traffic (see for instance [28]), a situation
out of the scope of the present study. In a second set of experiments, the parameter b is
kept at 0.3 and different values are tested for the update period t. The best results for the
first-level o.f.s are those obtained with r = 10, 20, 30 m (these values are displayed in
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Tables 5, 6, 7, and 8). Only for these parameter values is the dynamic routing model capa-
ble of attaining the performance values corresponding to the analytic upper bounds for
the static solution. For other parameter values, the experimental results are not so good.

A final remark on the confidence intervals for each o.f.: their length is of the same order
for both the static and the dynamic routing model.

The results for network M, which is not dimensioned for low blocking probabilities,
have shown that for a smaller value of 7 (5 m), the results for W and By, @ are slightly
worse than those displayed in Table 5. However, for a higher value of T (30 m), the results
are also worse (see Table 5). Therefore, in situations of high blocking probability, there is
no need to update the traffic estimate too often (with update periods of the order of only
a few minutes), but a very long update period is also undesirable. Notice that a value of
b = 0.3 means that the update information focuses more on the medium/long term rather
than on the short term, as the estimate of the average traffic offered to the network by a
flow incorporates more information on the estimates of traffic that have been obtained
throughout the duration of the experiment, rather than on the previous interval. In very
long intervals, slight changes in the offered traffic pattern are more likely to occur and
these tend to be disregarded, if the update periods are very long (30 min or more) because
of the lower importance given to the information on the specific previous interval, in the
traffic estimate.

For higher values of o (corresponding to lower load), we realize that the simulation
results for each of the networks £,G,H are the same regardless of the value of 7. As
mentioned earlier, these networks, for « = 0.5 and @ = 1.0, are dimensioned for low
blocking probabilities, and the blocking estimates are close to 0 in many cases, as all the
offered calls tend to be carried. In this case, the total expected network revenues associ-
ated with QoS and BE traffic flows tend to have maximum values regardless of the value
of T.

In global terms and as expected, the results obtained with the dynamic routing model
are better (or approximately the same in the worst case) than those obtained with the
static routing model. This is especially noticeable for &« = 0.0 for all the networks, which
is the situation of higher load. This shows that in situations of higher load, the dynamic
model is well calibrated for these networks, in terms of the choice of the initial routing
solutions to be used by the heuristic and the choice of the routing updating period. In the
dynamic routing model, the routing plan is adjusted throughout the simulation run, in
accordance with the traffic random fluctuations around the average values corresponding
to the nominal traffic matrix defined in steady-state conditions.

The o.f. values are intrinsically imprecise, due to the simplifications and approximations
assumed in the stochastic model for the traffic in the links, and to the numerical errors
associated with the resolution of the system of equations of the traffic model which prop-
agate throughout the resolution procedure. Still, the representation of the traffic flows as
independent Poisson processes and the independence in the occupations of the links may
be considered a good compromise between the exactness of the traffic model and the
computational burden for solving the analytical model.

Other imprecision effects are due to an instability phenomenon which may potentially
arise in the path selection procedure, when all the network routes are liable to change.
To avoid oscillations between certain solutions that can possibly lead to a poor global
network performance, the core algorithm that seeks new routing solutions (MMRA-S2)
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is applied only to specific traffic flows that are carefully chosen (according to the value of
&(f:), as mentioned earlier), so as to try and improve the o.f. values.

The inaccuracy in the o.f. values may be considered inevitable, due to the very great
combinatorial complexity of the optimization model including strong interdependencies
among key mathematical entities of the model. The heuristic resolution has different
mechanisms, throughout the improvement cycles of the o.f.s, which try to deal with these
complex interdependencies, in order to minimize the impact of these inaccuracies in the

quality of the obtained compromise solutions.

Conclusions

In this paper, a stochastic two-level hierarchical multiobjective routing model for MPLS
networks with two service classes and alternative routing was reviewed and analyzed con-
cerning sources of imprecision, inaccuracy (or inaccurate determination), and uncertainty
(IIU). Key issues raised by its high complexity were discussed in a systematic manner, as
well as the major factors that constitute the sources of IIU of the model. The mechanisms
used by the developed resolution heuristic approach to deal with these issues were also
described.

The most important innovative aspect of this paper was the presentation of analyti-
cal and stochastic simulation experiments (both for static and dynamic versions of the
routing model), enabling the evaluation of inaccuracies intrinsic to the model and to the
analytic/numerical resolution method, as well as the evaluation of a particular form of
‘internal uncertainty’ associated with the necessity of representing a system of preferences
(of a ‘virtual decision maker’) in a fully automated application. The possible effects of
these inaccuracies on the results of the heuristic resolution procedure were discussed as
well as the forms of minimizing their impacts on the heuristic effectiveness. Furthermore,
the experimental study, using discrete-event stochastic simulation, enabled the validation
of the routing model results and the evaluation of effects in the model results of the uncer-
tainty associated with the offered traffic estimates, in a dynamic version of the routing
method.

The analysis of these types of IIU factors, their effects on the results of the resolution
approach of the routing optimization model, and the described general type of procedures
for dealing with these issues are in our opinion relevant to other routing models with
similar features. That is, we think that dealing with these issues in a proper manner is
an important task in the context of multiobjective routing models, based on network-
wide optimization approaches (where the combined effect and interactions among the
traffic flows have to be explicitly represented) and using a stochastic representation of
the traffic flows. Having in mind the high complexity and heavy numerical costs of the
addressed model, probably several of the methods and techniques used for dealing with
these IIU issues, may be adapted to various network routing models of similar nature.
This is naturally an important task that justifies future works on IIU issues (and the ways
to deal with these issues) focused on specific types of stochastic network-wide routing
optimization models.

Endnote

2A weakly dominated solution is a feasible solution such that there is at least another
feasible solution with better values for some of the o.f.s and equal values for the other
o.fs.
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Appendix
Notation used in the model
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The notations used in the model are shown in Table 9.

Table 9 Notation used in the model

Notations

Description

Of. calculation

Wo®) = Xsesqs A5Ws
Bummio = maxseSQ{Bms}

Bmslo = 75 Lrer, AURB(S)
Busjo = maxg, e, {B(f5)}

Blocking probabilities calculation
B(f5)
Bis = B (. 77, G )

B

Decision variables
R=U%lRre)
R(s) = UrexR(f),s € SoU Sp
R(f) = (P(F),p=1,--- M

Path metrics and auxiliary parameters - MMRA-S2

mis = —log(1 — Bks)
D(fy)

Simulation parameters
T =T

o
)

&

[Warm—up =l+4

T
Xn(fs) = (1 = b)Xn—1 () + b)?nfw(fs)
Xn—1(£)

b

Miscellany of auxiliary parameters
fs
Sows
A
AS

Total expected network revenue associated with QoS(BE)
traffic flows

Maximal average blocking probability among all QoS service
types
Mean blocking probabilities for flows of type s € Sg

Maximal blocking probability defined over all flows of
type s € Sg

Node-to-node blocking probability for all flows f; €

Blocking probabilities for micro-flows of service type s in
link /i

Basic function (implicit in the teletraffic analytical model)
to calculate By

Network routing plans
Set of all the feasible routes for the traffic flows of type s
First, second, - - -, M-th choice route for flow f;

Marginal implied costs
Marginal blocking probabilities

Set of all feasible loopless paths for flow f;

Base matrix with offered bandwidth values
from node i to node j (Mbps)

Compensation parameter

Duration of the first stage of the initialization phase,
where only periodical updates of the estimate
of the offered traffic are performed

Duration of the second stage of the initialization phase,
where periodical updates of the estimate of the offered
traffic and of the routing plan are performed

Duration of the initialization phase
Update period of the estimates of the offered traffic
and of the network routing plans

Estimate of the average traffic offered to the network
by the flow fs in the time interval [nt; (n 4+ 1)

Estimator of the average value of the traffic offered
by f; to the network in the previous interval [(n — 1)T; nt[

Compromise value between the need to obtain a quick
response of the estimator to rapid fluctuations in X(f;)
and the stability of the long-run variations

Flow of service type s

Set of QoS(BE) service types

Total traffic offered by flows of type s
Carried traffic for service type s
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Table 9 Notation used in the model (continued)

A(fs) Mean traffic offered associated with f; € Fs

Wy Expected revenue per call of service type s

Dks Reduced traffic loads offered by flows of type s to Ik
2= (o1, pus) Vector of reduced traffic loads

s Equivalent effective bandwidths for flows of type s in /g
di = (dir, -+ dus)) Vector of equivalent effective bandwidths

d; Required bandwidth for service s (kbps)

ds = % Required effective bandwidth for service s (channels)
M EGH Test networks

NV Number of nodes in the network

| L] Number of unidirectional links in the network

G Link bandwidth (Mbps)

Cy = (%—‘ Link capacity (channels)

Ug Basic unit capacity

hs Average duration of a type s call

D Maximum number of arcs for a type s call

E(fs) Function for choosing candidate paths for flow f;

for possible routing improvement
8 Average node degree of a network

Formalization of the heuristic resolution approach
The formalization of the heuristic approach (HMOR-S2pps — Hierarchical Multiobjective
Routing considering 2 classes of Service with a Pareto Archive Strategy) follows.

The version without the Pareto archive, i.e., HMOR-S2, is equivalent to this one, without
steps VII; VIIL.11be— Add R, to the archive - - - ; VIIL.11be Else {and instructions therein};
VIIL.11be— Add R, to the archive - - - ; VIIL.11be Else {and instructions therein}; X.

As for the ‘core’ algorithm MMRA-S2, it is basically an adaptation to the present model
of the bi-objective constrained shortest path algorithm in [29] which is an extension of
the algorithm in [14] to a multiservice environment.

HMOR-S2ps
LR, < R,
II. Compute B and W, Byim|q for R,
I11. Wé <« WQ,B;’VIle < Batmig
IV.R, < R,
V. Compute B for R,
Compute Wq, Byim|Q: Bms|Qs Bmsi(Vs € SQ), W for R,
VI. max{Wq} < Wo, min{BamQ} < Batm|o
min{By,sQ} < Bms|Q, min{Bag)Q} < Bumsio(Vs € Sg) and max{ Wz} < Wa
VIL. Add R, to the archive
VIIL For nPaths = | F| to nPaths = 1

1. Forape=0toape=1

(@) Ifape=0,z4pr < 1.0
Else, z4apr < 0.01 - nPaths
(b) Fors=1tos=|S]|
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i.  FornCycles = 1to nCycles =0

A.
B.

a

Compute Band ¢?, s € Sq orc?,s € Sg for R,
Compute and order the values of the function & (f;),
with £(f;) = FL(fy) if nCycles = 1 and £(f;) =

Fg(B) (fs) if nCycles =0

Find the nPaths flows with lower value of £ (f;)
Compute with MMRA-S2 new candidate paths for
the corresponding O-D pairs and define a new set of
first and second choice paths for the service s, R,(s),
according to the rules established for each service
Compute B for R,

Compute Byys)Q, Bus|q if s€ Sq or Wi ifs€ Spfor R,
Compute W, Byim|Q

If s € Sq then

. If[(Bms‘Q < min{Bs/q} and Bagjo <
min{By|q}) and (Wg > max{Wq} and
Buymi@ < min{Bagnio})] then

— min{By5Q} < Bmsi@, min{Byg0} <
Bumsiq

- max{Wg} < Wo, min{Bypq} <
BuyimiQ

— Ri(s) < Ru(s)

— Add R, to the archive (If it is already
full, the priority regions of the solutions
in the archive must be evaluated and the
first solution found in the worst region
of the archive should be removed first.)

e Flse,

- If[(Bms‘Q > min{BysQ} and Bagso >
min{Bysq}) and (Wo < max{Wq} and
Buymi@ > min{Bagmio})] then
* (Discard R,)

— Else,

* If there is at least one solution X in the
archive for which [(Bjus)qg > Bmsjo(X)
and B0 > Barsjo(X)) and (W <
Wo(X) and Buytm|@ > Bumm|Q(X))],
i.e. X dominates R, in terms of the o.f.
of interest,

+ (Discard R,)
* Else (R, and the solutions in the
archive are non-dominated)

1 If the archive is not full,
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+ Add R, to the archive
T Else
i Evaluate the priority regions of

R, and the solutions in the

archive;

1 If R, is in the worst priority
region

o (Discard R,)

I Else,

o Remove the first solution
found in the worst region of
the archive;

o Add R, to the archive

G. Else(s € Sp)

o If [(Wp > max{W3}) and (Wq > max{ Wy}
and Baim@ < min{Bag,o})] then

e Flse,

max{W3g} < Wp

max{Wo} < Wgo, min{By g} <
Bmmiq

R (s) < Ru(s)

Add R, to the archive (If it is already
full, the priority regions of the solutions
in the archive must be evaluated and the
first solution found in the worst region
of the archive should be removed first.)

If [(Wp < max{W3}) and (W < max{Wq}
and Bagm|@ > min{Bagm|o})]
* (Discard R,)
Else,
* If there is at least one solution X in the
archive for which [(Wz < Wg(X)) and
(Wo < Wo(X) and Baimio > Buimio(0))],
i.e. X dominates R, in terms of the o.f.
of interest,
+ (Discard R,)
* Else (R, and the solutions in the
archive are non-dominated)
1 If the archive is not full,
1 Add R, to the archive
1 Else
i Evaluate the priority regions of
R, and the solutions in the

archive;
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1 If R, is in the worst priority
region

o (Discard R,)

I Else,

o Remove the first solution
found in the worst region of
the archive;

o Add R, to the archive

H.  Ra(s) < Ry(s)
End of the cycle For (nCycles)
End of the cycle For (s)

End of the cycle For (ape)
End of the cycle For (nPaths)

IX. If Wg > max{Wg} or B;’VIle < min{Bam|q} then
1. The best solution is R,.
X. Else,

1. Evaluate the priority regions of the solutions in the archive;
2. The final solution is found in the best region of the archive, using a reference
point-based procedure.

XI. Compute the o.f. values for the final solution.

MMRA-S2
I.  For each link /i in the network, compute the path metrics: marginal implied costs
m}(s = c,?s(B) and marginal blocking probabilities m,%s = —log(1 — By), where
NS SQ(B).

B B
II. Compute average values cgv( )(s) = ﬁ Zlk er c,?s( ) and By (8) = ﬁ Zlk er
(= log(1 — Bxy)).
B“"log (s)

QB
.  Compute the weights €2P (s) = e nd QP () = v O
P ghts e (s) e () +Banyg () 2 e (9)+Banyg ()

IV.  For each link [ in the network, compute a cost of the link given by a weighted sum
2P (9)c2® + 2P (5)(— log(1 — Byy)).

V. Solve the problem min,z)epi s {Z,ker( fs) (elQ(B) $)c2® 1 2P (5)(— log(1 — Bks))) } ,
fs € Fs,s € S using MPS [30], which allows for the computation of a set of x paths
for each flow f; € F for which the paths may change, ordered according to this
cost function.

VL. Identify the priority region to which each of the possible paths belongs to, where
the first priority region is A, then By and By, followed by C and finally D. The limits
of the priority regions (Figure 4) are given by

—log(1 — Byeg(s)) = —Dg log(1 — B~ (s)) —log(1 — Bc(s)) = —Dglog(1 — Bt(s)
Creq(s) = Dsc™(s) Cac(s) = Dsc (s)
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B
Eue:v(mfg : on
(Blar(f): 5 (£3))
ST
D
Cae(8) {remmmefs = — — = S |
| I
I ; I
B, | C I
I I
I I
CT'EQ(S) ______________ F+ - —_—_- —- —- _- - = |
I I
I I
A I B, I
I I
I I
Fol i 75 T ! !
(oM : :
; i Bly(fo)
—log(1 — B*(f.)) Y herisy — log(l — By,)
—log(1 — Breg(s))
—log(1 — Bae(s))
Figure 4 Priority regions. These priority regions are used to rank the possible paths.

where
B™(s) = Bay(s) — AB(s) Bt (s) = Bay(s) + AB(s)
Bay(s)—miny e £ (B}
Bay(s) = 151 Ypper Bis AB(s) = ke
¢ (8) = cay(s) — Ac(s) ¢t (s) = can(s) + Ac(s)
—mi Q
cﬂQl,(s) (QoS flow) w (QoS flow)
Cav(s) = Ac(s) = ) 5
ng(s) (BE ﬂOW) Cav(S)*mI;IkeLI{ kx} (BE ﬂOW)

VIL.  The first choice route for each flow, 71(f;), is a non-dominated solution in the best
possible priority region with the lowest value of implied cost.
VIII.  Consider all the arc-disjoint solutions from r!(f£;).
IX. The second choice route for each flow, r%(f;), is a non-dominated solution in the
best possible priority region with the lowest value of implied cost.
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