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Abstract

This paper proposes a type of multifactor uncertain differential equation within the
framework of uncertainty theory. The analytic solutions of four special types of
multifactor uncertain differential equations are first discussed. Then, a numerical
method for solving general multifactor uncertain differential equation is presented.
Finally, under the Lipschitz condition and linear growth condition, it is proved that the
multifactor uncertain differential equation has a unique solution.
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Introduction
Uncertainty theory is a tool to study the indeterminacy phenomena in human systems,
which was founded by Liu [1] in 2007. It was refined by Liu [2] and has become an
axiomatic system via normality, duality, subadditivity, and product axioms of uncertain
measure. Up to now, many branches of mathematics emerged based on uncertainty the-
ory, such as mathematical programming [3], uncertain set and uncertain inference [4],
uncertain logic [5], uncertain risk [6,7], and uncertain insurance [8].
Uncertain process is essentially a sequence of uncertain variables indexed by time which

was first introduced by Liu [9]. After that, a significant uncertain process called canonical
process was designed by [10]. The canonical process is a stationary independent incre-
ment process with Lipschitz continuous sample paths. Meanwhile, uncertain calculus
with respect to canonical process called Liu calculus was developed by Liu [10]. In order
to describe the evolution of uncertain phenomenon with some jumps, Liu [9] proposed
the uncertain renewal process. Afterward, Yao [11] presented the uncertain calculus with
respect to renewal process called the Yao calculus. Recently, Yao [12] proposed multi-
dimensional uncertain calculus with Liu process, Chen [13] studied the uncertain calculus
with finite variation processes. More research about uncertain process can be found in
references [14-16].
Uncertain differential equation was proposed by Liu [9], which is an important tool

to deal with uncertain dynamic systems. Different from stochastic differential equation
driven by a Wiener process [17], uncertain differential equation is a type of differen-
tial equation driven by uncertain process. In order to know well uncertain differential
equation, many researchers did a lot of work. Chen and Liu [18] proved an existence
and uniqueness theorem of solution under global Lipschitz condition and proposed an
analytic solution for linear uncertain differential equation. Gao [19] gave an existence
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and uniqueness theorem with local Lipschitz condition. In 2009, Liu [10] gave a con-
cept of stability of uncertain differential equation. After that, Yao et al. [20] proved
some stability theorems of uncertain differential equation. In addition, Sheng and Wang
[21] investigated the stability in pth moment for uncertain differential equation, Liu
et al. [22] studied the almost sure stability, and Yao et al. [23] showed the stability in
mean. In order to obtain the solution of uncertain differential equation, Liu [24] and
Yao [25] provided the analytic solutions for some special nonlinear uncertain differ-
ential equations, respectively. Yao and Chen [26] presented a numerical method for
solving uncertain differential equation when it is difficult to obtain analytic solution. Yao
[27] also discussed the extreme values and integral of solution of uncertain differential
equation.
Uncertain differential equation was first applied in finance by Liu [10] in 2009. Mean-

while, Liu [10] presented an uncertain stock model in uncertain financial market and
proved the European option pricing formulas. After that, Chen [28] gave the America
option pricing formulas. Besides, Peng and Yao [29] presented another uncertain stock
model and corresponding option pricing formulas. Liu [30] discussed some possible
applications of uncertain differential equations to financial markets. Li and Peng [31]
proposed a stock model with uncertain stock diffusion. Liu et al. [32] built an uncertain
currency model and proved the currency option pricing. Jiao and Yao [33] considered an
interest rate model in uncertain environment. Yao [34] proved a no-arbitrage theorem
for uncertain stock model. In addition, uncertain differential equation was also applied in
uncertain optimal control [35] and uncertain differential game [36].
The extensions of uncertain differential equation also attracted the attention of schol-

ars. Several recent contributions in the extension literature have studied this question in
many directions. Yao [11] suggested the uncertain differential equation with jumps. Ge
and Zhu [37] discussed the backward uncertain differential equation. Barbacioru [38], Ge
and Zhu [39], and Liu and Fei [40] focused on the uncertain delay differential equation.
Yao [12] proposed the multidimentional uncertain differential equation via multidimen-
sional uncertain calculus. Ji and Zhou [41] proved an existence and uniqueness theorem of
solution for multidimensional uncertain differential equation. Yao [42] studied the higher
order uncertain differential equation.
Usually, the uncertain factor influencing dynamic systems is not alone. In 2012, Liu

and Yao [43] extended uncertain integral from single canonical process to multiple ones.
This provides a motivation to consider the concept of uncertain differential equation
driven by multiple uncertain processes. In this paper, we present a type of uncertain dif-
ferential equation driven by multiple canonical processes which can be regarded as a
generalization of the uncertain differential equation proposed by Liu [9].
The rest of the paper is organized as follows. Some preliminary concepts of uncertainty

theory and uncertain calculus are recalled in the ‘Preliminary’ section. After that, themul-
tifactor uncertain differential equation is presented. Following that, a numerical method
is introduced. In addition, an existence and uniqueness theorem is proved. Finally, a brief
summary is given.

Preliminary
In this section, uncertainty theory and uncertain calculus are introduced and some basic
concepts are given.
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Uncertainty theory

Let � be a nonempty set andL a σ -algebra over �. Each element� inL is called an event.
A set function M from L to [0, 1] ia called uncertain measure if it satisfies the following
axioms:

(1) (Normality axiom)M{�} = 1 for the universal set �;
(2) (Duality axiom)M{�} + M{�c} = 1 for any � ∈ L;
(3) (Subadditivity axiom) for every countable sequence of events �1,�2, · · · , we have:

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

The triplet (�,L,M) is called an uncertain space. In order to obtain an uncertain
measure of compound event, Liu [10] defined a product uncertain measure which
produces the fourth axiom of uncertainty theory:

(4) (Product axiom) Let (�k ,Lk ,Mk) be uncertain spaces for k = 1, 2, · · · The product
uncertain measureM is an uncertain measure on the product σ -algebra
L1 × L2 × · · · satisfying:

M

{ ∞∏
k=1

�k

}
= min

1≤k≤∞
Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
An uncertain variable is defined as a measurable function from an uncertain space

(�,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set:

{ξ ∈ B} = {γ ∈ �|ξ(γ) ∈ B}
is an event.
The uncertainty distribution � : � →[ 0, 1] of an uncertain variable ξ is defined by Liu

[1] as:

�(x) = M
{
γ ∈ �

∣∣ ξ(γ) ≤ x
}
,

and the inverse function �−1 is called the inverse uncertainty distribution of ξ .
An uncertain variable ξ is called normal if it has a normal uncertainty distribution:

�(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1
, x ∈ �

denoted byN (e, σ) where e and σ are real numbers with σ > 0.
The expected value of uncertain variable ξ is defined by Liu [1] as:

E[ ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite. The variance of ξ is defined as
V [ξ ]= E[(ξ − E[ ξ ])2].
Let ξ1, ξ2, · · · , ξn be independent uncertain variables with uncertainty distributions

�1,�2, · · · ,�n, respectively. Liu [2] proved that if f (x1, x2, · · · , xn) is a strictly increas-
ing function with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn, then ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse
uncertainty distribution:
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	−1(α) = f (�−1
1 (α), · · · ,�−1

m (α),�−1
m+1(1 − α), · · · ,�−1

n (1 − α)).

Furthermore, the expected value of uncertain variable ξ = f (ξ1, ξ2, · · · , ξn) was
obtained by Liu and Ha [44] as follows:

E[ ξ ]=
∫ 1

0
f (�−1

1 (α), · · · ,�−1
m (α),�−1

m+1(1 − α), · · · ,�−1
n (1 − α))dα.

Uncertain calculus

Definition 1. (Liu [9]) Let T be an index set and let (�,L,M) be an uncertain space. An
uncertain process is a measurable function from T × (�,L,M) to the set of real numbers,
i.e., for each t ∈ T and any Borel set B of real numbers, the set:

{Xt ∈ B} = {γ ∈ � | Xt(γ ) ∈ B}
is an event.

Definition 2. (Liu [10]) An uncertain process Ct is said to be a canonical process if
(i) C0 = 0 and almost all sample paths are Lipschitz continuous;
(ii) Ct has stationary and independent increments;
(iii) every increment Cs+t − Ct is a normal uncertain variable with expected value 0 and
variance t2.

Definition 3. (Liu [10]) Let Xt be an uncertain process and Ct be a canonical process.
For any partition of closed integral [a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is
written as:

� = max
1≤i≤k

| ti+1 − ti | .

Then, Liu integral of Xt with respect to Ct is:∫ b

a
XtdCt = lim

�→0

k∑
i=1

Xti(Cti+1 − Cti)

provided that the limit exists almost surely and is finite. In this case, the uncertain process
Xt is said to be integrable.

Example 1. Let f (t) be a continuous function with respect to t. Then, the uncertain
integral:∫ s

0
f (t)dCt

is a normal uncertain variable at each time s, and:∫ s

0
f (t)dCt ∼ N

(
0,

∫ s

0
| f (t) | dt

)
.

Definition 4. (Liu [9]) Suppose Ct is a canonical process, and f , g are some given
functions. Then,

dXt = f (t,Xt)dt + g(t,Xt)dCt (1)

is called an uncertain differential equation.
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The uncertain differential with respect to canonical processes C1t ,C2t , · · · ,Cnt is
defined by Liu and Yao [43] as follows.

Definition 5. (Liu and Yao [43]) Let C1t ,C2t , · · · ,Cnt be canonical processes and let Zt
be an uncertain process. If there exist uncertain processesμt and σ1t , σ2t , · · · , σnt such that:

Zt = Z0 +
∫ t

0
μsds +

n∑
i=1

∫ t

0
σisdCis (2)

for any t ≥ 0, then, we say Zt has an uncertain differential:

dZt = μtdt +
n∑

i=1
σitdCit . (3)

In this case, Zt is called a differentiable uncertain process with drift μt and diffusions
σ1t , σ2t , · · · , σnt.

Theorem 1. (Liu and Yao [43]) (Fundamental Theorem of Uncertain Calculus) Let
C1t ,C2t , · · · ,Cnt be canonical processes. If h(t, c1, c2, · · · , cn) is a continuously differen-
tiable function, then the uncertain process Zt = h(t,C1t ,C2t , · · · ,Cnt) is differentiable and
has an uncertain differential:

dZt = ∂h
∂t

(t,C1t ,C2t , · · · ,Cnt)dt +
n∑

i=1

∂h
∂ci

(t,C1t ,C2t , · · · ,Cnt)dCit .

Multifactor uncertain differential equation
Usually, the uncertain factor influencing dynamic systems is not alone. In order to model
the dynamic systems with multiple factors, this section will extend the uncertain differ-
ential equation driven by single canonical process to one driven by multiple independent
canonical processes.

Definition 6. (Liu [45]) Uncertain processes X1t ,X2t , · · · ,Xnt are said to be independent
if for any positive integer k and any times t1, t1, · · · , tk , the uncertain vectors:

ξ i = (
Xit1 ,Xit2 , · · · ,Xitk

)
, i = 1, 2, · · · , n

are independent, i.e., for any Borel sets B1,B2, · · · ,Bn of k-dimensional real vectors, we
have:

M

{ n⋂
i=1

(ξ i ∈ Bi)

}
=

n∧
i=1

M{ξ i ∈ Bi}.

Theorem 2. (Liu [45]) Let X1t ,X2t , · · · ,Xnt be independent uncertain processes
with regular uncertainty distributions �1t ,�2t , · · · ,�nt, respectively. If the function
f (x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing
with respect to xm+1, xm+2, · · · , xn, then:
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Xt = f (X1t ,X2t , · · · ,Xnt)

is an uncertain variable with inverse uncertainty distribution:

�−1
t (α) = f (�−1

1t (α), · · · ,�−1
mt (α),�−1

m+1,t(1 − α), · · · ,�−1
nt (1 − α)).

Definition 7. Suppose C1t ,C2t , · · · ,Cnt are independent canonical processes, and f ,
g1, g2, · · · , gn are some given functions. Then:

dXt = f (t,Xt)dt +
n∑

i=1
gi(t,Xt)dCit (4)

is called an uncertain differential equation with respect to C1t ,C2t , · · · ,Cnt. A solution is
an uncertain process Xt that satisfies Equation 4 identically in t.

The uncertain differential Equation 4 is equivalent to the uncertain integral equation:

Xs = X0 +
∫ s

0
f (t,Xt)dt +

n∑
i=1

∫ s

0
gi(t,Xt)dCit . (5)

Example 2. Let a, b and c be real numbers, and let C1t ,C2t be independent canonical
processes. The uncertain differential equation:

dXt = adt + bdC1t + cdC2t (6)

has a solution:

Xt = X0 + at + bC1t + cC2t . (7)

Theorem 3. Let μt , ν1t , ν2t , · · · , νnt be integrable uncertain processes and let
C1t ,C2t , · · · ,Cnt be independent canonical processes. Then, the uncertain differential
equation:

dXt = μtXtdt +
n∑

i=1
νitXtdCit (8)

has a solution:

Xt = X0 exp
(∫ t

0
μsds +

n∑
i=1

∫ t

0
νisdCis

)
. (9)

Proof. At first, the original uncertain differential equation is equivalent to:

dXt
Xt

= μtdt +
n∑

i=1
νitdCit .

It follows from the fundamental theorem of uncertain calculus that:

d lnXt = dXt
Xt

= μtdt +
n∑

i=1
νitdCit

and then:

lnXt = lnX0 +
∫ t

0
μsds +

n∑
i=1

∫ t

0
νisdCis.

Therefore, the uncertain differential Equation 8 has a solution (9).



Li et al. Journal of Uncertainty Analysis and Applications  (2015) 3:7 Page 7 of 19

Example 3. Let a, b, and c be real numbers, and let C1t and C2t be independent
canonical processes. The uncertain differential equation:

dXt = aXtdt + bXtdC1t + cXtdC2t (10)

has a solution:

Xt = X0 exp (at + bC1t + cC2t) . (11)

Theorem 4. Let μ1t , μ2t , ν1t , ν2t , · · · , νnt and ω1t ,ω2t , · · · ,ωnt be integrable uncer-
tain processes. Assume C1t ,C2t , · · · ,Cnt are independent canonical processes, then the
uncertain differential equation:

dXt = (μ1tXt + μ2t)dt +
n∑

i=1
(νitXt + ωit)dCit (12)

has a solution:

Xt = Ut

(
X0 +

∫ t

0

μ2s
Us

ds +
n∑

i=1

∫ t

0

ωis
Us

dCis

)
(13)

where:

Ut = exp
(∫ t

0
μ1sds +

n∑
i=1

∫ t

0
νisdCis

)
. (14)

Proof. Define two uncertain processes Ut and Vt via uncertain differential equations,

dUt = μtUtdt +
n∑

i=1
νitUtdCit ,

dVt = μ2t
Ut

dt +
n∑

i=1

ωit
Ut

dCit .

It follows from the integration by parts that:

d(UtVt) = VtdUt + UtdVt = (μ1tUtVt + μ2tdt) +
n∑

i=1
(νitUtVt + ωit)Cit .

That is, the uncertain process Xt = UtVt is a solution of the uncertain differential
Equation (12). Note that:

Ut = U0 exp
(∫ t

0
μ1sds +

n∑
i=1

∫ t

0
νisdCis

)
,

Vt = V0 +
∫ t

0

μ2s
Us

dt +
n∑

i=1

∫ t

0

ωis
Us

dCis.

Taking U0 = 1 and V0 = X0, we get the solutions (13) and (14). The theorem is proved.
Note that n = 1, the uncertain differential Equation 12 degenerates to the linear

uncertain differential equation in Chen and Liu [18].

Example 4. Let m, a, σ , and ω be real numbers and let C1t and C2t be independent
canonical processes. The uncertain differential equation:

dXt = (m − aXt)dt + σdC1t + ωdC2t (15)
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has the solution:

Xt = exp(−at)
(
X0 + m

a
(exp(at) − 1) +

∫ t

0
σ exp(as)dC1s +

∫ t

0
ω exp(as)dC2s

)
(16)

provided that a 
= 0.

Example 5. Let m, σ , and ω be real numbers and let C1t and C2t be independent
canonical processes. The uncertain differential equation:

dXt = mdt + σXtdC1t + ωXtdC2t (17)

has the solution:

Xt = exp(σC1t + ωC2t)

(
X0 +

∫ t

0
m exp(σC1s + ωC2s)ds

)
. (18)

Theorem 5. Let f be a function of two variables and let σ1t , σ2t , · · · , σnt be integrable
uncertain processes. Assume C1t ,C2t , · · · ,Cnt are independent canonical processes, then
the uncertain differential equation:

dXt = f (t,Xt)dt +
n∑

i=1
σitXtdCit (19)

has a solution:

Xt = Y−1
t Zt (20)

where:

Yt = exp
(

−
n∑

i=1

∫ t

0
σisdCis

)
(21)

and Zt is the solution of uncertain differential equation:

dZt = Ytf
(
t,Y−1

t Zt
)
dt (22)

with initial value Z0 = X0.

Proof. By the fundamental theorem of uncertain calculus, the uncertain process Yt has
an uncertain differential:

dYt = − exp
(

−
n∑

i=1

∫ t

0
σisdCis

) n∑
i=1

σitdCit = −Yt
n∑

i=1
σitdCit .

It follows from the integration by parts that:

d(XtYt) = XtdYt + YtdXt = −XtYt
n∑

i=1
σitdCit + Ytf (t,Xt) + XtYt

n∑
i=1

σitdCit .

That is,

d(XtYt) = Ytf (t,Xt).

Defining Zt = XtYt , we obtain Xt = Y−1
t Zt and dZt = Ytf

(
t,Y−1

t Zt
)
. Furthermore,

since Y0 = 1, the initial value Z0 is just X0. The theorem is proved.
Note that n = 1, the uncertain differential Equation 19 degenerates to the nonlinear

uncertain differential equation in Liu [24].
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Example 6. Let σ1, σ2, · · · , σn be real numbers and let C1t ,C2t , · · · ,Cnt be independent
canonical processes. Consider the uncertain differential equation:

dXt = f (t,Xt)dt +
n∑

i=1
σiXtdCit . (23)

Theorem 5 shows that:

Yt = exp
(

−
n∑

i=1
σiCis

)

and:

Xt = exp
( n∑

i=1
σiCis

)
Zt

where Zt is the solution of uncertain differential equation:

dZt = exp
(

−
n∑

i=1
σiCis

)
f
(
t, exp

( n∑
i=1

σiCis

)
Zt

)
dt

with initial value Z0 = X0. Taking f (t,Xt) = Xα
t , α 
= 1, we can obtain:

dZ1−α
t = (1 − α) exp

(
(1 − α)

n∑
i=1

σiCit

)
dt

and:

Xt = exp
( n∑

i=1
σiCit

) (
X1−α
0 + (1 − α)

∫ t

0
exp

(
(1 − α)

n∑
i=1

σiCis

)
ds

) 1
1 − α

.

Theorem 6. Let g1, g2, · · · , gn be functions of two variables and let αt be an integrable
uncertain process. Assume C1t ,C2t , · · · ,Cnt are independent canonical processes, then the
uncertain differential equation:

dXt = αtXtdt +
n∑

i=1
gi(t,Xt)dCit (24)

has a solution:

Xt = Y−1
t Zt (25)

where:

Yt = exp
(

−
∫ t

0
αsds

)
(26)

and Zt is the solution of uncertain differential equation:

dZt = Yt
n∑

i=1
gi

(
t,Y−1

t Zt
)
dt (27)

with initial value Z0 = X0.

Proof. It follows from the fundamental theorem of uncertain calculus that:

dYt = − exp
(

−
∫ t

0
αsds

)
αtdt = −Ytαtdt.
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Using the integration by parts, we have the following:

d(XtYt) = XtdYt + YtdXt = −XtYtαtdt + YtαtXtdt + Yt
n∑

i=1
gi(t,Xt)dCit .

That is,

d(XtYt) = Yt
n∑

i=1
gi(t,Xt)dCit .

Define Zt = XtYt , then Xt = Y−1
t Zt and dZt = Yt

n∑
i=1

gi
(
t,Y−1

t Zt
)
dCit . In addition,

since Y0 = 1, the initial value Z0 is just X0. The theorem is proved.
Note that n = 1, the uncertain differential Equation 24 degenerates to the nonlinear

uncertain differential equation in Liu [24].

Example 7. Let α , b, c, and β be real numbers with β 
= 1, and let C1t ,C2t , · · · ,Cnt be
independent canonical processes. Consider the uncertain differential equation:

dXt = αXtdt + bXβ
t dC1t + cXβ

t dC2t . (28)

At first,

Yt = exp(−αt)

and Zt satisfies uncertain differential equation:

dZt = b exp((β − 1)αt)Zβ
t dC1t + c exp((β − 1)αt)Zβ

t dC2t .

Since β 
= 1, we have:

dZ1−α
t = (1 − β)(b exp((β − 1)αt)dC1t + c exp((β − 1)αt)dC2t).

It follows from the fundamental theorem of uncertain calculus that:

Z1−α
t = Z1−α

0 + (1 − β)

(
b
∫ t

0
exp((β − 1)αs)dC1s + c

∫ t

0
exp((β − 1)αs)dC2s

)
.

Theorem 6 says the uncertain differential equation has a solution:

Xt = exp(αt)
(
X1−α
0 +(1−β)(b

∫ t

0
exp((β − 1)αs)dC1s + c

∫ t

0
exp((β − 1)αs)dC2s

) 1
1 − β .

Numerical method
However, in many cases, it is difficult to find analytic solutions of uncertain differential
equations. Yao and Chen [26] presented a numerical method called Yao-Chen method to
obtain the inverse uncertainty distribution of solution.

Yao-Chen formula

Definition 8. (Yao and Chen [26]) Let α be a number with 0 < α < 1. An uncertain
differential equation

dXt = f (t,Xt)dt + g(t,Xt)dCt (29)

is said to have an α-path Xα
t if it solves the corresponding ordinary differential equation:

dXα
t = f

(
t,Xα

t
)
dt+ | g (

t,Xα
t
) | �−1(α)dt (30)
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where �−1(α) is the inverse standard normal uncertainty distribution, i.e.,

�−1(α) =
√
3

π
ln

α

1 − α
.

Theorem 7. (Yao-Chen Formula [26]) Assume that f , g1, g2, · · · , gn are continuous
functions of two variables. Let Xt and Xα

t be the solution and α-path of the uncertain
differential equation:

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Then:

M
{
Xt ≤ Xα

t ,∀t
} = α,

M
{
Xt > Xα

t ,∀t
} = 1 − α.

Theorem 8. (Yao and Chen [26]) Assume that f , g1, g2, · · · , gn are continuous functions
of two variables. Let Xt and Xα

t be the solution and α-path of the uncertain differential
equation:

dXt = f (t,Xt)dt + g(t,Xt)dCt ,

respectively. Then, the solution Xt has an inverse uncertainty distribution:

	−1
t (α) = Xα

t .

Generalization

In this subsection, we generalize the Yao-Chen formula to the multifactor uncertain
differential equation.

Definition 9. Let α be a number with 0 < α < 1, and let C1t ,C2t , · · · ,Cnt be
independent canonical processes. An uncertain differential equation:

dXt = f (t,Xt)dt +
n∑

i=1
gi(t,Xt)dCit (31)

is said to have an α-path Xα
t if it solves the corresponding ordinary differential equation:

dXα
t = f

(
t,Xα

t
)
dt +

n∑
i=1

| gi
(
t,Xα

t
) | �−1(α)dt (32)

where �−1(α) is the inverse uncertainty distribution of standard normal uncertain
variableN (0, 1), i.e.,

�−1(α) =
√
3

π
ln

α

1 − α
, 0 < α < 1.

Example 8. Let a, b, and c be real numbers. The uncertain differential equation:

dXt = adt + bdC1t + cdC2t , X0 = 0

has an α-path:

Xα
t = at + (| b | + | c |)�−1(α).
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Lemma 9. Assume that f (t, x) and g(t, x) are continuous functions. Let φ(t) be a solution
of the ordinary differential equation:

dx
dt

= f (t, x)dt + K | g(t, x) |, x(0) = x0

where K is a real number. Let ψ(t) be a solution of the ordinary differential equation:

dx
dt

= f (t, x)dt + k(t)g(t, x), x(0) = x0

where k(t) is a real function.

(i) If k(t)g(t, x) ≤ K | g(t, x) | for t ∈[ 0,T], then ψ(T) ≤ φ(T),
(ii) If k(t)g(t, x) > K | g(t, x) | for t ∈[ 0,T], then ψ(T) > φ(T).

Theorem 10. Assume that f , g1, g2, · · · , gn are continuous functions of two variables and
C1t ,C2t , · · · ,Cnt are independent canonical processes. Let Xt and Xα

t be the solution and
α-path of the uncertain differential equation:

dXt = f (t,Xt)dt +
n∑

i=1
gi(t,Xt)dCit ,

respectively. Then:

M
{
Xt ≤ Xα

t ,∀t
} = α,

M
{
Xt > Xα

t ,∀t
} = 1 − α.

Proof. For each α-path Xα
t , we construct sets as follows,

T+
i = {

t | gi
(
t,Xα

t
) ≥ 0

}
,

T−
i = {

t | gi
(
t,Xα

t
)

< 0
}
,

i = 1, 2, · · · , n. It is obvious that T+
i ∩T−

i = ∅ and T+
i ∪T−

i =[ 0,+∞) for each 1 ≤ i ≤ n.
Write:

�+
i1 =

{
γ | dCit(γ )

dt
≤ �−1(α) for t ∈ T+

i

}
,

�−
i1 =

{
γ | dCit(γ )

dt
≥ �−1(1 − α) for t ∈ T−

i

}
,

i = 1, 2, · · · , n, where �−1 is the inverse uncertainty distribution of N (0, 1). Since T+
i

and T−
i are disjoint sets and Cit have independent increments, we get:

M
{
�+

i1
} = α, M

{
�−

i1
} = α M

{
�+

i1 ∩ �−
i1
} = α.

For any γ ∈ �+
i1 ∩ �−

i1, we always have:

gi(t,Xt(γ ))
dCit(γ )

dt
≤| gi

(
t,Xα

t
) | �−1(α),∀t, i = 1, 2, · · · , n.
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Let �+
1 ∩ �−

1 =
n⋂

i=1

(
�+

i1 ∩ �−
i1
)
. Because C1t ,C2t , · · · ,Cnt are independent and

M
{
�+

i1 ∩ �−
i1
} = α, i = 1, 2, · · · , n, we have:

M
{
�+

1 ∩ �−
1
} = M

{ n⋂
i=1

(
�+

i1 ∩ �−
i1
)} = min

1≤i≤n
M

{
�+

i1 ∩ �−
i1
} = α.

Then, for any γ ∈ �+
1 ∩ �−

1 , we have:
n∑

i=1
gi(t,Xt(γ ))

dCit(γ )

dt
≤

n∑
i=1

| gi
(
t,Xα

t
) | �−1(α),∀t.

The Lemma 9 shows that Xt ≤ Xα
t for all t, so �+

1 ∩ �−
1 ⊂ {

Xt ≤ Xα
t ,∀t

}
. Hence:

M
{
Xt ≤ Xα

t ,∀t
} ≥ M

{
�+

1 ∩ �−
1
} = α. (33)

On the other hand, write:

�+
i2 =

{
γ | dCit(γ )

dt
> �−1(α) for t ∈ T+

i

}
,

�−
i2 =

{
γ | dCit(γ )

dt
< �−1(1 − α) for t ∈ T−

i

}
,

i = 1, 2, · · · , n. Since T+
i and T−

i are disjoint sets and Cit has independent increments, we
get:

M
{
�+

i2
} = 1 − α, M

{
�−

i2
} = 1 − α, M

{
�+

i2 ∩ �−
i2
} = 1 − α.

For any γ ∈ �+
i2 ∩ �−

i2, we always have:

gi(t,Xt(γ ))
dCit(γ )

dt
>| gi

(
t,Xα

t
) | �−1(α),∀t, i = 1, 2, · · · , n.

Let �+
2 ∩ �−

2 =
n⋂

i=1

(
�+

i2 ∩ �−
i2
)
. Because C1t ,C2t , · · · ,Cnt are independent and

M
{
�+

i2 ∩ �−
i2
} = 1 − α, i = 1, 2, · · · , n, we have:

M
{
�+

2 ∩ �−
2
} = M

{ n⋂
i=1

(
�+

i2 ∩ �−
i2
)} = min

1≤i≤n
M

{
�+

i2 ∩ �−
i2
} = 1 − α.

Then, for any γ ∈ �+
2 ∩ �−

2 , we have:
n∑

i=1
gi(t,Xt(γ ))

dCit(γ )

dt
>

n∑
i=1

| gi
(
t,Xα

t
) | �−1(α),∀t.

The Lemma 9 shows that Xt > Xα
t for any t, so �+

2 ∩ �−
2 ⊂ {

Xt > Xα
t ,∀t

}
. Hence:

M{Xt > Xα
t ,∀t} ≥ M

{
�+

i2 ∩ �−
i2
} = 1 − α. (34)

Since
{
Xt ≤ Xα

t ,∀t
}
and

{
Xt 
≤ Xα

t ,∀t
}
are opposite events with each other. It follows

from the duality axiom that:

M
{
Xt ≤ Xα

t ,∀t
} + M

{
Xt 
≤ Xα

t ,∀t
} = 1.

In addition,
{
Xt > Xα

t ,∀t
} ⊂ {

Xt 
≤ Xα
t ,∀t

}
means that:

M
{
Xt ≤ Xα

t ,∀t
} + M

{
Xt > Xα

t ,∀t
} ≤ 1. (35)

Thus, the results follow from (33), (34), and (35).
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Theorem 11. Assume that f , g1, g2, · · · , gn are continuous functions of two variables and
C1t ,C2t , · · · ,Cnt are independent canonical processes. Let Xt and Xα

t be the solution and
α-path of the uncertain differential equation:

dXt = f (t,Xt)dt +
n∑

i=1
gi(t,Xt)dCit ,

respectively. Then, the solution Xt has an inverse uncertainty distribution:

	−1
t (α) = Xα

t .

Proof. Obviously,
{
Xt ≤ Xα

t
} ⊃ {

Xs ≤ Xα
s ,∀s

}
. It follows from the monotonicity

theorem and Theorem 10 that:

M
{
Xt ≤ Xα

t
} ≥ M

{
Xs ≤ Xα

s ,∀s
} = α. (36)

Similarly, we also obtain:

M
{
Xt > Xα

t
} ≥ M

{
Xs > Xα

s ,∀s
} = 1 − α. (37)

Besides, by using the duality axiom, we have:

M
{
Xt ≤ Xα

t
} + M

{
Xt > Xα

t
} = 1. (38)

It follows from (36), (37), and (38) that:

	−1
t (α) = Xα

t .

Example 9. Let a, b, and c be real numbers and let C1t and C2t be independent canonical
processes. The uncertain differential equation:

dXt = aXtdt + bXtdC1t + cXtdC2t , X0 = 1 (39)

has a solution:

Xt = exp(at + bC1t + cC2t)

with an inverse uncertainty distribution:

	−1
t (α) = exp

(
at + (| b | + | c |)�−1(α)

)
.

Based on the previous theorem, the Yao-Chen method can be generalized to the
multifactor uncertain differential equation as follows.

Step 1: Fix α on (0, 1).

Step 2: Solve the corresponding ordinary differential equation:

dXα
t = f

(
t,Xα

t
)
dt +

n∑
i=1

| gi
(
t,Xα

t
) | �−1(α)dt

and obtain Xα
t , for example, we can choose the recursion formula:

Xα
i+1 = Xα

i + f
(
ti,Xα

i
)
h +

n∑
j=1

| gj
(
ti,Xα

i
) | �−1(α)h

where �−1(α) is the inverse standard normal uncertainty distribution and h is
the step length.
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Step 3: The inverse uncertainty distribution of Xt is obtained.

Example 10. In order to illustrate the numerical method, let us consider an uncertain
differential equation:

dXt = Xtdt + XtdC1t + XtdC2t , X0 = 1 (40)

whose solution is Xt = exp(t + C1t + C2t). The Matlab Uncertainty Toolbox (http://
orsc.edu.cn/liu/resources.htm) may solve this equation successfully and obtain an inverse
uncertainty distribution of Xt at t = 1/2 shown in Figure 1.

Existence and uniqueness theorem
This section will give an existence and uniqueness theorem of solution for the multifactor
uncertain differential equation under Lipschitz condition and linear growth condition.

Lemma 12. (Chen and Liu [18]) Let Ct be a canonical process, and Xt an integrable
uncertain process on [ a, b] with respect to t. Then, the inequality:

|
∫ b

a
Xt(γ)dCt(γ) |≤ K(γ )

∫ b

a
| Xt(γ) | dt

holds, where K(γ ) is the Lipschitz constant of the sample path Xt(γ).

Theorem 13. Let f , g1, g2, · · · , gn be functions of two variables and let C1t ,C2t , · · · ,Cnt
be independent canonical processes. Then, the uncertain differential equation:

dXt = f (t,Xt)dt +
n∑

i=1
gi(t,Xt)dCit

has a unique solution if the coefficients f , g1, g2, · · · , gn satisfy the Lipschitz condition:

| f (t, x) − f (t, y) | +
n∑

i=1
| gi(t, x) − gi(t, y) |≤ L | x − y |, for all x, y ∈ �, t ≥ 0 (41)

Figure 1 t = 1/2, X0 = 1.

http://orsc.edu.cn/liu/resources.htm
http://orsc.edu.cn/liu/resources.htm
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and linear growth condition:

| f (t, x) | +
n∑

i=1
| gi(t, x) |≤ L(1+ | x |), for all x ∈ �, t ≥ 0 (42)

for some constant L. Moreover, the solution is sample-continuous.

Proof. We first prove the existence of solution by a successive approximation method.
Define X(0)

t = X0, and:

X(n)
t = X0 +

∫ t

0
f
(
s,X(n−1)

s

)
ds +

n∑
i=1

∫ t

0
gi

(
s,X(n−1)

s

)
dCis

for n = 1, 2, · · · , n and write:

Dn
t (γ ) = max

0≤s≤t
| X(n+1)

s (γ ) − X(n)
s (γ ) |

for each γ ∈ �.
We claim that:

Dn
t (γ ) ≤ (1+ | X0 |)L

n+1(1 + Kγ )n+1

(n + 1)!
tn+1

where Kγ =
n∑

i=1
Kiγ , and Kiγ is the Lipschitz constant to the sample path Cit(γ), i =

1, 2, · · · , n.
For n = 0, we have:

D(0)
t (γ)= max

0≤s≤t
|
∫ s

0
f (v,X0)dv +

n∑
i=1

∫ s

0
gi(v,X0)dCiv(γ) |

≤
∫ t

0
| f (v,X0) | dv +

n∑
i=1

Kiγ
∫ t
0 | gi(v,X0) | dv

≤ (1+ | X0 |)L(1 + Kγ)t

where the first inequality comes from Lemma 12, the second comes from the linear
growth condition.
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This confirms the claim for n = 0. Next, we assume the claim is true for some n − 1.
Then:

D(n)
t (γ )= max

0≤s≤t
|
∫ s

0
(f (v,X(n)

v (γ)) − f
(
v,X(n−1)

v (γ)
)
dv

+
n∑

i=1

∫ s

0

(
gi(v,X(n)

v (γ)
)

− gi
(
v,X(n−1)

v (γ)
)
dCiv(γ) |

≤
∫ t

0
|
(
f (v,X(n)

v (γ)
)

− f
(
v,X(n−1)

v (γ)
)

| dv

+
n∑

i=1

∫ t

0
|
(
gi(v,X(n)

v (γ)
)

− gi
(
v,X(n−1)

v (γ)
)

| dCiv(γ)

≤ L
∫ t

0
| X(n)

v (γ) − X(n−1)
v (γ) | dv

+
n∑

i=1
Kiγ

∫ t

0
|
(
gi(v,X(n)

v (γ)
)

− gi
(
v,X(n−1)

v (γ)
)

| dv

≤ L
∫ t

0
| X(n)

v (γ) − X(n−1)
v (γ) | dv

+L
n∑

i=1
Kiγ

∫ t

0
| X(n)

v (γ) − X(n−1)
v (γ) | dv

≤ L(1 + Kγ)

∫ t

0
| X(n)

v (γ) − X(n−1)
v (γ) | dv

≤ L(1 + Kγ)

∫ t

0
(1+ | X0 |)L

n(1 + Kγ)
n

n!
vndv

= (1+ | X0 |)L
n+1(1 + Kγ)

n+1

(n + 1)!
tn+1.

It follows fromWeierstrassąŕ criterion that, for each sample γ , the pathsX(k)
t (γ) converges

uniformly on any given interval [ 0,T]. Write the limit by Xt(γ) that is just a solution:

Xt = X0 +
∫ t

0
f (s,Xs)ds +

n∑
i=1

∫ t

0
gi(s,Xs)dCis.

Next, we prove that the solution is unique. Assume that Xt and X�
t are solutions. The

Lipschitz condition and linear growth condition show:

| Xt(γ) − X�
t (γ) |≤ L(1 + Kγ)

∫ t

0
| Xv(γ) − X�

v (γ) | dv.

It follows from Gronwall inequality that:

| Xt(γ) − X�
t (γ) |≤ 0 · exp(L(1 + Kγ)).

Hence, Xt = X�
t . The uniqueness is proved.

At last, we will prove the sample-continuity of Xt . For each γ ∈ �, by the above proof,
we get:

Xt(γ) ≤
+∞∑
n=0

(1+ | X0 |)L
n+1(1 + Kγ)

n+1

(n + 1)!
tn+1 = (1+ | X0 |) exp(L(1 + Kγ)t).
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Suppose 0 < s < t, we have:

| Xt(γ) − Xs(γ) |= |
∫ t

s
f (υ,Xυ)dυ +

n∑
i=1

∫ t
s gi(υ,Xυ)dCiυ |

≤
∫ t

s
| f (υ,Xυ) | dυ +

n∑
i=1

∫ t
s | gi(υ,Xυ) | dCiυ

≤
∫ t

s
| f (υ,Xυ) | dυ +

n∑
i=1

Kiγ
∫ t
s | gi(υ,Xυ) | dυ

≤ (1 + Kγ)L(1+ | Xυ(γ) |)(t − s)

≤ (1 + Kγ)L(1 + (1+ | X0 |) exp(L(1 + Kγ)t))(t − s).

Thus | Xt(γ) − Xs(γ) |→ 0 as s → t. Hence, Xt is sample-continuous. The theorem is
proved.
Note that n = 1, the existence and uniqueness theorem degenerates to the one in Chen

and Liu [18].

Conclusions
Uncertain differential equation is an important tool to deal with dynamic systems in
uncertain environments. In this paper, the multifactor uncertain differential equation
was proposed. Four special types of multifactor uncertain differential equations were
studied and the corresponding analytic solutions were given. For general multifactor
uncertain differential equation, a numerical method was provided for obtaining the
solution. Also, an existence and uniqueness theorem that the multifactor uncertain dif-
ferential equation has a unique solution was proved. The proposed multifactor uncertain
differential equation can be used to describe the multifactor stock model in uncertain
market.
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