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Abstract

Project scheduling with uncertain durations becomes a research focus with the
development of uncertainty theory. Most researches concerned aim at minimizing
project makespan or project cost according to different decision criterions. However,
few works considered resource constraint, which initially appeared in deterministic
resource-constrained project scheduling problem (RCPSP) and reflects the reality of a
project. In this paper, RCPSP with uncertain activity durations, or uncertain RCPSP
(URCPSP), is explored. Our aim is to minimize project makespan with certain belief
degree. A corresponding uncertain model is built based on chance-constrained
programming. To solve the model, a hybrid intelligent algorithm integrating genetic
algorithm and an uncertain serial schedule generation scheme is designed and tested
in some numerical examples. This work may provide some advices for the risk-averse
project manager.
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Introduction
Project scheduling is to assign activity starting times according to scheduling objectives,
such as minimal project makespan and minimal project cost [1]. The problem can be
divided into many subproblems, including resource-constrained project scheduling prob-
lem (RCPSP), resource leveling problem (RLP), and time-cost trade-off problem (TCTP).
As a basic project scheduling problem, RCPSP has been a research focus since Pritsker
et al. [2] proposed a mathematical model. The problem aims at minimization of the
makespan with consideration of precedence and resource constraints [3]. Researches in
the early phase were done with the assumptions of complete information and deter-
ministic environment. For a given project, a baseline schedule, a list of activity starting
times, can be obtained by solving deterministic RCPSP. However, the baseline schedule
is vulnerable when being executed in an indeterminate environment. In reality, there are
considerable indeterminacies (accident, resource breakdown, unreliable deliveries, etc.),
which may result in an infeasible baseline schedule. Hence, it is necessary to consider
indeterminate factors when solving a project scheduling problem.
In Herroelen and Leus [4], five directions were distinguished for project scheduling in

an indeterminate environment: reactive scheduling, stochastic project scheduling, fuzzy
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project scheduling, robust project scheduling, and sensitivity analysis. The stochastic
resource-constrained project scheduling problem (SRCPSP), the main context of stochas-
tic project scheduling, is characterized by random activity durations and scheduling
policy. Activity durations are assumed to be random variables, and a scheduling policy is
used to decide which activities to be started at decision points (the starting time of the
project and the finishing times of activities) [5]. Generally, the SRCPSP aims at minimiz-
ing the expected makespan by making a limited set of decisions during project execution
[6]. For more details about SRCPSP, readers may refer to [7–13].
In SRCPSP, activity durations are represented by random variables. The assumption is

reasonable when there is enough historical data to precisely estimate variables’ probabil-
ity distributions. However, it is difficult to get enough historical data for activities seldom
or never executed. This situation is common with the consideration of the uniqueness
of the project. Therefore, new theories instead of probability theory are needed to solve
problems with such variables [14]. One optional theory is uncertainty theory, initiated by
Liu [15] and refined by Liu [16]. For now, the new theory has been successfully applied
to the following fields: option pricing problem [17], variation analysis [18], shortest
path problem [19], facility location problem [20], uncertain process [21], stock problem
[22, 23], inventory problem [24, 25], assignment problem [26], newboy problem [27],
production control problem [28, 29], supply chain pricing problem [30], and uncertain
random process [31]. In the field of project scheduling, some important researches were
also done. Zhang and Chen [32] proposed an expected makespan minimization model
for project scheduling problem with uncertain durations and total cost chance constraint.
Ding and Zhu [33] established a multi-objective pessimistic value model and time range
measure optimization model for uncertain project scheduling based on different man-
agement requirements. Ji and Yao [34] explored a project scheduling problem where both
the duration times and the resource allocation times are uncertain variables. A multi-
objective model was obtained to minimize the total cost and the overtime. Ke et al. [35]
researched project scheduling problem in the environment with uncertainty and random-
ness. An uncertain random expected cost minimization model was built and solved by a
hybrid intelligent algorithm.
As far as we know, few researches pay attention to project scheduling problem with

uncertain activity durations as well as resource constraint. In fact, resource constraint is
common as resources in project execution are always limited. Additionally, most litera-
ture concerning uncertain project scheduling aims at minimizing the expected makespan
and ignores the reliability of the optimal expected makespan. Therefore, the project
scheduling problem in this paper possesses three characteristics simultaneously: uncer-
tain activity durations, resource constraints, and belief degree for the objective value.
In detail, an uncertain model based on chance-constrained programming instead of
expected value model is proposed to minimize project makespan with some belief degree,
which is applicable to the risk-averse decision-maker who wants to realize the project
schedule with a pretty high belief degree.
The reminder of this paper is as follows: the “Preliminaries” section introduces some

basic concepts in uncertainty theory. The “Formulations and Models” section describes
RCPSP with uncertain activity durations, or uncertain RCPSP (URCPSP), in detail and
proposes a corresponding chance-constrained model to satisfy the demands of risk
averter. Furthermore, we transform the proposed model into a crisp programming
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model. To solve the model, a genetic algorithm is designed in the “GA-based Algo-
rithms” section. The “Numerical Examples” section conducts some numerical examples.
Finally, conclusions are drawn in the “Conclusion” section.

Preliminaries
As a branch of axiomatic mathematics, uncertainty theory has been well developed in
many real problems. In this section, some basic concepts and theorems in uncertainty
theory are introduced.
Let � be a nonempty set, L a σ -algebra over �, and each element � in L is called an

event. Uncertain measure M, initiated by Liu [15] and refined by Liu [16], is a function
from L to [ 0, 1]. It is defined over the following four axioms.

Axiom 1. (Normality axiom)M{�} = 1.

Axiom 2. (Duality axiom)M{�} + M{�c} = 1 for any event �.

Axiom 3. (Subadditivity axiom) For every countable sequence of events {�i},
i = 1, 2, · · · , we have:

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

Axiom 4. (Product measure axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for
k = 1, 2, · · · The product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

Ak

}
=

∞∧
k=1

Mk{Ak}

where Ak are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Definition 1. [15] An uncertain variable is ameasurable function ξ from an uncertainty
space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ �
∣∣ ξ(γ ) ∈ B}

is an event.

The uncertainty distribution is indispensable to establish practical uncertain optimiza-
tion models.

Definition 2. [15] The uncertainty distribution � of an uncertain variable ξ is defined
by

�(x) = M{ξ ≤ x}
for any real number x.

An uncertainty distribution � is confirmed to be regular if its inverse function �−1(α)

exists uniquely for each α ∈[ 0, 1].
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Definition 3. [15] Let ξ be an uncertain variable. The expected value of ξ is defined by

E[ ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the above two integrals is finite.

Lemma 1. [16] Let ξ be an uncertain variable with uncertainty distribution �. If the
expected value exists, then

E[ ξ ]=
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx.

Lemma 2. [16] Let ξ be an uncertain variable with regular uncertainty distribution �.
If the expected value exists, then

E[ ξ ]=
∫ 1

0
�−1(α)dα.

Lemma 3. [16] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular
uncertainty distributions �1,�2, · · · ,�n, respectively. A function f (x1, x2, · · · , xn) is
strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn. Then ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse
uncertainty distribution

	−1(α) = f (�−1
1 (α), · · · ,�−1

m (α),�−1
m+1(1 − α), · · · ,�−1

n (1 − α)).

Formulations andModels
Problem Description

A project containing n activities can be described by an activity-on-the-node network
G(N ,A) as shown in Fig. 1. The set of nodes N = {1, 2, · · · , n} represents activi-
ties, and the set of arcs A denotes finish-start, zero-lag precedence relations between
activities. Activities 1 and n are dummy activities as they do not consume time and
resource and only signify the project starting point and finishing point, respectively.
Specially, durations of all activities in URCPSP are represented by an uncertain vector
d= {0, d̃2, · · · , d̃n−1, 0}. Moreover, there are totally K types of renewable resources, and
each of them has a constant availability ak , k = 1, 2, · · · ,K .
The URCPSP aims at minimizing the project makespan with uncertain activity dura-

tions. Solving URCPSP is a dynamic decision process. Themanager decides to start which

Fig. 1 Project scheduling
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feasible activity at each decision point, including project starting time and activity finish-
ing times. In the decision process, the manager can only utilize partial information which
appears before his decision point. This process will be simulated in our algorithm.

Chance-Constrained Model

The URCPSP aims at minimizing the project makespan, namely sn, the starting time
of activity n. Most literature concerned aimed at minimizing the expected makespan and
ignored the reliability of the optimal expected makespan [36]. Actually, the optimal value
of the expected model can be realized with a belief degree of about 0.5 in most cases.
In other words, the realized makespan is larger than the expected one with a pretty high
belief degree. This is unacceptable for a risk averter. Moreover, the risk preference of a
decision maker may also vary in an uncertain environment. To satisfy the demand of
the risk-averse decision maker, an uncertain model based on the philosophy of chance-
constrained programming [37] is proposed as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min s̄n
subject to:
M{sn ≤ s̄n} ≥ α0

si + di ≤ sj, ∀(i, j) ∈ A∑
i∈Pt rik ≤ ak , k = 1, 2, · · · , K , Pt = {i | si < t ≤ si + di}

where α0 is a confidence level.
In the above model, the objective function is to minimize the makespan with belief

degree α0, enforced in the first constraint. The second constraint ensures the earliest
starting time of activity j to be larger than the finishing time of its predecessor activity i.
The third constraint guarantees that the resource demand for each resource type is always
below its availability. Specifically, Pt represents the set of underway activities at time t, rik
is the demand of activity i for resource k, and ak is the availability of resource k.
Activity durations are uncertain variables. As a result, the finishing time of each activity

is changeable.With a given activity listAL, an executing order of activities, f̃i, the finishing
time of activity i, can be calculated as follows: f̃i(AL) = si + d̃i.
Without resource constraint, the starting time of activity i can be computed considering

precedence relation as follows:

si(AL) = max
(j,i)∈A

f̃j(AL).

However, the formula cannot hold with resource constraint. Some activity is feasible
in precedence relation logic if all of its predecessors have been finished, while it may be
infeasible for lacking available resource. In other words, an activity has predecessors in a
precedence relation logic as well as in resource logic. To produce a feasible schedule for a
resource-constrained project scheduling problem effectively, a resource flow network was
presented by Artigues and Roubellatp [38]. If there is a resource flow, an extra relation
is added into the original network between activities without precedence relation. Thus,
an extended precedence relation set A∗ is developed. Combined with the side constraint
proposed by Ma et al. [39], the starting time of activity i can be calculated by

si(AL) = max
ALm<ALi

sm(AL) ∨ max
(j,i)∈A∗ f̃j(AL).

where ALi is the position of activity i in activity list AL.
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Provided that the duration of activity i has a regular distribution �i(x) and an inverse
uncertainty distribution �−1

i (α), α ∈ (0, 1], and si(AL) has an inverse uncertainty
distribution 	−1

i (AL,α), α ∈ (0, 1], we can get

	−1
n (AL,α) = max

ALm<ALn
	−1

m (AL,α) ∨ max
(j,n)∈A∗

(
	−1

j (AL,α) + �−1
j (α)

)
.

Accordingly, the uncertain model can be transformed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
min	−1

n (AL,α0)

subject to:
si + di ≤ sj, ∀(i, j) ∈ A∑

i∈Pt rik ≤ ak , k = 1, 2, · · · ,K , Pt = {i | si ≤ t < si + di}.

GA-based Algorithms
Deterministic RCPSP is an NP-hard problem. Actually, the exact branch-and-bound algo-
rithm cannot solve no less than 15, 65, and 96.5 % of instances with 20, 30, and 60
activities, respectively [10]. Therefore, URCPSP, an extension of RCPSP, needs to be
solved by heuristic ormeta-heuristic algorithm. In this section, a hybrid intelligent heuris-
tic algorithm is designed by integrating an uncertain serial SGS (US-SGS), proposed by
Ma et al. [39], with Genetic Algorithm (GA).

Uncertain Serial SGS for α-Value

As discussed by Kolish and Hartmann [40], there are several types of feasible solution
representations for project scheduling. For URCPSP in this paper, we choose the solution
representation activity list AL, which represents the executing order of activities. As solv-
ing URCPSP is a dynamic process, the durations of unexecuted activities are unknown.
Only after the entire process, all the activity durations can be obtained. The schedule
generation scheme (SGS) for a deterministic project problem may become infeasible for
uncertain cases. A former work by Ma et al. [39] designed an US-SGS for uncertain
RCPSP. Compared with the serial SGS, a side constraint is added as follows:

si(AL) ≤ max
ALm<ALi

(
sm(AL)

)
where ALi is the position of activity i in AL. The US-SGS can be described as follows:
0: Given a network G(N ,A). AL:= activity list; d:= duration time; W := underway activity
set; U := unexecuted activity set; S:= starting time; F := finishing time; T := time point;
num:= number of the activities.
1: W = ∅, U = [ 1, 2, · · · , num] , F = [ inf , inf , · · · , inf ] , S = [ 0, 0, · · · , 0], d =
(0,�−1

2 (α),�−1
3 (α), · · · ,�−1

num−1(α), 0)
2: im = 1, T = 0
3: While is empty (U) = 0
4: SALim = max

i<im
SALi ∨ max

(j,ALim)∈A
Fj

5: if
∑
i∈W

rik + rimk ≤ ak , k = 1, 2 · · · K & SALim ≤ T

6: F(ALim) = T + d(ALim)

7: Put ALim intoW
8: im = im + 1
9: else
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10: T = min
i∈W (F(i))

11: Take out i fromW and U if: F(i)i∈W ≤ T
12: end
13: end
14: Return Snum.

Hybrid Intelligent Algorithm

The US-SGS is embedded into GA in this subsection. The outline of the hybrid intelligent
algorithm can be described as follows: first, pop-size solutions are generated randomly
as the initial population. Each solution is an activity list, where one activity can only be
assigned if all of its precedences have been finished. Second, crossover is performed on
the population. Single-point crossover is adopted, and the point is randomly generated.
The left part of a child comes from one parent and the right part consists of those remain-
ing activities from another parent by removing activities contained in the left part. In
this way, precedence relations are still satisfied. Then mutation is operated to keep the
population diversity. A position in solution is chosen randomly as the mutation point.
Mutation is realized by changing activity in this position with another activity if prece-
dence relations are still satisfied after the change. Next, the US-SGS is utilized to evaluate
each solution. The objective value of each solution is the realized makespan. Then wheel
selection is employed to choose the population of the next generation according to objec-
tive values. After a certain number of generations, the solution with the best fitness value
is reported as the quasi-optimal solution.

Numerical Examples
In this section, a project with 32 activities and four renewable resources is taken as an
example. Some specific information about the project is shown in Table 1, including
activity durations, resource requirements, and successors. All the activity durations are
assumed to be uncertain variables and described by uncertainty distributions estimated
by experts.
If the manager wants to realize the objective value with confidence level 0.9, the chance-

constrained model can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min ¯s32
subject to:
M{s32 ≤ ¯s32} ≥ 0.9
si + di ≤ sj, ∀(i, j) ∈ A∑

i∈Pt rik ≤ ak , k = 1, 2, 3, 4, Pt = {i | si < t ≤ si + di}.
The hybrid intelligent algorithm runs ten times with 1000 generations for belief degrees

0.8, 0.85, 0.9, 0.95, and 1, respectively. The quasi-optimal solutions, α0-values, are pro-
vided in Table 2. The result may help a project manager from the following two aspects:
first, the project manager can set the project deadline according to a specific request
(belief degree); second, a given belief degree corresponds with an optimal schedule.

Conclusion
In reality, the environment for project execution is full of uncertainties. Considering

the uniqueness of a project, it is common that activities are seldom or have never been
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Table 1 Project information

Activity Duration R1 R2 R3 R4 Successors

1 0 0 0 0 0 2, 3, 4

2 Z(5, 7, 8) 5 4 0 5 8, 10, 13

3 Z(7, 9, 10) 4 6 5 7 5, 9, 19

4 L(1, 3) 7 1 4 1 6, 16, 17

5 Z(1, 3, 4) 2 0 10 1 10, 18, 31

6 L(8, 10) 8 4 5 8 7, 22

7 Z(7, 8, 10) 0 7 0 7 28

8 Z(1, 3, 4) 7 8 5 1 11, 12

9 L(1, 3) 0 6 4 1 14, 27

10 Z(8, 10, 11) 2 0 0 8 30

11 L(7, 10) 8 8 6 7 24

12 Z(8, 10, 11) 4 2 2 8 15, 21

13 Z(1, 3, 4) 9 1 10 1 17

14 L(1, 3) 7 0 7 1 20

15 Z(3, 5, 6) 0 4 0 3 30

16 L(2, 4) 0 0 7 2 25

17 Z(7, 9, 11) 9 5 10 7 21

18 Z(6, 8, 9) 2 0 10 6 29

19 Z(2, 4, 5) 1 9 0 2 20, 23, 24

20 Z(7, 10, 11) 0 8 5 7 21

21 L(4, 6) 4 8 3 4 28

22 Z(2, 4, 5) 4 0 0 2 26

23 L(3, 5) 4 5 9 3 26

24 Z(3, 5, 6) 7 6 1 3 25, 29

25 L(6, 8) 4 6 7 6 30

26 Z(4, 5, 7) 3 9 9 4 28

27 L(1, 3) 0 8 9 1 31

28 Z(2, 3, 5) 0 8 9 2 31

29 Z(1, 2, 4) 0 0 4 1 32

30 Z(5, 6, 8) 7 0 8 5 32

31 Z(4, 6, 7) 1 0 8 4 32

32 0 0 0 0 0

Note: Activities 1 and 32 are dummy activities, and the limits of the four resources are (33, 23, 24, 27)

Table 2 The quasi-optimal solutions under different confidence levels

α0 Quasi-optimal schedule α0-value

0.8
1,4,2,3,6,8,19,5,11,7,22,9,13,23,14,12,20,17,

48
26,24,16,10,21,27,25,18,15,28,30,31,29,32

0.85
1,3,4,2,6,8,16,19,5,12,11,13,7,9,14,23,17,20,

49.3
15,24,22,18,10,26,25,21,27,28,29,30,31,32

0.9
1,2,3,4,6,8,19,5,13,7,9,23,22,14,27,12,16,11,

50.2
17,20,24,26,10,21,25,15,18,28,30,31,29,32

0.95
1,4,2,3,6,8,5,19,11,13,12,9,23,7,14,17,18,20,

50.9
15,22,24,10,16,26,21,25,28,27,29,30,31,32

1
1,2,4,3,6,16,8,19,5,12,11,13,9,7,14,23,18,20,

52
15,22,17,24,10,25,26,21,27,28,29,30,31,32
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executed before. As a result, it is difficult to describe activity durations by probability
distributions for the lack of historical data. This paper considered a project scheduling
problem with uncertain durations and resource constraints. To satisfy the demand of the
risk-averse decision maker, an uncertain model was built based on chance-constrained
programming. We utilized a special SGS for our problem called US-SGS and added it
into the genetic algorithm. Furthermore, some numerical examples were solved with our
model and algorithm. We hope our work may provide some references for the risk-averse
decision maker.
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