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Abstract

Martingales are a class of stochastic processes which has had profound influence on
the development of probability theory and stochastic processes. Some recent
developments are related to mathematical finance. In the real world, some information
about these phenomena might be imprecise and represented in the form of vague
quantities. In these situations, we need to generalize classical methods to vague
environment. Thus, fuzzy martingales have been extended as a vague perception of
real-valued martingales. In this paper, some moment inequalities are presented for
fuzzy martingales. Several convergence theorems are established based on these
inequalities. As an application of convergence theorems, a weak law of large numbers
for fuzzy martingales is stated. Furthermore, a few examples are devoted to clarify the
main results.

Keywords: Fuzzy random variable; Fuzzy martingale; Weak convergence;
Strong convergence

Introduction
Over the last decades, the theory of fuzzy random variables has been extensively devel-
oped. A fuzzy random variable has been extended as a vague perception of a real-valued
random variable and subsequently redefined as a particular random set, see e.g., [1-5].
We review several researches on this topic. A strong law of large numbers for fuzzy ran-
dom variables was given by Miyakoshi and Shimbo [2]. Klement et al. [6] established a
strong law of large numbers for fuzzy random variables, based on embedding theorem as
well as certain probability techniques in the Banach spaces. Taylor et al. [7] proved a weak
law of large numbers for fuzzy random variables in separable Banach spaces. Joo et al. [8]
established Chung-type strong law of large numbers for fuzzy random variables based on
isomorphic isometric embedding theorem. Fu and Zhang [9] obtained some strong limit
theorems for fuzzy random variables with slowly varying weight. It should be mentioned
that although the concept of variance has been found very convenient in studying limit
theorems, but, as the authors know, the limit theorems for fuzzy random variables based
on the concept of variance has not been developed, except in the works by Korner [10]
and Feng [11]. Korner [10] proved the strong and weak laws of large numbers for fuzzy
random variables. Based on a natural extension of the concept of variance, he extended
Kolmogorov’s inequality to independent fuzzy random variables and derived several limit
theorems. Theirmethods are direct applications of classical methods in probability theory
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to fuzzy random variables. In this paper, some moment inequalities for fuzzy martingales
are established and convergence theorems of such fuzzy random variables are studied.
We survey some topics in real-valuedmartingale theory and fuzzy martingale theory. The
term martingale originates from the gambling theory. The famous gambling strategy to
double one’s stake as long as one loses and leave as soon as one wins is called a martin-
gale. Now, if a gambling value is vague with a certain membership function, the pervious
strategy is called fuzzy martingale. A classic interpretation of martingales in the context
of gambling is given as follows. Let Xn represent the fortune of a gambler at the end of
the nth play, and let Fn be the information available to the gambler up to and including
the nth play. Then, Fn contains the knowledge of all events like {Xj ≤ r, for r ∈ R, j ≤ n}
making Xn measurable with respect to Fn. The mathematical definition of martingale
(E(Xn+1|Fn) = Xn) says that the given all the information up until the end of the nth play,
the expected fortune of the gambler at the end of the (n + 1)th play remains unchanged.
Thus, a martingale represents a fair game. In situation where the game puts the gambler
in a favorable position, onemay express sub-martingale i.e., (E(Xn+1|Fn) ≥ Xn). It is men-
tioned that limit theorems play important roles in studying some practical instances of
martingale theory such as extinction in branching process and bankruptcy in investment
problems like portfolio selection.
The concept of fuzzy martingale and its properties is introduced and studied by Puri

and Ralescu [12], Stojakovic [13], and Feng [14]. Puri and Ralescu [12] proved some con-
vergence theorems of martingale. Stojakovic [13] discussed the properties of martingales.
Feng [14] studied fuzzy conditional expectation and fuzzy martingale and investigated
some results on convergence of fuzzy martingales. Fei et al. [15] and Fei [16] obtained sev-
eral results on stopping theorem for fuzzy (super-, sub-) martingales with discrete time.
The rest of this paper is organized as follows. In Section ‘Preliminaries’, we briefly

review some preliminary concepts of fuzzy arithmetic and fuzzy random variables. In
Section ‘Moment Inequalities’, several useful inequalities are provided for fuzzy martin-
gales. In Section ‘Convergence Theorems’, some limit theorems are established to fuzzy
martingales. The conclusions are discussed in Section ‘Conclusions’.

Preliminaries
In this section, we provide several definitions and elementary concepts of fuzzy arithmetic
and fuzzy random variables that will be used in the next sections. For more details, the
reader is referred to [14,17,18].
Define F(R) = {ũ : R →[ 0, 1] | ũ satisfies i to iii}; where (i) ũ is normal, (ii) ũ is fuzzy

convex, and (iii) ũ is upper semicontinuous. Any ũ ∈ F(R) is called a fuzzy number.
For a ũ ∈ F(R), [ ũ]r = {x ∈ R|ũ(x) ≥ r, 0 < r ≤ 1} is called the r-level set of ũ.
We use the notations ⊕, �, and �, which are defined as follows in this paper:

(i) [ ã ⊕ b̃]r =[ ã−(r) + b̃−(r), ã+(r) + b̃+(r)].
(ii) If λ > 0, then [ λ � ã]r =[ λã−(r), λã+(r)].
(iii) If λ < 0, then [ λ � ã]r =[ λã+(r), λã−(r)] .
(iv) [ ã � b̃]r =[ ã−(r) − b̃+(r), ã+(r) − b̃−(r)] .

Let ũ, ṽ ∈ F(R), and set dp(ũ, ṽ) =
(∫ 1

0 hp([ ũ]r , [ ṽ]r )dr
) 1

p , 1 ≤ p < ∞,
d∞(ũ, ṽ) = sup0<r≤1 h([ ũ]r , [ ṽ]r ), where h is the Hausdorff metric, i.e., h([ ũ]r , [ ṽ]r ) =
max{|u−(r)− v−(r)|, |u+(r)− v+(r)|}. Norm ||ũ||p of a fuzzy number ũ ∈ F(R) is defined
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by ||ũ||p = dp(ũ, 0̃), where 0̃ is the fuzzy number in F(R) whose membership function
equals 1 at 0 and zero otherwise. The norm ||.||∞ of ũ is defined by ||ũ||∞ = d∞(ũ, 0̃).
The operation 〈., .〉 : F(R) × F(R) →[−∞,∞] is defined by 〈ũ, ṽ〉 = ∫ 1

0 (ũ−(r)ṽ−(r) +
ũ+(r)ṽ+(r))dr. If the indeterminacy of the form ∞ − ∞ arises in the Lebesgue integral,
then we say that 〈ũ, ṽ〉 does not exist. It is easy to see that the operation 〈., .〉 has the
following properties:

(i) 〈ũ, ũ〉 ≥ 0 and 〈ũ, ũ〉 = 0 ⇔ ũ = 0̃.
(ii) 〈ũ, ṽ〉 = 〈ṽ, ũ〉.
(iii) 〈ũ + ṽ, w̃〉 = 〈ũ, w̃〉 + 〈ṽ, w̃〉.
(iv) 〈λũ, ṽ〉 = λ〈ũ, ṽ〉.
(v) |〈ũ, ṽ〉| <

√〈ũ, ũ〉〈ṽ, ṽ〉.
For all ũ, ṽ ∈ F(R), if 〈ũ, ũ〉 < ∞ and 〈ṽ, ṽ〉 < ∞, then the property (v) implies that
〈ũ, ṽ〉 < ∞. So, we can define d∗(ũ, ṽ) = √〈ũ, ũ〉 − 2〈ũ, ṽ〉 + 〈ṽ, ṽ〉. In fact, d∗ is a metric
in {ũ ∈ F(R)|〈ũ, ũ〉 < ∞}.
Moreover, the norm ||ũ||∗ of fuzzy number ũ ∈ F(R) is defined by ||ũ||∗ = d∗(ũ, 0̃).
Let (�,A,P) be a probability space. A fuzzy random variable (briefly, FRV) is a Borel

measurable function X̃ : (�,A) → (F(R), d∞) [14]. Let X̃ be a FRV defined on (�,A,P).
Then [ X̃]r =[ X̃−(r), X̃+(r)] , r ∈ (0, 1], is a random closed interval, and X̃−(r) and X̃+(r)
are real-valued random variables. A FRV X̃ is called integrably bounded if E||X̃||∞ < ∞,
and the expectation value EX̃ is defined as the unique fuzzy number which satisfies the
property [EX̃]r = E[ X̃]r , 0 < r ≤ 1 [3].

Definition 1. ([14]) Let X̃ and Ỹ be two FRVs in L2 (L2 = {X̃|X̃ is FRV and E||X̃||22 <

∞}), then Cov(X̃, Ỹ ) = 1
2
∫ 1
0 (Cov(X̃−(r), Ỹ−(r)) + Cov(X̃+(r), Ỹ+(r)))dr. Specially, the

variance of X̃ is defined by Var(X̃) = Cov(X̃, X̃).

Theorem 1. ([14]) Let X̃ and Ỹ be two FRVs in L2 and ũ, ṽ ∈ F(R) and λ, k ∈ R. Then

(i) Cov(X̃, Ỹ ) = 1
2 (E〈X̃, Ỹ 〉 − 〈EX̃,EỸ 〉),

(ii) Var(X̃) = 1
2Ed

2∗(X̃,EX̃),
(iii) Cov(λX̃ ⊕ ũ, kỸ ⊕ ṽ) = λkCov(X̃, Ỹ ),
(iv) Var(λX̃ ⊕ u) = λ2Var(X̃),
(v) Var(X̃ ⊕ Ỹ ) = Var(X̃) + Var(Ỹ ) + 2Cov(X̃, Ỹ ).

Definition 2. ([19]) The Dp,q distance, indexed by parameters 1 ≤ p < ∞, 0 ≤ q ≤ 1,
between two fuzzy numbers ũ and ṽ is a nonnegative function on F(R) × F(R) given as

follows: Dp,q(ũ, ṽ) =
[
(1 − q)

∫ 1
0
∣∣ũ−(r) − ṽ−(r)

∣∣p dr + q
∫ 1
0
∣∣ũ+ (r) − ṽ+(r)

∣∣p dr] 1
p .

Remark 1. If p = 2, q = 1
2 , then the metric Dp,q is equal to the metric d∗; for more

details, see [16].

To prove the main results, we need to apply an order relation. Thus, we use notations
≺, �, �, and � defined as follows [18]:

(i) ã ≺ b̃ if and only if a−(r) < b−(r) and a+(r) < b+(r) ∀r ∈ [ 0, 1] .
(ii) ã � b̃ if and only if a−(r) > b−(r) and a+(r) > b+(r) ∀r ∈ [ 0, 1] .
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(iii) ã � b̃ if and only if a−(r) ≤ b−(r) and a+(r) ≤ b+(r) ∀r ∈ [ 0, 1] .
(iv) ã � b̃ if and only if a−(r) ≥ b−(r) and a+(r) ≥ b+(r) ∀r ∈ [ 0, 1] .

Definition 3. ([20]) Two fuzzy random variables X̃ and Ỹ are called independent if two
σ -fields σ(X̃) = σ({X−(r),X+(r)|r ∈ [ 0, 1] }) and σ(Ỹ ) = σ({Y−(r),Y+(r)|r ∈ [ 0, 1] })
are independent.

Definition 4. A finite collection of FRVs {X̃k , 1 ≤ k ≤ n} is said to be independent if
σ -fields σ({X̃−

k (r), X̃+
k (r)|r ∈ [ 0, 1] }|1 ≤ k ≤ n) are independent. An infinite sequence

{X̃n, n ≥ 1} is called independent if every finite sub-collection of it is independent.

Definition 5. ([15]) A fuzzy conditional expectation of X̃ with respect to the sub-σ field
B ofA, denoted as E(X̃|B), is defined as a FRV which satisfies in the following conditions:

(i) E(X̃|B) is B- measurable.
(ii)

∫
B E(X̃|B)dP = ∫B X̃dP for every B ∈ B. Note that

∫
B X̃dP is the Aumann integral

of the FRV X̃ [21].

Proposition 1. ([15]) The fuzzy conditional expectation has the following properties:

(i) E(a � X̃ ⊕ b � Ỹ |B) = (a � E(X̃|B)) ⊕ (b � E(Ỹ |B)) a.s.
(ii) X̃ is B-measurable, then E(X̃|B) = X̃ a.s.
(iii) EE(X̃|B) = EX̃.
(iv) If X̃ � Ỹ a.s. then E(X̃|B) � E(Ỹ |B) a.s.
(v) d∞(E(X̃|B),E(Ỹ |B)) ≤ E(d∞(X̃, Ỹ )|B) a.s. and consequently

||E(X̃|B)||∞ ≤ E(||X̃||∞|B) a.s. (1)

Definition 6. ([15]) The sequence {X̃n,Bn} of fuzzy random variables and σ -algebras is
called a fuzzy martingale if we have, for each n ≥ 1:

(a) X̃n is Bn-measurable and E||X̃n||∞ < ∞.
(b) E(X̃n+1|Bn) = X̃n.

The sequence {X̃n,Bn} is called a fuzzy sub-martingale if property (b) is replaced by

(b’) E(X̃n+1|Bn) � X̃n.

For more on fuzzy martingale and related topics, see e.g. [11,15,22].

Definition 7. ([20]) Let X̃ and X̃n be FRVs defined on the same probability space
(�,A,P).

(i) We say that {X̃n} converges to X̃ in probability with respect to the metric d if

limn→∞P(ω : d(X̃n(ω), X̃(ω)) > ε) = 0, ∀ε > 0.

(ii) We say that {X̃n} converges to X̃ almost surely (briefly, a.s.) with respect to the
metric d, if

P(ω : limn→∞d(X̃n(ω), X̃(ω)) = 0) = 1.



Ahmadzade et al. Journal of Uncertainty Analysis and Applications 2014, 2:7 Page 5 of 14
http://www.juaa-journal.com/content/2/1/7

(iii) We say that {X̃n} converges to X̃ in L2 with respect to the metric d, if

E
1
2 d2(X̃n, X̃) → 0, as n → ∞.

It is mentioned that in the literature of probability theory, convergence in probability
and almost surely convergence are called weak and strong convergence, respectively.
Throughout the paper, S̃n = ⊕n

i=1X̃i and Fn = σ(X̃1, . . . , X̃n).

Moment Inequalities
In this section, we prove some basic inequalities for fuzzy martingales.
The following lemma is essential to obtain our main results.

Lemma 1. If {X̃n, n ≥ 1} is a sequence of FRVs such that E(X̃n|Fn−1) = 0̃, for all n ≥ 1,
then {S̃n,Fn} is a fuzzy martingale.

Proof. By using linearity property of conditional fuzzy expectation, we obtain

E(S̃n|Fn−1) = E(S̃n−1|Fn−1) ⊕ E(X̃n|Fn−1).

Since S̃n−1 is Fn−1 measurable and E(X̃n|Fn−1) = 0̃ ∀ n ≥ 1, we have

E(S̃n|Fn−1) = S̃n−1.

This completes the proof.

Corollary 1. If {X̃, n ≥ 1} is a sequence of independent FRVs such that E(X̃n) = 0̃,∀ n ≥ 1,
then {S̃n,Fn} is a fuzzy martingale.
The above corollary shows the importance of independence in this paper, which is used

in the examples.

Remark 2. If {X̃n, n ≥ 1} is a sequence of fuzzy random variables, then {S̃n,Fn} is not
always fuzzy martingale.

Example 1. If {X̃n, n ≥ 1} is a sequence of nonnegative fuzzy random variables, then
{S̃n,Fn} is not a fuzzy martingale, but it is a fuzzy sub-martingale.

Theorem 2. If {S̃n,Fn} is a fuzzy martingale, then there exists a constant C depending
only on p such that

(i) E||S̃n||pp,q ≤ C
n∑

i=1
E||X̃i||pp,q, ∀ p ∈ [ 1, 2] and q ∈ [ 0, 1]

(ii) E||S̃n||pp,q ≤ Cn
p
2

n∑
i=1

E||X̃i||pp,q ∀ p > 2 and q ∈ [ 0, 1]

where, S̃n = ⊕n
i=1X̃i.
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Proof. We have done the following:

(i) By invoking Fubini’s theorem (FT, for short), Burkholder’s inequality (BI, for short),
and Cr inequality (Cr I, for short), we obtain

E||S̃n||pp,q = E
∫ 1

0
q|S̃+

n (r)|p + (1 − q)|S̃−
n (r)|pdr

=
∫ 1

0
qE|S̃+

n (r)|p + (1 − q)E|S̃−
n (r)|pdr (FT)

≤ C
∫ 1

0
qE|

n∑
i=1

[
X̃+
i (r)

]2 | p2 + (1 − q)E|
n∑

i=1

[
X̃−
i (r)

]2 | p2 dr (BI)

≤ C
n∑

i=1

∫ 1

0
qE|X̃+

i (r)|p + (1 − q)E|X̃−
i (r)|pdr (Cr I)

= C
n∑

i=1
E||X̃i||pp,q.

(ii) Fubini’s theorem (FT), Rosenthal’s inequality (RI), Cr inequality, and conditional
Jensen’s inequality (CJI) imply that

E||S̃n||pp,q = E
∫ 1

0
q|S̃+

n (r)|p + (1 − q)|S̃−
n (r)|pdr

=
∫ 1

0
qE|S̃+

n (r)|p + (1 − q)E|S̃−
n (r)|pdr (FT)

≤
∫ 1

0
q

⎧⎨
⎩E
( n∑

i=1
E
(
X̃+2
i (r)|Fi−1

)) p
2

+
n∑

i=1
E|X̃+

i (r)|p
⎫⎬
⎭

+ (1 − q)

⎧⎨
⎩E
( n∑

i=1
E
(
X̃−2
i (r)|Fi−1

)) p
2

+
n∑

i=1
E|X̃−

i (r)|p
⎫⎬
⎭ dr (RI)

≤ Cn
p
2

∫ 1

0
q
{ n∑

i=1
E
[
E
(
X̃+2
i (r)|Fi−1

)] p
2 + E|X̃+

i (r)|p
}

+ (1 − q)
n∑

i=1

{
E
[
E
(
X̃+2
i (r)|Fi−1

)] p
2 + E|X̃+

i (r)|p
}
dr (Cr I)

≤ Cn
p
2

∫ 1

0
q
{ n∑

i=1
EE(|X̃+

i (r)|p|Fi−1) + E|X̃+
i (r)|p

}

+ (1 − q)
n∑

i=1

{
EE(|X̃−

i (r)|p|Fi−1) + E|X̃−
i (r)|p} dr (CJI)

= Cn
p
2

n∑
i=1

E
∫ 1

0
q|X̃+

i (r)|p + (1 − q)|X̃−
i (r)|pdr (FT)

= Cn
p
2

n∑
i=1

E||X̃i||pp,q.

It should be noted that the above theorem is a generalization of Theorem 2.11 of [23] to
fuzzy martingales.
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Now we state and prove two theorems which are extensions of Theorem 2.13 in [23]
and Theorem 9.5 of [24], respectively.

Theorem 3. If {S̃n,Fn} is a fuzzy martingale, then there exists a constant C depending
only on p such that

ED2
2,q(⊕n

i=1X̃i,⊕n
i=1E(X̃i|Fi−1)) ≤ C

n∑
i=1

ED2
2,q[ X̃i,E(X̃i|Fi−1)] , ∀ q ∈ [ 0, 1] .

Proof. It is obvious that
{∑n

i=1[ X̃
+
i (r) − E(X̃+

i (r)|Fi−1)] ,Fn
}

and
{∑n

i=1[ X̃
−
i (r)−

E(X̃−
i (r)|Fi−1)] ,Fn

}
constitute ordinary martingales. Also, it is easy to see that

E[ X̃+
i (r) − E(X̃+

i (r)|Fi−1)]2 = E[ X̃+
i (r)]2 −E[E(X̃+

i (r)|Fi−1)]2 ∀ r ∈ [ 0, 1] , (2)

and

E
[
X̃−
i (r) − E(X̃−

i (r)|Fi−1)
]2 = E

[
X̃−
i (r)

]2 − E
[
E(X̃−

i (r)|Fi−1)
]2 ∀ r ∈ [ 0, 1] . (3)

By invoking Fubini’s theorem, Burkholder’s inequality, and relations (2) and (3), we
obtain

E D2
2,q(S̃n,⊕n

i=1E(X̃+
i (r)|Fi−1))

= E
∫ 1

0
(1 − q)

( n∑
i=1

[
X̃+
i (r) − E(X̃+

i |Fi−1)
])2

+ q
( n∑

i=1
[ X̃−

i (r) − E(X̃−
i (r)|Fi−1)]

)2

dr

=
∫ 1

0
(1 − q)E

( n∑
i=1

[
X̃+
i (r) − E(X̃+

i (r)|Fi−1)
])2

+ qE
( n∑

i=1

[
X̃−
i (r) − E(X̃−

i |Fi−1)
])2

dr

≤ C
∫ 1

0
(1 − q)

n∑
i=1

E
([
X̃+
i (r) − E(X̃+

i (r)|Fi−1)
])2 + q

n∑
i=1

E
([
X̃−
i (r) − E(X̃−

i (r)|Fi−1)
])2 dr

= C
n∑

i=1

∫ 1

0
(1 − q)

{
E
[
X̃+
i (r)

]2−E
[
E(X̃+

i (r)|Fi−1)
]2}+q

{
E
[
X̃−
i (r)

]2−E
[
E(X̃−

i (r)|Fi−1)
]2} dr

= C
n∑

i=1
E
∫ 1

0
(1 − q)

{[
X̃+
i (r)

]2 − [E(X̃+
i (r)|Fi−1)

]2}+ q
{[
X̃−
i (r)

]2 − [E(X̃−
i (r)|Fi−1)

]2} dr
= C

n∑
i=1

ED2
2,q
[
X̃i,E(X̃i|Fi−1)

]
.

Theorem 4. If {S̃n,Fn} is a fuzzy martingale and 1 ≤ p ≤ 2, then

E max
1≤k≤n

||S̃k||pp,q ≤ C
n∑

i=1
E||X̃i||pp,q.
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Proof. By using monotonicity property of integral (MPI, for short), Fubini’s theorem,
Burkholder’s inequality, and Cr inequality, we obtain

E max
1≤k≤n

||S̃k||pp,q = E max
1≤k≤n

∫ 1

0
q|S̃+

k (r)|p + (1 − q)|S̃−
k (r)|pdr

≤ E
∫ 1

0

{
q max
1≤k≤n

|S̃+
k (r)|p + (1 − q) max

1≤k≤n
|S̃k|p

}
dr (MPI)

=
∫ 1

0

{
qE max

1≤k≤n
|S̃+

k (r)|p + (1 − q)E max
1≤k≤n

|S̃−
k (r)|p

}
dr (FT)

≤ C
∫ 1

0
qE
( n∑

i=1
(X̃+

i (r))2
) p

2

+ (1 − q)E
( n∑

i=1
(X̃−

i (r))2
) p

2

dr (BI)

= C
∫ 1

0

{
q

n∑
i=1

E|X̃+
i (r)|p + (1 − q)

n∑
i=1

E|X̃−
i (r)|p

}
dr (Cr I)

= C
n∑

i=1
E||X̃i||pp,q.

Convergence Theorems
In this section, by invoking theorems of previous section, we establish some weak and
strong convergence theorems for fuzzy martingales.

Theorem 5. If {X̃n,Fn} is a fuzzy martingale, then

Ed2∗(X̃n, X̃m) = E||X̃n||2∗ − E||X̃m||2∗, for n > m.

Proof. By invoking Fubini’s theorem and orthogonality lemma of ordinary martingale
(OLOM, for short), we obtain

Ed2∗(X̃n, X̃m) = E
∫ 1

0

{|X̃−
n (r) − X̃−

m(r)|2 + |X̃+
n (r) − X̃+

m(r)|2} dr
=
∫ 1

0

{
E|X̃−

n (r) − X̃−
m(r)|2 + E|X̃+

n (r) − X̃+
m(r)|2} dr (FT)

=
∫ 1

0

{
E|X̃−

n (r)|2 − E|X̃−
m(r)|2 + E|X̃+

n (r)|2 − E|X̃+
m(r)|2} dr (OLOM)

= E||X̃n||2∗ − E||X̃m||2∗.

Note that Theorem 5 is a generalization of Lemma 10.4.1 of [24] to fuzzy martingales.

Corollary 2. If {X̃n, n ≥ 1} is a fuzzy martingale such that supn≥1 E||X̃n||2∗ < ∞, then
{X̃n, n ≥ 1} is Cauchy convergent in L2 with respect to the metric d∗.

Lemma 2. If {X̃n,Fn} is a sequence of FRVs, then

||E(X̃n+1|Fn)||2∗ ≤ E(||X̃n+1||2∗|Fn).
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Proof. By using conditional Jensen’s inequality and Fubini’s theorem, we obtain

||E(X̃n+1|Fn)||2∗ =
∫ 1

0

{
E2
(
X̃+
n+1(r)|Fn

)+ E2
(
X̃−
n+1(r)|Fn

)}
dr

≤
∫ 1

0

{
E
({

X̃+
n+1(r)

}2 |Fn
)

+ E
({

X̃−
n+1(r)

}2 |Fn
)}

dr (CJI)

= E
(||X̃n+1||2∗|Fn

)
(FT).

Corollary 3. If {X̃n, n ≥ 1} is a fuzzy martingale, then {||X̃n||2∗, n ≥ 1} is a real-valued
sub-martingale.

Theorem 6. Let {S̃n,Fn} be a fuzzy martingale and p > 2, then S̃n
n → 0̃ in probability

with respect to the metric Dp,q if
n∑

i=1
E||X̃i||pp,q = o(n

p
2 ) as n → ∞.

Proof. By using Markov’s inequality and Theorem 2, the proof is straightforward.

Example 2. Let {X̃n, n ≥ 1} be a sequence of independent fuzzy random variables with the
following membership functions:

μX̃n(ω)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x−Xn(ω)
Xn(ω)

, Xn(ω) < x ≤ 2Xn(ω),

3Xn(ω)−x
Xn(ω)

, 2Xn(ω) < x < 3Xn(ω),

0, otherwise,

where {Xn, n ≥ 1} is a sequence of independent random variables with the following
probability P

(
Xn = nβ

) = 1
2 = P

(
Xn = −nβ

)
.

It is easy to see that

||X̃n||pp,q = Wp,q|Xn|p,
where

Wp,q = q
p + 1

[
2p+1 − 1

]− 1 − q
p + 1

[
2p+1 − 3p+1] .

We want to prove that
∑n

i=1 E||X̃i||pp,q = o(n
p
2 ), i.e., 1

n
p
2

∑n
i=1 iβp → 0 as n → ∞. By using

Kronecker’s lemma, it suffices to show that
∞∑
n=1

1
np(

1
2−β)

< ∞.

If p > 2
1−2β , then

∞∑
n=1

1
np(

1
2−β)

< ∞.

By using Theorem 6, we obtain S̃n
n → 0̃ in probability with respect to the metric Dp,q as

n → ∞.
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The following theorem is an extension of Theorem 2.13 in [23] to fuzzy martingales.

Theorem 7. Let {S̃n, n ≥ 1} be a martingale and {bn} be a sequence of positive constants
with bn ↑ ∞. Then b−1

n S̃n → 0̃ in probability with respect to the metric D2,q, if
n∑

i=1
P(||X̃i||2,q > bn) → 0, (4)

b−1
n

n∑
i=1

||E(X̃ni|Fi−1)||2,q → 0 in probability, (5)

b−2
n

n∑
i=1

{ED2
2,q[ X̃n,i,E(X̃n,i|Fi−1)] } → 0, (6)

where, X̃ni = X̃iI{||X̃i||2,q≤n} and S̃n = ⊕n
i=1X̃i.

Proof. Suppose that S̃nn = ⊕n
i=1X̃n,i. It is easy to see that

b−1
n ||S̃n||2,q ≤ b−1

n D2,q(S̃n, S̃nn) + b−1
n ||S̃nn||2,q. (7)

We want to prove b−1
n ||S̃n||2,q → 0 in probability. By using relation (7), we should prove

that (a) b−1
n D2,q(S̃n, S̃nn) → 0 and (b) b−1

n ||S̃nn||2,q → 0 in probability:

(a) For each ε > 0, we have

P(b−1
n D2,q(S̃n, S̃nn) > ε) = P(S̃n �= S̃nn)

≤
n∑

i=1
P(||X̃i||2,q > bn) → 0.

Thus, b−1
n D2,q(S̃n, S̃nn) → 0 in probability.

(b) By using sub-additivity of the metric D2,q, we obtain

b−1
n ||S̃nn||2,q ≤ b−1

n D2,q(S̃nn,⊕n
i=1E(X̃ni|Fi−1)) + || ⊕n

i=1 E(X̃n,i|Fi−1)||2,q.
The sub-additivity of the norm ||.||2,q and condition (3) imply that b−1

n || ⊕n
i=1

E(X̃ni|Fi−1)||2,q ≤ b−1
n
∑n

i=1 ||E(X̃ni|Fi−1)||2,q → 0 in probability.
It remains to show that b−1

n D2,q(S̃nn,⊕n
i=1E(X̃ni|Fi−1)) → 0 in probability.

By using Markov’s inequality and Theorem 3, we have

P(b−1
n D2,q(S̃nn,⊕n

i=1E(X̃ni|Fi−1)) > ε) ≤ ED2
2,q(S̃nn,⊕n

i=1E(X̃ni|Fi−1))

b2nε2

≤ C
∑n

i=1 ED2
2,q(X̃ni,E(X̃ni|Fi−1))

b2nε2
→ 0.

This completes the proof.

The following example is an evidence of Theorem 7.

Example 3. Suppose that {X̃n, n ≥ 1} is a sequence of independent FRVs with the following
probability function:

P(X̃n = n−αũ) = P(X̃n = −n−αũ) = 1
2
,
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where ũ is a fuzzy number such that ||ũ||p,q = 1. It is obvious that

(i)
n∑

i=1
P(||X̃i||2,q > n) = 0.

We want to show that

(ii) n−1
n∑

i=1
||E(X̃ni|Fi−1)||2,q → 0 in probability.

By invoking Markov’s inequality and Lemma 2, we obtain

P(n−1
n∑

i=1
||E(X̃ni|Fi−1)||2,q > ε) ≤

∑n
i=1 E||E(X̃ni|Fi−1)||2,q

nε

≤
∑n

i=1 EE
1
2 (||X̃ni||22,q|Fi−1)

nε

= 1
nε

n∑
i=1

1
iα
.

By using Kronecker’s lemma 1
n
∑n

i=1
1
iα → 0, and consequently

n−1
n∑

i=1
E(X̃ni|Fi−1) → 0 in probability.

It remains to show that

(iii) n−2
n∑

i=1
ED2

2,q(X̃ni,E(X̃ni|Fi−1)) → 0 as n → ∞.

It is easy to see that

n−2
n∑

i=1
ED2

2,q(X̃ni,E(X̃ni|Fi−1)) = n−2
n∑

i=1

1
i2α

.

By invoking Kronecker’s lemma, we obtain n−2∑n
i=1

1
i2α → 0 and thus,

n−2
n∑

i=1
ED2

2,q(X̃ni,E(X̃ni|Fi−1)) → 0 as n → ∞.

Therefore, all of the conditions of the above theorem hold, thus S̃n
n → 0̃ in probability with

respect to the metric D2,q.
Theorem 8. Let {S̃n,Fn} be a fuzzy martingale. If for all 1 ≤ p < 2, {||X̃n||pp,q, n ≥ 1} is
uniformly integrable, then n−2E||S̃n||pp,q → 0 as n → ∞.

Proof. By invoking Theorem 2, we obtain

E||S̃n||pp,q ≤ C
n∑

i=1
E||X̃i||pp,q.
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Since {||X̃n||pp,q, n ≥ 1} is uniformly integrable, by invoking Theorem 5.4.1 in [24]
supn≥1E||X̃n||pp,q < ∞ i.e., ∃M s.t. supn≥1E||X̃n||pp,q < M. Hence,

E||S̃n||pp,q ≤ C
n∑

i=1
E||X̃i||pp,q

≤ Cnsupn≥1E||X̃n||pp,q
≤ CnM.

So,

n−2E||S̃n||pp,q ≤ Cn−1M,

which implies that n−2E||S̃n||pp,q → 0.

The above theorem is a generalization of Theorem 2.22 in [23] to fuzzy martingales.
Example 4. Suppose that {X̃n, n ≥ 1} is a sequence of independent Fs with the following
probability function:

P(X̃n = n−1ũ) = 1
n
, P

(
X̃n = −ũ

n(n − 1)

)
= 1 − 1

n
,

where ũ is a fuzzy number with the following membership function:

ũ(x) = 1 −
√
6
3

|x|, −
√
6
2

≤ x ≤
√
6
2

.

It is easy to see that ||X̃n||pp,q is uniformly bounded and, consequently, is uniformly
integrable. Thus, by invoking Theorem 8, n−2E||S̃n||pp,q → 0 as n → ∞.
Theorem 9. If {S̃n,Fn} is a fuzzy martingale such that

∑∞
n=1 E||X̃n||pp,q < ∞ for all p ∈

[ 1, 2] , then ⊕∞
n=1X̃n converges almost surely with respect to the metric Dp,q. In particular

case, ⊕∞
n=1X̃n converges almost surely with respect to the metric d∗ if

∑∞
n=1 Var(X̃n) < ∞.

Proof. The completeness of the metric space (E,Dp,q) implies that ⊕∞
n=1X̃n converges

almost surely with respect to the metric Dp,q iff supk≥n Dp,q(S̃k , S̃n) → 0 in probability as
n → ∞. Let n < m, and consider a Cauchy sequence. Theorem 4 implies that

P( max
n≤k≤m

Dp,q(S̃k , S̃n) > ε) ≤ Emaxn≤k≤m Dp
p,q(S̃k , S̃n)

εp

= Emaxn≤k≤m || ⊕k
i=n+1 X̃i||pp,q

εp

≤ C
m∑

i=n+1
E||X̃i||pp,q.

Now, lettingm → ∞, we have

P(sup
k≥n

Dp,q(S̃k , S̃n) > ε) ≤ C
∑∞

k=n+1 E||X̃k ||pp,q
εp

→ 0 as n → ∞.
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Example 5. Let {X̃n, n ≥ 1} be a sequence of independent fuzzy random variables with the
following membership functions:

μX̃n(ω)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x−Xn(ω)
Xn(ω)

, Xn(ω) < x ≤ 2Xn(ω),

3Xn(ω)−x
Xn(ω)

, 2Xn(ω) < x < 3Xn(ω),

0, otherwise,

where {Xn, n ≥ 1} is a sequence of independent random variables such that Var(Xn) =
nβσ 2. By considering p = 2 and q = 1

2 , we have ED
p
p,q(X̃n,EX̃n) = Var(X̃n). For establish-

ing a strong convergence of {S̃n, n ≥ 1} with respect to the metric Dp,q, it remains to show
that

∑∞
n=1 Var(X̃n) < ∞. It is easy to see that Var(X̃n) = 19

6 n
βσ 2, and

∑∞
n=1 Var(X̃n) =

19σ 2

6
∑∞

n=1 nβ < ∞, where β < −1. Therefore, Theorem 9 implies that ⊕∞
n=1X̃n converges

almost surely with respect to the metric Dp,q.

Conclusions
In this article, we extended some well-known inequalities to fuzzy martingales based on
the metric Dp,q. Also, by invoking these inequalities, we established some limit theorems
for fuzzy martingales. It is mentioned that if fuzzy random variables reduce to ordinary
(real-valued) random variables, all results hold. The study of weak convergence and strong
convergence of fuzzy sub-(super-) martingales is a potential topic for future research.
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