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Abstract

Since for most projects, ‘new’ parts (with little or no historical data) and ‘old’ parts (with
sufficient historical data) always coexist in the same project, uncertainty and
randomness should be considered simultaneously in time-cost trade-off problem. In
this paper, combined with uncertainty theory and dependent-chance programming,
an uncertain random time-cost trade-off model is built. A crisp equivalent model is also
given for some special case. Besides, uncertain random simulation and genetic
algorithm are integrated for solving the proposed model.

Keywords: Project scheduling; Time-cost trade-off; Uncertain variable; Uncertain
random programming; Dependent-chance programming

Introduction
Time-cost trade-off problem (TCTP), a specific type of project scheduling problem,
desires to balance two important goals in real-life projects, project completion times, and
project total costs to achieve decision-making requirements. For real-life projects, project
managers always consider the trade-offs among the performance goals (e.g., project cost,
project completion time, project quality, etc.) for project scheduling and control. The
time-cost trade-off problem takes into account the project time-cost trade-off by crashing
or prolonging project activity durations. In 1961, Kelly [1] first did research on the TCTP.
In the following years, many researches have been done on the TCTP with assumption of
deterministic activity durations [2-5].
In real-life projects, activity durationsmay be variational for many external factors, such

as technological advance, weather change, labor force shortage, etc. For some projects,
since many similar projects have ever been fulfilled before, there are enough historical
data for deducing probability distributions for describing imprecise quantities in projects.
Hence, probability theory was introduced into the TCTP for estimating nondeterministic
factors. In 1985, Wollmer [6] discussed a stochastic version of the deterministic linear
TCTP. Following that, many authors discussed the TCTP with stochastic environmental
factors [7-9].
In project management, one of the most important characteristics of the concept

‘project’ is that there is always something new in a project. That is, there are always
some parts which are never performed before or only similarly performed. For such
parts in projects, historical data for estimating probability distributions of some impre-
cise quantities are always not enough when facing external indeterminacy, which means
that probability theory is no longer valid for describing imprecise quantities (e.g., activity
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durations) in such project parts. For this case, project activity durations were origi-
nally described by fuzzy variables, and many researchers studied the TCTP with fuzzy
parameters [10-13].
In the past years, subjective probability theory and fuzzy set theory were applied to

estimate imprecise quantities (or indeterminacy) with no or little statistical data in deci-
sion systems, including project scheduling and control. However, actually both these
two theories were proved not suitable for the above case, illustrated by some exam-
ples [14]. Since such a type of indeterminacy cannot be depicted via randomness or
fuzziness, a new theory is needed. On this occasion, Liu founded uncertainty theory in
2007 [15] and refined it in 2010 [16], which is a branch of axiomatic mathematics for
modeling human uncertainty. Since its foundation, uncertainty theory has been widely
applied in many decision systems, such as portfolio selection [17], inventory problem
[18], facility location [19], supply chain integrated production-inventory problem [20],
investment problem [21], differential games [22], and coalitional game [23]. Especially,
Ke [24] applied uncertain measure for estimating activity durations in time-cost trade-off
problem.
For most projects, though they always include some ‘new’ parts, meanwhile they may

contain some common parts with many other finished projects. With enough statisti-
cal data from other projects, probability theory may be introduced to estimate imprecise
quantities in these common parts. Then for many projects, integrated by some ‘new’ parts
and some other ‘old’ (common) parts, randomness and uncertainty may coexist. For such
cases, the concepts of uncertain random variable and chance measure and the philosophy
of uncertain random programming were presented by Liu [25] and Liu [26], respectively.
Uncertain random programming has been further studied in some aspects, e.g., uncertain
random graph and uncertain random network [27], uncertain random risk analysis [28],
uncertain random multi-objective optimization [29], and uncertain random multilevel
programming [30]. In this paper, we introduce chance measure and uncertain random
programming to model the TCTP with coexisted randomness and uncertainty. As Huang
and Ding [31] illustrated that the standard path algorithms (e.g., the well-known Dijkstra
method) were not able to arrive at solutions for searching critical path of this problem,
genetic algorithm (GA) is applied in this paper.
The remainder of this paper is organized as follows: in Section ‘Preliminaries of

uncertainty theory’, some concepts and useful theorems of uncertainty theory are
presented. Section ‘Description of time-cost trade-off problem’ briefly describes the
problem with uncertain random parameters. In Section ‘Uncertain random time-cost
trade-off model with dependent-chance programming’, with dependent-chance pro-
gramming, an uncertain random time-cost trade-off model is built and a crisp TCTP
model is also given for some special case of uncertain random variable. Section
‘Algorithm description with numerical experiment’ conducts a numerical experiment
to illustrate the proposed model. Finally, Section ‘Conclusions’ draws some concluding
statements.

Preliminaries of uncertainty theory
In this section, we introduce some basic concepts and theorems for building uncertain
random TCTP model. Let � be a nonempty set, L a σ -algebra over �, and each element
� in L is called an event.
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Definition 1. (Liu [15]) The set functionM is called an uncertain measure if it satisfies:

Axiom 1 (Normality Axiom).M{�} = 1 for the universal set �.
Axiom 2 (Duality Axiom).M{�} + M{�c} = 1 for any event �.
Axiom 3 (Subadditivity Axiom). For every countable sequence of events �1, �2, · · · ,

we have

M
{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

Besides, the product uncertain measure on the product σ -algebra L was defined by Liu
[32] as follows:

Axiom 4 (Product Axiom). Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · · .
The product uncertain measureM is an uncertain measure satisfying

M
{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · ,
respectively.

Definition 2. (Liu [15]) An uncertain variable is ameasurable function ξ from an uncer-
tainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B }
is an event.

Definition 3. (Liu [32]) The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent
if

M
{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1,B2, · · · ,Bn.

Sometimes, to describe real-world optimization problems with uncertain parameters, it
is sufficient to know the uncertainty distribution rather than the uncertain variable itself.

Definition 4. (Liu [15]) The uncertainty distribution � of an uncertain variable ξ is
defined by

�(x) = M{ξ ≤ x}
for any real number x.

Definition 5. (Liu [16]) An uncertainty distribution �(x) is said to be regular if it is a
continuous and strictly increasing function with respect to x at which 0 < �(x) < 1, and

lim
x→−∞ �(x) = 0, lim

x→+∞ �(x) = 1.
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Liu [16] also defined the inverse function �−1 as the inverse uncertainty distribution of
uncertain variable ξ .

Theorem 1. (Liu [16]) Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regu-
lar uncertainty distributions �1,�2, · · · ,�n, respectively. If the function f (x1, x2, · · · , xn)
is strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn, then

ξ = f (ξ1, ξ2, · · · , ξn)
is an uncertain variable with inverse uncertainty distribution

�−1(α) = f
(
�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α)

)
.

Based on the definitions of uncertain variable and random variable, the concept of
uncertain random variable is given as follows:

Definition 6. (Liu [25]) An uncertain random variable is a function ξ from a chance
space (�,L,M) × (	,A, Pr) to the set of real numbers such that {ξ ∈ B} is an event in
L × A for any Borel set B.

Example 1 A random variable is a special uncertain random variable since any real value
is a special uncertain variable.

Example 2 The sum of a random variable and an uncertain variable is an uncertain
random variable.

Definition 7. (Liu [25]) Let (�,L,M) × (	,A, Pr) be a chance space, and 
 ∈ L × A
be an event. Then, the chance measure of 
 is defined as

Ch{
} =
∫ 1

0
Pr{ω ∈ 	 |M {γ ∈ �

∣∣(γ ,ω) ∈ 
} ≥ x}dx.

Liu [25] proved that the chance measure is self-dual.

Definition 8. (Liu [25]) Let ξ be an uncertain random variable. Then, the chance
distribution of ξ is defined by

�(x) = Ch{ξ ≤ x}
for any x ∈ R.

For some special case, some operational laws are presented as follows:

Theorem 2. (Liu [26]) Let η1, η2, · · · , ηm be independent random variables with proba-
bility distributions 
1,
2, · · · ,
m, respectively, and τ1, τ2, · · · , τn be uncertain variables
(not necessarily independent). Then, the uncertain random variable ξ = f (η1, η2, · · · , ηm,
τ1, τ2, · · · , τn) has a chance distribution

�(x) =
∫
Rm

F(x; y1, · · · , ym)d
1(y1) · · · d
m(ym)
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where F(x; y1, · · · , ym) is the uncertainty distribution of the uncertain variable
f (y1, · · · , ym, τ1, · · · , τn) for any real numbers y1, · · · , ym.

Theorem 3. (Liu [33]) Let η1, η2, · · · , ηm be independent random variables with
probability distributions 
1,
2, · · · ,
m, and τ1, τ2, · · · , τn be independent uncer-
tain variables with regular uncertainty distributions ϒ1,ϒ2, · · · , ϒn, respectively. If
f (η1, · · · , ηm, τ1, · · · , τn) is strictly increasing with respect to τ1, · · · , τk and strictly
decreasing with respect to τk+1, · · · , τn, then

Ch{ f (η1, · · · , ηm, τ1, · · · , τn) ≤ 0} =
∫
Rm

G(y1, · · · , ym)d
1(y1) · · · d
m(ym)

where G(y1, · · · , ym) is the root α of the equation

f
(
y1, · · · , ym,ϒ−1

1 (α), · · · ,ϒ−1
k (α),ϒ−1

k+1(1 − α), · · · ,ϒ−1
n (1 − α)

)
= 0.

Description of time-cost trade-off problem
Whether a project is successful or not depends on the opinion of the responsible man-
agers. Some of them may focus more on whether the project is on time or before.
Some others may pay more attentions to the project budget. For some projects, e.g.,
China’s manned space program, the highest priority is technical performance. Generally,
the success of a project is measured by three dimensions, i.e., time, cost, and perfor-
mance (quality or agreed-upon specifications). For many projects, since project managers
only need to meet some quality standards, the dimension of quality is not so impor-
tant for project success. In this case, project managers are required to make trade-off
between project cost and project completion timewith the project progress. Furthermore,
project cost and project completion time are always in some relation. Sometimes, project
managers may make decisions to finish projects sooner with project cost augment by
accelerating project schedule, which is also named as project crashing in project manage-
ment. In other cases, motivated by reducing project costs, managers may be conscripted
to sacrifice with prolonging project completion times. To sum up, it is natural for project
managers to find some schedules to complete projects with the balance of project costs
and project completion times.
Generally, a project can be represented by an activity-on-arc (AoA) network G =

(V ,A), where V = {1, 2, · · · , n} is the set of nodes representing the milestones and A
is the set of arcs representing the activities, shown as Figure 1. The normal duration
of activity (i, j) denoted as ξij represents the duration without the influence of deci-
sion made by the project manager. Correspondingly, the normal cost per time unit of
activity (i, j) is denoted by cij. The decision variable xij indicates the duration change
of activity (i, j) controlled by the manager, which may be realized by determining work
force change, instrument change, etc. The variable xij, supposed to be an integer for
simplicity, is bounded by some interval [lij,uij] owing to practical conditions, where lij
and uij are also assumed to be integers. Similarly, the decision associated cost dij is
regarded as the additional cost of per unit change of xij. For simplicity, cij and dij are
both assumed to be constants. Due to the changeable and indeterminate external envi-
ronment, the normal durations ξij are always nondeterministic for all activities (i, j) ∈ A.
For many projects, since the ‘new’ parts and ever performed parts coexist, the normal
activity durations here are assumed to be uncertain random variables, concisely written as
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Figure 1 An illustration of a project.

ξ = {ξij : (i, j) ∈ A}. For the trade-off between project completion time and project cost,
the goal is to decide the optimal vector x = {

xij : (i, j) ∈ A
}
to meet different scheduling

requirements.
The starting time of activity (i, j) is denoted by Tij(x, ξ), and the starting time of activity

(1, j) ∈ A is defined as T1j(x, ξ) = 0, which means that the starting time of the total
project is assumed to be 0. To simplify the problem, it is assumed that each activity can be
processed only if all the foregoing activities are finished and should be processed without
interruption, lead times, and lag times. With the assumptions, the starting time of activity
(i, j), i = 2, 3, · · · , n − 1 can be calculated by

Tij(x, ξ) = max
(k,i)∈A

{Tki(x, ξ) + ξki + xki} .

And the project completion time can be written by

T(x, ξ) = max
(k,n)∈A

{Tkn(x, ξ) + ξkn + xkn} . (1)

The project cost, composed of the normal cost and the additional cost, can be calculated
by

C(x, ξ) =
∑

(i,j)∈A
(cijξij − dijxij). (2)

Uncertain random time-cost trade-off model with dependent-chance
programming
Due to the complex project environment, achieving project goals faces many types of
indeterminacy or risks, e.g., the weather variation and the government policy adjust-
ment, leading to the fact that many project objectives cannot be obtained completely.
Such a case may be more vital when project objectives are in conflict, as this is
mostly the truth. Hence, being sure to maximize the opportunity of achieving project
goals is as important as the trade-off between project goals in project management.
In this section, dependent-chance programming (DCP), initiated by Liu [34], is applied
in uncertain random TCTP. Generally, DCP is applied for risk-averse project man-
agers to ensure the achievement of project goals for possibly extra expenses. Based
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on the DCP philosophy, the uncertain random chance maximization model is built as
follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maxCh
{
C(x, ξ) ≤ C0}

subject to:
Ch{T(x, ξ) ≤ T0} ≥ α0
xij ∈ [lij,uij] , ∀(i, j) ∈ A
xij, ∀(i, j) ∈ A, integers

where α0 is the confidence level given in advance, T0 is the due date of the project, C0 is
the budget, lij and uij are integers given in advance, and T(x, ξ) and C(x, ξ) are defined by
Equations 1 and 2, respectively.
As we mentioned above, in most projects, ‘new’ parts and ‘old’ parts integrate into the

whole project. That means the uncertain random environment for many projects can be
divided into sole randomness and uncertainty. In this case, the uncertain random vec-
tor ξ can be represented with the form (η1, η2, · · · , ηk , τ1, τ2, · · · , τl), where η1, η2, · · · , ηk
are independent random variables with probability distributions 
1,
2, · · · ,
k , and
τ1, τ2, · · · , τl are independent uncertain variables with uncertainty distributions ϒ1,
ϒ2, · · · ,ϒl, respectively. Since C(x, ξ) − C0 and T(x, ξ) − T0 are strictly increasing with
respect to all the uncertain random variables, applying Theorem 3, the above model can
be transformed into the following crisp model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max
∫
Rk

G(x, z1, · · · , zk)d
1(z1) · · · d
k(zk)

subject to :∫
Rk H(x, z1, · · · , zk)d
1(z1) · · · d
k(zk) ≥ α0
xij ∈ [lij,uij] , ∀(i, j) ∈ A
xij, ∀(i, j) ∈ A, integers

where G(x, z1, · · · , zk) is the root β of

C
(
x, z1, · · · , zk ,ϒ−1

1 (β), · · · ,ϒ−1
l (β)

)
− C0 = 0,

and H(x, z1, · · · , zk) is the root β of

T
(
x, z1, · · · , zk ,ϒ−1

1 (β), · · · ,ϒ−1
l (β)

)
− T0 = 0.

Algorithm description with numerical experiment
Since Huang and Ding [31] demonstrated that the standard path algorithms were not
able to approach the critical path for project scheduling problem with random activity
durations, it is more difficult to solve uncertain random TCTP. Hence, uncertain ran-
dom simulation and GA are integrated for solving the proposed chance maximization
model in this section. An uncertain random simulation algorithm for chance measure
(e.g., Ch

{
C(x, ξ) ≤ C0}) can be obtained as follows:

Uncertain random simulation for chance measure:
Step 1. Set e = 0.
Step 2. Randomly generate ω from the probability space according to the probability

distribution.
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Step 3. e ← e + M{C(x, ξ(·,ω)) ≤ C0}.
Step 4. Repeat the second and third steps N times, where N is a sufficiently large

number.
Step 5. Return e/N as the chance measure.

The above designed uncertain random simulation approach can be embedded in GA
simply for solving the proposed model.
Now, consider a project illustrated in Figure 1. The activity durations, the normal costs,

and the additional costs of the activities are presented in Table 1, respectively. Note that
the uncertain random activity durations are partly linear uncertain variables with the
form of L(a, b) and partly uniformly distributed random variables denoted by U(c, d),
where a < b and c < d are crisp numbers. The chance maximization model is given as
follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

maxCh {C(x, ξ) ≤ 24100}
subject to:

Ch{T(x, ξ) ≤ 35} ≥ 0.9
xij ∈ [−4, 3] , ∀(i, j) ∈ A
xij, ∀(i, j) ∈ A, integers.

Uncertain random simulation and GA are employed to search for the optimal solution.
For the above project, the parameters in GA are set as the population size 70, the muta-
tion probability 0.8, and the crossover probability 0.5. After a run of 1,000 generations,
the optimal solution and value are obtained: x∗ = (1,−1, 0, 3, 0,−3, 1, 3,−1, 3,−1) and
Ch {C(x, ξ) ≤ 24100} = 0.938, respectively.

Conclusions
In project management, one of the characteristics of the concept ‘project’ is that there is
always something new in a project, i.e., a project always has some ‘new’ parts with little
or no historical data. Meanwhile, most projects may contain some common or ‘old’ parts
(with enough historical data) ever performed by many other finished projects. Hence,
uncertainty and randomness should be considered simultaneously in project scheduling

Table 1 Activity durations and costs of project

Activity Normal duration Normal cost Additional cost

(i, j) ξij cij dij

(1,2) L(7, 10) 170 200

(1,3) U(9, 12) 300 280

(1,4) L(8, 10) 65 70

(2,5) U(8, 12) 270 300

(3,5) L(10, 15) 135 150

(3,6) L(9, 13) 75 90

(3,7) U(11, 15) 150 100

(4,7) L(10, 13) 600 400

(5,8) U(10, 14) 85 100

(6,8) L(12, 14) 300 400

(7,8) U(9, 14) 95 90
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problem. In this paper, an uncertain random time-cost trade-off model with dependent-
chance programming was built with a crisp equivalent model for the case that uncertain
random parameters in the problem are partly random variables and partly uncertain vari-
ables. Furthermore, uncertain random simulation and GA were integrated for solving the
proposed model.
The TCTP with uncertain random parameters can be regarded as the extension of the

fuzzy TCTP, random TCTP, uncertain TCTP, and fuzzy random TCTP. Besides, since in
this paper continuous time-cost trade-off relationship was assumed, in future research,
discrete or mixed time-cost trade-off relationships can be introduced for modeling other
project optimization problems.
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