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Abstract

This paper employs uncertain programming to investigate the uncertain multi-modal
shortest path problem, in which the arc weights (arc travel time, arc travel costs)
associated with different transport modes are characterized by uncertain variables. By
using the chance-constrained programming approach, we firstly formulate a
bi-objective optimization model to minimize the total travel time and travel costs
simultaneously with the given confidence levels. Moreover, using the basic concepts
and properties in the uncertainty theory, we transform the proposed model into its
deterministic crisp equivalent with an explicit proof. Finally, some numerical
experiments are implemented to show the performance of the proposed approaches
on a multi-modal transportation network with three specific modes.
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Introduction
The shortest path problem is widely applied to network optimization and has been studied
by a lot of researchers. Classical shortest path problems focus on networks with determin-
istic arc weights (lengths), and Dijkstra [1], Bellman [2], and Dreyfus [3] have proposed
some efficient algorithms which are still referenced widely now. However, due to the fail-
ure, maintenance, and other uncertain factors, arc weights are usually non-deterministic
in a busy transportation network. In view of this fact, some researchers introduced proba-
bility theory into the shortest path problem and used probability distributions to describe
the existing indeterminacy, such as Frank [4], Loui [5], Mirchandani [6], Yang et al. [7],
and Yang and Zhou [8]. However, this method is typically imprecise when we are lack of a
priori data information with respect to networks.With this concern, Dubois and Prade [9]
first introduced a fuzzy shortest path problem. In the fuzzy set theory, the decision can be
estimated by experts based on their experiences and professional judgments. Some other
routing optimization with fuzzy information can be referred to Ji et al. [10], Hernandes
et al. [11], and Yang et al. [12].
However, both probability theory and fuzzy set theory may lead to counterintuitive

results [13]. In this case, uncertainty theory was founded to rationally deal with belief
degrees, which enlightened a new approach to describe non-deterministic phenomena.
Up to now, the uncertainty theory has been applied to many classical optimization
problems, such as solid transportation problem [14], project scheduling problem [15],
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maximum flow problem [16], optimal assignment problem [17], uncertain graph [18], etc.
As for the shortest path problem, Liu [19] introduced three concepts of uncertain path
according to different decision criteria, including the expected shortest path, α-shortest
path, and the most shortest path. He formulated three types of uncertain programming
models and converted them into deterministic optimization ones. Gao [20] studied the
uncertainty distribution of the shortest path length and proposed an effective method to
find the α-shortest path and the most shortest path in an uncertain network. He pointed
out that there existed an equivalence relation between the α-shortest path in an uncertain
network and the shortest path in a corresponding deterministic network. Moreover, an
effective algorithm was proposed to find the α-shortest path and the most shortest path.
Zhou et al. [21] discussed the inverse shortest path problem on the graph with uncer-
tain edge weights. This problem was formulated as an uncertain programming and was
reformulated into a deterministic programming model.
Multi-modal transportation refers to a trip consisting of two ormoremeans of transport

to guide the passengers reach their destinations. The multi-modal shortest path problem
is a significant generalization of the traditional shortest path problem, and it has been
extensively investigated by a lot of researchers. Lozano and Storchi [22] found the short-
est viable path in a multi-modal network using label correcting techniques. They defined
the viable path as a path whose sequence of modes is feasible with respect to a set of con-
straints. Ma [23] presented an A∗ label setting algorithm to solve a constrained shortest
path problem in a multi-modal network. In this work, each link is characterized with a
vector of resource consumption besides the travel time. Ambrosino and Sciomachen [24]
proposed an approach for computing shortest routes inmulti-modal networks with objec-
tives of minimizing the overall time, cost, and users’ discomfort. Liu et al. [25] designed
an improved exact algorithm for a multi-criteria multi-modal shortest path problem with
both arriving time window and transfer delaying. Galvez-Fernandez et al. [26] introduced
a transfer graph approach, which was believed to better abstract the distributed nature of
real transport information sources, to calculate the best paths in multi-modal networks.
Yamani et al. [27] presented a fuzzy shortest path algorithm in multi-modal transporta-
tion networks, which concerned about not only the path cost but also the path time which
consisted of travel time and delays.
Indeed, due to the complexity of the real-world situations, it is in general difficult

to explicitly determine travel time or travel costs in a large-scale multi-modal network.
What is more, it is also complicated when we consider the transfer time and costs from
one mode to another. Thus, investigating the multi-modal shortest path problem in the
indeterministic environment becomes a significant and challenging issue for the practi-
cal applications. We here note that finding the shortest path in a multi-modal network
has been studied in various forms such as static [22], dynamic [26,28], stochastic [29,30],
fuzzy [27], constrained [23], and multi-criteria [24,25,31,32]. However, to the best of our
knowledge, few studies have been considered in the uncertain environment within the
framework of uncertain programming.
This paper aims to investigate the multi-modal shortest path problem, in which both

travel time and travel costs are regarded as uncertain variables. Specifically, the travel
time includes travel time on the travel arcs and transfer time spent on the mode change.
The travel costs consist of cost on each arc and the fixed cost. We intend to formu-
late a chance-constrained programming model with two objectives minimizing the travel
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time and travel cost simultaneously. The results of this research will provide a fundamen-
tal framework for investigating the shortest path problems with both multi-modes and
uncertainty characteristics.
The remainder of this paper is organized as follows. Section ‘Preliminaries’ intro-

duces some basic concepts and properties of uncertainty theory used throughout this
paper. Section ‘Model formulations’ makes a description of the problem and formu-
lates a chance-constrained programming model with two objectives. In Section ‘Crisp
equivalent of the model’, we demonstrate how to convert the model into its crisp equiv-
alent. In Section ‘Numerical experiments’, some experiments are given to illustrate the
performance of the proposed model. Finally, some conclusions are made in Section
‘Conclusions’.

Preliminaries
As this research will investigate the problem of interest within the framework of uncer-
tainty theory, we next first introduce some basic knowledge in this field for the com-
pleteness of this paper. Uncertainty theory was proposed by Liu [13], and it provided an
axiomatic system to handle the imprecise information. Some foundational definitions and
results in uncertainty theory are introduced below.

Definition 2.1. [13] Let� be a nonempty set, and L be a σ -algebra over�. Each element
� in L is called a measurable set. Then, the triplet (�, L,M) is called an uncertainty space
if the uncertain measureM satisfies the following axioms:

Axiom 1. (Normality Axiom)M{�} = 1 for the universal set �.
Axiom 2. (Duality Axiom)M{�} + M{�c} = 1 for any event �.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events �1,�2, · · · , we

have

M
{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i} .

Based on the uncertainty space, a formal definition of the uncertain variable will be
introduced for better describing the uncertainties mathematically.

Definition 2.2. [13] An uncertain variable is a measurable function ξ from an uncer-
tainty space (�, L,M) to the set of real numbers such that {ξ ∈ B} is an event for any Borel
set B.

Definition 2.3. [13] The uncertainty distribution� of an uncertain variable ξ is defined
by:

�(x) = M{ξ ≤ x}

for any real number x.

Theorem 2.1. ( [33], Measure Inversion Theorem) Let ξ be an uncertain variable with
continuous uncertainty distribution �. Then for any real number x, we have:

M{ξ ≤ x} = �(x),M{ξ > x} = 1 − �(x). (1)
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Definition 2.4. [33] Let ξ be an uncertain variable with regular uncertainty distribution
�(x). Then, the inverse function �−1(α) is called the inverse uncertainty distribution
of ξ .

Definition 2.5. [13] The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent if:

M
{ n⋂
i=1

{ξi ∈ Bi}
}

=
n∧

i=1
M {ξi ∈ Bi}

for any Borel set B1,B2, · · · ,Bn of real numbers.

There are some kinds of special uncertain variables namely the linear uncertain variable,
the zigzag uncertain variable, the normal uncertain variable and the lognormal uncertain
variable. As an example, the following will describe corresponding properties of the zigzag
uncertain variable.

Definition 2.6. [13] An uncertain variable ξ is called zigzag if it has a zigzag uncertainty
distribution

�(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ≤ a,
(x − a)/2(b − a), if a ≤ x ≤ b,

(x + c − 2b)/2(c − b), if b ≤ x ≤ c,
1, if x ≥ c.

(2)

denoted by Z(a, b, c), where a, b, and c are real numbers with a<b< c.

Theorem 2.2. [13] Assume that ξ1 and ξ2 are independent zigzag uncertain variables
Z(a1, b1, c1) and Z(a2, b2, c2), respectively. Then, the sum ξ1 + ξ2 is also a zigzag uncertain
variable Z(a1 + a2, b1 + b2, c1 + c2), i.e.,

Z(a1, b1, c1) + Z(a2, b2, c2) = Z(a1 + a2, b1 + b2, c1 + c2). (3)

The product of a zigzag uncertain variable Z(a, b, c) and a scalar number k > 0 is also
a zigzag uncertain variable Z(ka, kb, kc), i.e.,

k · Z(a, b, c) = Z(ka, kb, kc). (4)

To characterize the structural features of an uncertain variable, the concepts of critical
values, including optimistic value and pessimistic value, are formally defined as follows.

Definition 2.7. [13] Let ξ be an uncertain variable.

(1) The optimistic value of ξ is defined by:

ξsup(α) = sup{r|M{ξ ≥ r} ≥ α},α ∈ (0, 1] , (5)

(2) The pessimistic value of ξ is defined by:

ξinf(α) = inf{r|M{ξ ≤ r} ≥ α},α ∈ (0, 1] . (6)

Model formulations
Consider a multi-modal network G = (V ,E,M), in which V is the set of nodes and E
is the set of arcs. M represents the transport modes set that consists of three different
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modes, namely, private, metro, and bus. Each arc is denoted by an ordered node pair
(i, j, k) to indicate connections between the adjacent nodes of mode k. The whole network
thus can be divided into three subnetworks as the private network, metro network, and
bus network correspondingly. It should be noted that multi-modal network is character-
ized by weights on both nodes and arcs. Weights on arcs are generally used to represent
the travel time or travel cost spent on some kind of vehicle. Besides, weights should be
added on the transfer nodes if a mode change happens. The weights on the transfer nodes
may indicate the transfer time or transfer cost when a passenger transfers from one mode
to another. For the simplicity of our model, we shall divide a transfer node into differ-
ent nodes according to the number of modes at this node. Additionally, dummy arcs will
be added between these newly created nodes to indicate a modal transfer. Take a small
network shown in Figure 1 as an example. Obviously, there exist three modes at node a.
Therefore, we divide a into three different nodes as a, b, and c with modes private, metro,
and bus, respectively, and three dummy arcs should be added to the network in order to
represent the mode change between different subnetworks. In this case, the three sub-
networks can be connected by the given transfer arcs. Then, we can give weights to the
transfer arcs to indicate the transfer time or costs. For convenience of modeling formu-
lation, the transfer will be treated as a special kind of mode, namely, the transfer mode.
Thus, four modes are included in the mode setM, which is denoted asM = {p, b,m, t}.
There are various measures to evaluate a multi-modal path, while in this paper, we are

concerned with the total travel time and travel costs. In a multi-modal network, the total
travel time mainly includes in-vehicle time within a certain subnetwork and transfer time
when there is a transfer. Generally, a transfer between different modes needs the traveler
to walk to the stop (or station) of the following mode, then he/she may have to wait for the
bus or train coming. After getting on the vehicle, more time may be spent for waiting for
the vehicle to depart the stop. In summary, the transfer time consists of the passenger’s
walking time, waiting time, and the vehicle’s stopping time. To make the problem easy to
be dealt with, we consider the transfer time as a whole. Let ξijk represent time spent on arc
(i, j, k)with a specific mode k. Therefore, it is the in-vehicle travel time when k denotes the
private mode, the bus mode, or the metro mode. While when k means a transfer mode,
ξijk is actually the transfer time. Define a decision variable xijk : xijk = 1 denotes arc (i, j, k)

Figure 1 Schematic diagram of multi-modal network. (a) Physical network. (b) Transfer network.
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is selected by the path, and xijk = 0 otherwise. Then, the total travel time of a multi-modal
path can be expressed as follows:

f1 =
∑

(i,j,k)∈E
xijkξijk . (7)

In addition, we need a flow balance constraint to generate the feasible path, which is
given as below. (In this constraint, O and D represent the origin node and destination
node of the network, respectively).

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik =

⎧⎪⎨
⎪⎩

1, i=O,
−1, i=D,
0, otherwise.

(8)

It is no doubt that minimizing the total travel time cannot meet all the demands of
the travelers. Each mode has its own monetary cost, and sometimes, it may be contrary
to the travel time. For instance, the private mode is faster than the bus mode, but it has
much higher monetary cost as well. With this concern, the travel costs also need to be
considered in the model. In this paper, we take two types of costs into consideration:
costs on travel arcs and the fixed cost. Denote cijk to represent the travel cost on arc
(i, j, k), where k ∈ M\{t}. The fixed cost represents the ticket price of the public modes. It
always happens along with the occurrence of the transfer. For example, when a passenger
transfers from the bus subnetwork to the metro subnetwork, he/she then needs to pay for
the fixed cost to the metro subnetwork. Therefore, if any arc (i, j, k) of a certain mode k
is selected by a path, the fixed cost will occur. To depict this relationship, we introduce
another decision variable yk as:

yk =
{
1, if xijk = 1, for a certain (i, j, k) ∈ E, and k ∈ M\{t},
0, otherwise.

(9)

Obviously, yk = 1 indicates the fixed cost happens, and 0 otherwise. Let dk denote the
fixed cost when a certain arc of mode k(k ∈ M\{t}) is taken by a path. Then, we can easily
get the total travel costs as:

f2 =
∑

(i,j,k)∈E
xijkcijk +

∑
k∈M\{t}

ykdk . (10)

Indeed, travelers would pay more attention to the times of transfer, and most travel-
ers would not like to transfer too many times. So, it is rational to limit the number of
the modes adopted by a path. Then, we have the following constraint to ensure that the
number of modal transfers is not greater than N .∑

k∈M\{t}
yk ≤ N . (11)

For the convenience of formulating the model, we would like to summarize the above
notations in Table 1.
In this paper, we intend to formulate a bi-objective integer programming model to

minimize both the travel time and travel costs. Different decision criteria have been
used to evaluate the shortest path problem under uncertain environment. One of the
widely used criteria is the critical value. Uncertain programming using the critical value
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Table 1 Notations used in formulations

Notations Definition

V = set of nodes in the multi-modal network.

E = set of arcs in the multi-modal network.

M = set of the transport modes,M = {p, b,m, t}.
p = the private mode.

b = the bus mode.

m = the metro mode.

t = the transfer mode.

i, j = index of nodes, i, j ∈ N.

(i, j, k) = connections between the adjacent nodes of mode k.

ξijk = travel time/transfer time on arc (i, j, k).

cijk = travel cost on arc (i, j, k), k ∈ M\{t}.
dk = fixed cost when entering mode k.

xijk = 1, if arc (i, j, k) is on the path, 0 otherwise, (i, j, k) ∈ E.

yk = 1, if xijk = 1 for a certain (i, j, k) ∈ E, 0 otherwise, k ∈ M\{t}.

is called the chance-constrained programming. Enlightened by this, we shall formulate a
chance-constrained programming model, which is shown as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f1, f2
s.t.

M{
∑

(i,j,k)∈E
xijkξijk ≤ f1} ≥ α (12)

M{
∑

(i,j,k)∈E
xijkcijk +

∑
k∈M\{t}

ykdk ≤ f2} ≥ β (13)

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = 1, i = O, (14)

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = 0, i �= O,D, (15)

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = −1, i = D, (16)

∑
k∈M\{t}

yk ≤ N (17)

xijk , yk ∈ {0, 1},∀(i, j, k) ∈ E, k ∈ M\{t} (18)

In the above model, α and β are predetermined confidence levels. The objective func-
tion implies optimizing the total travel time and total travel cost. Constraints (12) and (13)
mean that the total travel time and travel cost will be less than f1 and f2 with confidence
levels α and β , respectively. Constraints (14), (15), and (16) ensure that a feasible path
can be generated in the network. Constraint (17) implies the total transfer times will not
exceed the given limit N . It is noted that the travel time and travel cost on arcs are impre-
cise due to the complexity of the actual network. Hence, the corresponding variables like
ξijk , cijk , and dk are treated as uncertain variables.

Crisp equivalent of themodel
It is easy to know that if the involved uncertain variables are complex, the model may be
difficult to be dealt with. So it is necessary for us to transform the model into its crisp
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equivalent. In this section, we shall introduce how the model can be transformed into a
deterministic form.

Theorem 4.1. [33] Let ξ and η be two independent uncertain variables. The correspond-
ing optimistic values and pessimistic values are ξsup(α) and ξinf(α), ηsup(α) and ηinf(α),
respectively. Then, we have:

(I) (ξ + η)sup(α) = ξsup(α) + ηsup(α),
(II) (ξ + η)inf(α) = ξinf(α) + ηinf(α).

Theorem 4.2. [33] Let ξ be an independent uncertain variable, k be a scalar number
with k > 0. Then, we have:

(I) (kξ)sup(α) = k · ξsup(α),
(II) (kξ)inf(α) = k · ξinf(α).

Theorem 4.3. Let ξ and η be two independent uncertain variables, k1 and k2 are scalar
numbers with k1 > 0, k2 > 0. Then we have:

(I) (k1ξ + k2η)sup(α) = k1 · ξsup(α) + k2 · ηsup(α),
(II) (k1ξ + k2η)inf(α) = k1 · ξinf(α) + k2 · ηinf(α).

It is worth noting that the critical value of an uncertain variable is associated with
the uncertainty distribution according to the Measure Inversion Theorem. Just for
completeness, two theorems will be cited to illustrate this point.

Theorem 4.4. [34] Suppose that ξ is an uncertain variable with continuous uncertainty
distribution �(x) when 0 < �(x) < 1, and g(x, ξ) = h(x) − ξ , α is a confidence level
in (0, 1). Then, we have M{g(x, ξ) ≤ 0} ≥ α if and only if h(x) ≤ fξ (α), where fξ (α) =
�−1(1 − α).

Theorem 4.5. [34] Suppose that ξ is a continuous uncertain variable with increasing
uncertainty distribution�(x)when 0 < �(x) < 1, g(x, ξ) = h(x)−ξ and α is a confidence
level in (0,1). Then, M{g(x, ξ) ≥ 0} ≥ α if and only if h(x) ≥ fξ (α), where fξ (α) = �−1(α).

Based on the aforementioned theorems, we can easily deduce the following conclusions:

Theorem 4.6. Let ξ be a continuous uncertain variable. The proposed critical value can
also be expressed as:

ξsup(α) = sup
{
r|r ≤ �−1

ξ (1 − α)
}

= �−1
ξ (1 − α),α ∈ (0, 1] , (19)

ξinf(α) = inf
{
r|r ≥ �−1

ξ (α)
}

= �−1
ξ (α),α ∈ (0, 1] . (20)

With the aid of relevant theorems given above, the following theorem intends to show
the equivalent model.
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Theorem 4.7. In the established chance-constrained programming model, we assume
that ξijk , cijk , and dk are all independent continuous uncertain variables. The equivalent
model is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min

⎧⎨
⎩

∑
(i,j,k)∈E

xijk · �−1
ξijk

(α),
∑

(i,j,k)∈E
xijk · �−1

cijk (β) +
∑

k∈M\{t}
yk · �−1

dk (β)

⎫⎬
⎭

s.t. (14) ∼ (18).

(21)

Proof. In the model, the two objective functions are to minimize f1, f2 with the con-
straint conditions:

M

⎧⎨
⎩

∑
(i,j,k)∈E

xijkξijk ≤ f1

⎫⎬
⎭ ≥ α, M

⎧⎨
⎩

∑
(i,j,k)∈E

xijkcijk +
∑

k∈M\{t}
ykdk ≤ f2

⎫⎬
⎭ ≥ β .

That is to say we need obtain the minimum values of f1, f2 which meet the above
conditions, i.e.,

inf

⎧⎨
⎩f1 |M

⎧⎨
⎩

∑
(i,j,k)∈E

xijkξijk ≤ f1

⎫⎬
⎭≥α

⎫⎬
⎭ , inf

⎧⎨
⎩f2 |M

⎧⎨
⎩

∑
(i,j,k)∈E

xijkcijk +
∑

k∈M\{t}
ykdk ≤ f2

⎫⎬
⎭≥β

⎫⎬
⎭ .

According to the definition of pessimistic value, it means that f1, f2 are the pes-
simistic values. By utilizing the properties of addition and multiplication, the constraints
can be rewritten as the form of pessimistic values in the objective functions, expressed as
follows:

∑
(i,j,k)∈E

xijk · (ξijk)inf(α),
∑

(i,j,k)∈E
xijk · (cijk)inf(β) +

∑
k∈M\{t}

yk · (dk)inf(β).

Based on Equation 20, the pessimistic value of an uncertain variable is the inverse func-
tion with respect to α. Hence, we can easily obtain the equivalent model. The proof is thus
completed.

Remark. In the shortest path problem, the optimal objectives are related to the con-
fidence levels α,β , i.e., if the confidence levels satisfy α1 < α2 and β1 < β2, then the
corresponding optimal objectives satisfy: min f 1 < min f ′

1 and min f 2 < min f ′
2,

because the uncertainty distributions of uncertain variables are monotone nondecreas-
ing functions. Here, f 1, f

′
1, f 2, and f ′

2 indicate the optimal objective values with α = α1,
α = α2, β = β1, and β = β2.

Corollary 4.1. Especially, suppose that ξijk , cijk , and dk are all independent zigzag uncer-
tain variables with ξijk ∼

(
ξ1ijk , ξ

2
ijk , ξ

3
ijk

)
, cijk ∼

(
c1ijk , c

2
ijk , c

3
ijk

)
, and dk ∼ (

d1k , d
2
k , d

3
k
)
,

respectively. Then, according to Theorem 4.7, we have the following crisp equivalent of the
above model. {

min g1(x), g2(x, y)

s.t. (14) ∼ (18).
(22)
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where

g1(x, y) =

⎧⎪⎨
⎪⎩

(1 − 2α)
∑

(i,j,k)∈E
ξ1ijkxijk + 2α

∑
(i,j,k)∈E

ξ2ijkxijk , if α ≤ 0.5

(2 − 2α)
∑

(i,j,k)∈E
ξ2ijkxijk + (2α − 1)

∑
(i,j,k)∈E

ξ3ijkxijk , if α > 0.5
(23)

and

g2(x, y) =
⎧⎨
⎩

(1 − 2β)r1(x, y) + 2βr2(x, y), if β ≤ 0.5

(2 − 2β)r2(x, y) + (2β − 1)r3(x, y), if β > 0.5
(24)

r1(x, y) =
∑

(i,j,k)∈E
c1ijkxijk +

∑
k∈M\{t}

d1kyk

r2(x, y) =
∑

(i,j,k)∈E
c2ijkxijk +

∑
k∈M\{t}

d2kyk (25)

r3(x, y) =
∑

(i,j,k)∈E
c3ijkxijk +

∑
k∈M\{t}

d3kyk

Numerical experiments
In this section, we give a multi-modal network which consists of 47 nodes and 87 arcs,
as shown in Figure 2, to illustrate the proposed model. There exist four modes in the
network, namely, private (mode 1), bus (mode 2), metro (mode 3), and transfer (mode
4) as we have mentioned in Section ‘Model formulations’. In a real-world situation, the
private mode will be adopted only at the origin node. That is to say, one would not enter
the private mode from other modes. So, it just generates fixed cost when entering into
the bus subnetwork and the metro subnetwork from other modes, which follow d2 ∼
Z(2, 3, 5) and d3 ∼ Z(3, 5, 9), respectively. For the convenience of calculations, we assume
that all weights on arcs are zigzag uncertain variables; the time and costs on travel arcs
and time on transfer arcs are illustrated in Tables 2 and 3, respectively.
Before starting the experiments, we first need to transform our bi-objective model

into a single-objective one. In literature, there were a variety of methods to handle the
multi-objective programming problems, such as the linear weighting method, ideal point
method, layered method, min-max method, etc. In this paper, we prefer to adopt a
constraint-based method, which chooses one objective as the main objective function
while the other objectives are transformed into constraints within the given thresholds.
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Figure 2 Multi-modal transportation network.

As for the problem of interest, the total cost will be treated as the main goal that needs
to be optimized. To produce a single-objective model, we firstly solve the model with
single-objective function g1(x), given as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g1(x)

s.t. ∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = 1, i = O,

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = 0, i �= O,D,

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = −1, i = D,

∑
k∈M\{t}

yk ≤ N

xijk , yk ∈ {0, 1},∀(i, j, k) ∈ E, k ∈ M\{t}

(26)

Assume that we obtain the optimal objective value g1(x′). Then, g1(x′) with a threshold
value δ will be regarded as upper limit to g1(x), which forms a new constraint to themodel.
In this case, the initial model can be transformed into the following single objectivemodel.
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Table 2 Time and costs on travel arcs of themulti-modal network

Arcs Arc time (ξijk ) Arc costs (cijk ) Arcs Arc time (ξijk ) Arc costs (cijk )
( 0,33,1) Z( 4, 5, 8) Z( 8, 9,12) (42,44,2) Z(1,2,5) Z(1,2,4)

(33,34,1) Z( 3, 4, 9) Z( 7, 9,14) (43,44,2) Z(2,5,6) Z(2,4,5)

(34,35,1) Z(15,17,20) Z(10,12,13) (44,45,2) Z(3,5,8) Z(2,3,5)

(35,36,1) Z(12,14,18) Z( 9,10,13) (45,46,2) Z(2,3,5) Z(2,3,6)

(36,37,1) Z(14,17,18) Z(12,14,17) (27,14,3) Z(1,3,4) Z(1,2,4)

(37,38,1) Z( 9,12,14) Z(11,14,16) (27,28,3) Z(1,2,4) Z(1,2,4)

(38,39,1) Z(22,25,27) Z(18,24,26) (14,15,3) Z(1,2,4) Z(1,3,4)

(39,46,1) Z(11,15,17) Z(11,14,16) (15,16,3) Z(2,3,5) Z(1,3,4)

( 0, 1,2) Z( 4, 7, 9) Z( 1, 3, 4) (16,17,3) Z(1,2,4) Z(1,2,5)

( 1, 2,2) Z( 3, 7, 8) Z( 2, 3, 6) (17,18,3) Z(2,3,5) Z(1,2,4)

( 1, 3,2) Z( 4, 5, 7) Z( 2, 5, 6) (28,22,3) Z(3,4,6) Z(3,4,7)

( 2, 4,2) Z( 5, 7, 8) Z( 2, 4, 5) (22,32,3) Z(4,5,7) Z(2,3,6)

( 3, 5,2) Z( 4, 7, 8) Z( 3, 6, 7) (32,19,3) Z(5,7,8) Z(4,6,7)

( 4, 6,2) Z( 2, 5, 7) Z( 1, 3, 4) (28,29,3) Z(1,2,4) Z(2,4,7)

( 5, 6,2) Z( 6, 9,10) Z( 2, 5, 6) (29,23,3) Z(1,3,4) Z(2,4,7)

( 5,13,2) Z( 3, 5, 6) Z( 2, 3, 5) (23,30,3) Z(1,2,4) Z(2,5,7)

( 3,12,2) Z( 1, 3, 4) Z( 1, 3, 4) (30,31,3) Z(2,3,5) Z(2,4,5)

(12,13,2) Z( 3, 5, 6) Z( 1, 3, 4) (31,20,3) Z(2,3,5) Z(1,2,4)

(13, 8,2) Z( 2, 5, 6) Z( 1, 4, 5) (18,19,3) Z(2,4,5) Z(1,2,4)

( 6, 7,2) Z( 2, 3, 5) Z( 1, 2, 4) (19,20,3) Z(2,3,5) Z(2,4,5)

( 8, 9,2) Z( 3, 5, 6) Z( 2, 4, 5) (20,21,3) Z(3,4,6) Z(2,3,5)

( 7, 9,2) Z( 2, 3, 6) Z( 1, 3, 4) (15,22,3) Z(2,3,5) Z(1,2,4)

( 8,10,2) Z( 1, 2, 4) Z( 1, 2, 5) (22,23,3) Z(1,2,5) Z(2,3,5)

( 9,11,2) Z( 2, 3, 5) Z( 1, 2, 4) (23,24,3) Z(1,2,4) Z(2,5,6)

(10,11,2) Z( 1, 2, 4) Z( 1, 2, 4) (24,25,3) Z(3,4,6) Z(2,5,7)

(11,40,2) Z( 4, 7, 9) Z( 1, 3, 4) (25,26,3) Z(1,2,4) Z(2,3,5)

(40,41,2) Z( 1, 3, 5) Z( 1, 2, 4) (26,21,3) Z(1,2,5) Z(1,2,4)

(41,42,2) Z( 1, 2, 4) Z( 1, 2, 4) (21,46,3) Z(1,2,4) Z(1,2,5)

(41,43,2) Z( 2, 4, 5) Z( 1, 3, 4)

Table 3 Transfer time on transfer arcs of themulti-modal network

Arcs Arc time (ξijk ) Arcs Arc time (ξijk )

(33, 1,4) Z(3, 4, 6) ( 6,15,4) Z(5, 6, 8)

(34, 3,4) Z(4, 5, 7) ( 8,16,4) Z(3, 4, 6)

(34,27,4) Z(3, 4, 6) (16, 8,4) Z(4, 6, 7)

(27, 3,4) Z(4, 6, 7) (10,31,4) Z(5, 8, 9)

( 3,27,4) Z(2, 3, 5) (31,10,4) Z(6, 7, 9)

(36,12,4) Z(4, 5, 7) ( 7,32,4) Z(8,10,11)

(35, 4,4) Z(2, 3, 5) (32, 7,4) Z(7, 8,10)

(28, 2,4) Z(2, 3, 5) (11,18,4) Z(2, 3, 5)

( 2,28,4) Z(3, 4, 6) (18,11,4) Z(2, 5, 6)

(37,29,4) Z(4, 6, 9) (20,42,4) Z(1, 2, 4)

( 5,23,4) Z(8, 9,11) (42,20,4) Z(2, 5, 6)

(23, 5,4) Z(7, 9,10) (25,44,4) Z(2, 3, 6)

(15, 6,4) Z(4, 5, 7) (44,25,4) Z(1, 2, 4)



Zhang
etal.JournalofU

ncertainty
A
nalysisand

A
pplications

 (2015) 3:8 
Page

13
of17

Table 4 Optimal solutions with different α and β (δ = 5)
Parameters Optimal objective values Shortest path

Single α = 0.6 g1(x) = 37.2 0 → 33 → 34 → 27 → 28 → 29 → 23 → 24 → 25 → 26 → 21 → 46
Objective β = 0.6 g2(x, y) = 35.8 0 → 1 → 3 → 12 → 13 → 8 → 10 → 31 → 20 → 21 → 46

Double δ = 5 g1(x) = 42.0
0 → 1 → 2 → 28 → 22 → 23 → 30 → 31 → 20 → 21 → 46Objectives g2(x, y) = 38.6

Single α = 0.7 g1(x) = 42.4 0 → 33 → 34 → 27 → 28 → 29 → 23 → 24 → 25 → 26 → 21 → 46
Objective β = 0.7 g2(x, y) = 39.6 0 → 1 → 3 → 12 → 13 → 8 → 10 → 31 → 20 → 21 → 46

Double δ = 5 g1(x) = 47.2
0 → 1 → 3 → 5 → 23 → 24 → 25 → 26 → 21 → 46Objectives g2(x, y) = 42.8

Single α = 0.8 g1(x) = 46.4 0 → 1 → 2 → 28 → 29 → 23 → 24 → 25 → 26 → 21 → 46
Objective β = 0.8 g2(x, y) = 43.4 0 → 1 → 3 → 12 → 13 → 8 → 10 → 31 → 20 → 21 → 46

Double δ = 5 g1(x) = 50.8
0 → 1 → 3 → 5 → 23 → 24 → 25 → 26 → 21 → 46Objectives g2(x, y) = 46.2

Single α = 0.9 g1(x) = 50.2 0 → 1 → 2 → 28 → 29 → 23 → 24 → 25 → 26 → 21 → 46
Objective β = 0.9 g2(x, y) = 47.2 0 → 1 → 3 → 12 → 13 → 8 → 10 → 31 → 20 → 21 → 46

Double δ = 5 g1(x) = 54.4
0 → 1 → 3 → 5 → 23 → 24 → 25 → 26 → 21 → 46

Objectives g2(x, y) = 49.6

Single α = 1.0 g1(x) = 54.0 0 → 1 → 2 → 28 → 29 → 23 → 24 → 25 → 26 → 21 → 46
Objective β = 1.0 g2(x, y) = 51.0 0 → 1 → 3 → 12 → 13 → 8 → 10 → 31 → 20 → 21 → 46

Double δ = 5 g1(x) = 59.0
0 → 1 → 3 → 5 → 23 → 30 → 31 → 20 → 21 → 46Objectives g2(x, y) = 52.0
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g2(x, y)

s.t. ∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = 1, i = O,

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = 0, i �= O,D,

∑
(i,j,k)∈E

xijk −
∑

(j,i,k)∈E
xjik = −1, i = D,

∑
k∈M\{t}

yk ≤ N

xijk , yk ∈ {0, 1},∀(i, j, k) ∈ E, k ∈ M\{t}
g1(x) ≤ g1(x′) + δ

(27)

With this method, the LINGO optimization software is employed to generate the short-
est path from origin node 0 to destination node 46 in the multi-modal network. It is noted
that α, β and δ are three parameters which will influence the optimal objective values. To
capture the corresponding relations between the parameters and the objective functions,
we shall implement two sets of experiments as follows:
(1) Optimal solutions with different α and β : As the optimal solution is closely related to

parameters α and β , we firstly use different critical values to produce the shortest paths,
with the fixed parameter δ = 5. The results are listed in Table 4, in which the confidence
levels in critical values are set as 0.6, 0.7, 0.8, 0.9, and 1.0, respectively. Figure 3 shows
the variation tendency of the optimal objectives with respect to different α and β values.
Obviously, both the objective values of g1(x) and g2(x, y) are increasing with respect to the
relevant parameters when δ is fixed. This conclusion just coincides with the Remark.
(2) Optimal solutions with different δ: The second set of experiments focus on the other

index δ. Table 5 illustrates the relationship between the optimal objectives and different
δ values, in which α and β are all set as 0.9. When we depict the results in Figure 4, we
can find that the optimal objectives will not change any more when δ is set to be not less
than 7; moreover, the optimal objective value of g2(x, y) is decreasing with respect to the
increase of δ, while g1(x) varies with an opposite tendency. When the objective value of

Figure 3 Objective values with different α and β (δ = 5).
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Table 5 Optimal solutions with different δ (α = 0.9, β = 0.9)
δ Objective values

1 g1(x) = 50.2

g2(x, y) = 55.2

2 g1(x) = 51.4

g2(x, y) = 54.2

3 g1(x) = 51.4

g2(x, y) = 54.2

4 g1(x) = 54.0

g2(x, y) = 52.4

5 g1(x) = 54.4

g2(x, y) = 49.6

6 g1(x) = 55.6

g2(x, y) = 48.6

7 g1(x) = 56.8

g2(x, y) = 47.2

8 g1(x) = 56.8

g2(x, y) = 47.2

9 g1(x) = 56.8

g2(x, y) = 47.2

10 g1(x) = 56.8

g2(x, y) = 47.2

11 g1(x) = 56.8

g2(x, y) = 47.2

12 g1(x) = 56.8

g2(x, y) = 47.2

g2(x, y) reaches 47.2, which is the optimal objective when g2(x, y) is treated as the single
objective, the figure will not change any more.

Conclusions
Uncertainty theory is a branch of mathematics to study the characteristics of nondeter-
ministic phenomenon. In this paper, we applied uncertainty theory to investigating the
multi-modal shortest path problem in which the arc time and arc costs are represented

Figure 4 Objective values with different δ (α = 0.9, β = 0.9).
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by uncertain variables. Considering two objectives, which are to minimize the total travel
time and travel costs, we formulated a chance-constrained programming model for the
problem of interest. For handling convenience, the model was then transformed into its
deterministic crisp equivalent. Additionally, the bi-objective model was simplified into a
single objective model by converting one objective function into a new constraint with
the given threshold. Finally, the results of the numerical experiments deriving from the
LINGO software demonstrated the performance of the proposed approaches. Actually,
multi-modal shortest path problems have been widely solved by the label-setting algo-
rithm [35], label-correcting algorithm [25], and genetic algorithm [36,37], which can also
be considered in our further studies.
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