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Abstract

This paper deals with the divergence of fuzzy variables from a priori one. Within the
framework of credibility theory, a fuzzy cross-entropy is defined to measure the
divergence, and some mathematical properties are investigated. Furthermore, a
minimum cross-entropy principle is proposed, which tells us that out of all
membership functions satisfying given moment constraints, we should choose the one
that is closest to the given a priorimembership function.
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Introduction
Fuzzy entropy provides a quantitative measure of the uncertainty associated with each
fuzzy variable. Since Zadeh [1] introduced the fuzzy entropy as a weighted shannon
entropy, researchers gave several definitions from different angles, such as De Luca and
Termini [2], Yager [3], Kaufmann [4], Kosko [5], Pal and Pal [6]. The above definitions
characterize the uncertainty resulting primarily from the linguistic vagueness rather than
resulting from information deficiency and vanish when the fuzzy variable is an equipossi-
ble one. However, Liu [7] suggested that a fuzzy entropy shouldmeet at least the following
three basic requirements: the entropy of a crisp number is zero; the entropy of an equipos-
sible fuzzy variable is maximum; and the entropy is applicable not only to finite and
infinite cases but also to discrete and continuous cases. In order to meet these require-
ments, within the framework of credibility theory, Li and Liu [8] provided a new definition
of fuzzy entropy to characterize the uncertainty resulting from information deficiency
which is caused by the impossibility to predict the specified value that a fuzzy variable
takes. Based on this definition, Li and Liu [9] proposed the fuzzy maximum entropy
principle and proved some maximum entropy theorems.
This paper is devoted to formulate a fuzzy cross-entropy characterized by credibil-

ity measure. For this purpose, we organize this paper as follows. The ‘Preliminaries’
section recalls some useful definitions and properties about credibility theory. The
‘Fuzzy cross-entropy’ section defines the fuzzy cross-entropy and studies some useful
properties. In the ‘Minimum cross-entropy principle’ section, the minimum cross-
entropy principle is proposed. At the end of this paper, a brief summary is given.

Preliminaries
Credibility theory [10] is a branch of mathematics for studying the behavior of fuzzy phe-
nomena. Let � be a nonempty set, and let P be the power set of �. Each element A of
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P is called an event. In 2002, Liu and Liu [11] presented a credibility measure Cr{A} to
express the chance that event A occurs. Furthermore, Li and Liu [12] proved that a set
function is a credibility measure if and only if it satisfies the following axioms:

Axiom 1. (Normality) Cr{�} = 1;
Axiom 2. (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊂ B;
Axiom 3. (Self-duality) Cr is self-dual, i.e., Cr{A} + Cr{Ac} = 1 for any event A;
Axiom 4. (Countable subadditivity) Cr {∪iAi} = supi Cr{Ai} for any events {Ai} with

supi Cr{Ai} < 0.5.

If Cr is a credibility measure, the triplet (�,P , Cr) is called a credibility space. A fuzzy
variable is defined as a function from a credibility space (�,P , Cr) to the set of real
numbers. Let ξ be a fuzzy variable. Then, its membership function is derived from the
credibility measure by:

μ(x) = (2Cr{ξ = x}) ∧ 1, ∀x ∈ �.

Conversely, if ξ is a fuzzy variable with membership functionμ, then, for any set B ⊆ �,
we have:

Cr{ξ ∈ B} = 1
2

(
sup
x∈B

μ(x) + 1 − sup
x∈Bc

μ(x)
)
.

This formula is also called the credibility inversion theorem.

Definition 2.1. Let ξ be a fuzzy variable taking values in {x1, x2, · · · , xn} (Li and
Liu [8]). Then, its fuzzy entropy is defined as:

H[ξ ]=
n∑

i=1
S(Cr{ξ = xi})

where S(t) = −t ln t − (1 − t) ln(1 − t).

Fuzzy entropy is used to quantify the uncertainty associated to fuzzy variables.

Theorem 2.1. Let ξ be a fuzzy variable taking values in {x1, x2, · · · , xn} (Li and
Liu [8]). Then, we have:

0 ≤ H[ξ ]≤ n ln 2.

Especially, H[ξ ] attains its minimum value 0 if and only if ξ is a crisp number, and H[ξ ]
attains its maximum value n ln 2 if and only if ξ is an equipossible fuzzy variable.

Definition 2.2. Let ξ be a continuous fuzzy variable (Li and Liu [8]). Then, its fuzzy
entropy is defined as:

H[ξ ]=
∫ +∞

−∞
S(Cr{ξ = x})dx.

Theorem 2.2. Let ξ be a continuous fuzzy variable taking values in [a,b] (Li and
Liu [8]). Then, we have:

0 ≤ H[ξ ]≤ (b − a) ln 2.
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Especially, H[ξ ] attains its minimum value if and only if ξ is a crisp number, and H[ξ ]
attains its maximum value if and only if ξ is an equipossible fuzzy variable.

In 2007, Li and Liu [9] proposed a fuzzy maximum entropy principle, which tells us that
out of all the membership functions satisfying the given constraints, we should select the
one that maximizes the entropy.

Fuzzy cross-entropy
In this section, we define a fuzzy cross-entropy for quantifying the divergence of fuzzy
variables from an a priori one. The relation between fuzzy entropy and fuzzy cross-
entropy is also discussed.

Definition 3.1. Let ξ and η be two discrete fuzzy variables taking values in
{x1, x2, · · · , xn}. Then, the fuzzy cross-entropy of ξ from η is defined as:

D[ξ ; η]=
n∑

i=1
T (Cr{ξ = xi}, Cr{η = xi})

where T(s, t) = s ln (s/t) + (1 − s) ln ((1 − s)/(1 − t)).

It is easy to prove that D[ξ ; η] is permutationally symmetric, i.e., the value does not
change if the outcomes are labeled differently.

Definition 3.2. Let ξ and η be two continuous fuzzy variables taking values in [a,b].
Then, the cross-entropy of ξ from η is defined as:

D[ξ ; η]=
∫ b

a
T (Cr{ξ = x}, Cr{η = x}) dx.

Letμ and ν be the membership functions of continuous fuzzy variables ξ and η, respec-
tively. Since Cr{ξ = x} = μ(x)/2 and Cr{η = x} = ν(x)/2, the cross-entropy of ξ from η

can be rewritten as:

D[ξ ; η]=
∫ b

a
μ(x)/2 ln (μ(x)/ν(x)) + (1 − μ(x)/2) ln ((2 − μ(x))/(2 − ν(x))) dx.

Remark 3.1. It is easy to extend the concept of cross-entropy to fuzzy vectors. If
ξ = (ξ1, ξ2, · · · , ξm) and η = (η1, η2, · · · , ηm) are discrete, we have:

D[ξ , η]=
n1∑

i1=1

n2∑
i2=1

· · ·
nm∑

im=1
T(Cr{ξ1 = xi1 , ξ2 = xi2 , · · · , ξm = xim},

Cr{η1 = xi1 , η2 = xi2 , · · · , ηm = xim}).

If ξ and η are continuous variables, we have:

D[ξ , η] =
∫ b1

a1

∫ b2

a2
· · ·

∫ bm

am
T(Cr{ξ1 = x1, ξ2 = x2, · · · , ξm = xm},

Cr{η1 = x1, η2 = x2, · · · , ηm = xm})dx1dx2 · · · dxm.
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Remark 3.2. It is clear that T(s,t) is a function from [0, 1]×[0, 1] to [0,+∞). Please also
mention that:

T(s, 0) =
{

0, if s = 0
+∞, if s > 0,

T(s, 1) =
{

0, if s = 1
+∞, if s < 1.

In addition, it is easy to prove that:

∂T
∂s

= ln
( s
t

)
− ln

(
1 − s
1 − t

)
,

∂T
∂t

= t − s
t(1 − t)

,

∂2T
∂s2

= 1
s(1 − s)

,
∂2T
∂s∂t

= ∂2T
∂t∂s

= − 1
t(1 − t)

,
∂2T
∂t2

= s
t2

+ 1 − s
(1 − t)2

.

Then, the following properties about T(s,t) can be easily proved: (a) T(s,t) is strictly
convex with respect to (s,t) and attains its minimum value zero on the line s = t; and (b)
for any 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, we have T(s, t) = T(1 − s, 1 − t).

Theorem 3.1. For any fuzzy variables ξ and η, we have D[ξ ; η]≥ 0, and the equality
holds if and only if ξ and η have the same membership function.

Proof. Let μ and ν be the membership functions of discrete fuzzy variables ξ and η,
respectively. Since T(s, t) is strictly convex about (s, t) and attains its minimum value zero
on the line s = t, we have T(Cr{ξ = xi}, Cr{η = xi}) ≥ 0 for all i, which implies that:

D[ξ ; η]=
∞∑
i=1

T(Cr{ξ = xi}, Cr{η = xi}) ≥ 0.

Furthermore, for any 0 ≤ s∗ ≤ 1, the unique minimum point of T(s∗, t) is t = s∗. Thus,
we have D[ξ ; η]= 0 if and only if T(Cr{ξ = xi}, Cr{η = xi}) = 0, that is:

μ(xi) = (2Cr{ξ = xi}) ∧ 1 = (2Cr{η = xi}) ∧ 1 = ν(xi)

for all i = 1, 2, · · · , n. If ξ and η are continuous fuzzy variables, the theorem can be proved
in a similar way. The proof is complete.

Theorem 3.2. Let τ be the equipossible fuzzy variable with membership function
ν(xi) = 1 for all i = 1, 2, · · · , n. Then, for any discrete fuzzy variable ξ taking values in
{x1, x2, · · · , xn}, we have:

D[ξ , τ ]= n ln 2 − H[ξ ] .

Proof. According to the credibility inversion theorem, it is easy to prove that Cr{τ =
xi} = 0.5 for all i = 1, 2, · · · , n. It follows from the definition of cross-entropy that D[ξ , τ ]
is:

n∑
i=1

Cr{ξ = xi} ln(2Cr{ξ = xi}) + (1 − Cr{ξ = xi}) ln(2 − 2Cr{ξ = xi})

=
n∑

i=1
ln 2 + Cr{ξ = xi} ln Cr{ξ = xi} + (1 − Cr{ξ = xi}) ln(1 − Cr{ξ = xi})

= n ln 2 − H[ξ ] .

The proof is complete.
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Theorem 3.3. Let τ be the equipossible fuzzy variable with membership function
ν(x) = 1 for all x ∈[a, b]. Then, for any continuous fuzzy variable ξ taking values in [a, b],
we have:

D[ξ , τ ]= (b − a) ln 2 − H[ξ ] .

Proof. It follows from the definition of cross-entropy that D[ξ , τ ] is:

∫ b

a
(μ(x)/2) lnμ(x) + (1 − μ(x)/2) ln(2 − μ(x))dx

=
∫ b

a
ln 2 + ((μ(x)/2) ln (μ(x)/2) + (1 − μ(x)/2) ln (1 − μ(x)/2)) dx

= (b − a) ln 2 − H[ξ ] .

The proof is complete.

Minimum cross-entropy principle
In many real problems, the membership function of a fuzzy variable is unavailable except
some partial information, for example, moment constraints, which may be based on
observations. In this case, the maximum entropy principle (Li and Liu [9]) tells us that out
of all themembership functions satisfying given constraints, choose the one that has max-
imum entropy. However, there may be another type of information, for example, a priori
membership function, which may be based on intuition or experience with the problem.
If both the a priori membership function and the moment constraints are given, which
membership function should we choose? The following minimum cross-entropy prin-
ciple tells us that out of all membership functions satisfying given moment constraints,
choose the one that is closest to the given a priorimembership function.
There is nothing mysterious about this principle. It is just based on common sense. Our

membership function must be consistent with observations or given information, and if
there are many membership functions consistent with the given information, we must
choose the one that is nearest to our intuition and experience. On the other hand, if we
have no a priori experience or intuition to guide us, we choose the membership function
that is nearest to the equipossible one. In this sense, if the a priori membership func-
tion is not prescribed and the fuzzy variable is simple (bounded for continuous case),
the maximum entropy principle and minimum cross-entropy principle are consistent
because:

D[ξ ; υ]= max
η

D[η; υ]−H[ξ ]

where υ is the equipossible fuzzy variable.

Conclusion
Based on credibility measure, a definition of cross-entropy was proposed in this paper
to measure the divergence of fuzzy variables from a priori one, and some properties
were investigated. Furthermore, a minimum cross-entropy principle was proposed as an
important entropy optimization principle.
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