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Abstract
Uncertain differential equations have been widely applied to many fields especially to
uncertain finance. Unfortunately, we cannot always get the analytic solution of
uncertain differential equations. Early researchers have put up a numerical method
based on the Euler method. This paper designs a new numerical method for solving
uncertain differential equations via the widely-used Runge-Kutta method. Some
examples are given to illustrate the effectiveness of the Runge-Kutta method when
calculating the uncertainty distribution, expected value, extreme value, and time
integral of solution of uncertain differential equations.
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Introduction
In real research programs, there are many new problems which lack empirical data.
In these situations, we cannot obtain the probability distribution of the variables, and
instead, we usually invite several experts to give their “belief degree” that each event will
occur. The belief degree has a larger variance than the real probability because human
beings usually overweight unlikely events (Kahneman and Tversky [1]) and human beings
usually estimate a much wider range of values than the object actually takes (Liu [2]).
In order to deal with these problems, Liu [3] put up the uncertainty theory in 2007 and
refined [4] it in 2010. Nowadays, the uncertainty theory has become a new branch of
mathematics for modeling nondeterministic phenomena.
Liu [5] proposed the concept of canonical Liu process in 2009. The canonical Liu pro-

cess is a process with stationary and independent increments, and its every increment is a
normal uncertain variable. It begins with time 0 and almost all sample paths are Lipschitz-
continuous. Based on canonical Liu process, Liu [5] developed uncertain calculus to deal
with differentiation and integration of an uncertain process. The concept of uncertain dif-
ferential equations was proposed by Liu [6] in 2008. Uncertain differential equations have
been widely applied in many fields such as uncertain finance (Liu [7], Yao [8]), uncertain
optimal control (Zhu [9]), and uncertain differential game (Yang and Gao [10]).
The existence and uniqueness of an uncertain differential equation was studied by

Chen and Liu [11] in 2010. An uncertain differential equation has a unique solution if its
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coefficients satisfy Lipschitz condition and linear growth condition. The definition of sta-
bility was given by Liu [5] in 2009. After that, Yao et al. [12] gave a sufficient condition
for stability. An uncertain differential equation is stable if its coefficients satisfy the linear
growth condition and the strong Lipschitz condition. Furthermore, Yao et al. [13] gave
the concept of stability in mean for an uncertain differential equation and proved the suf-
ficient and necessary condition for the linear uncertain differential equation being stable
in mean. Based on those works, other types of stability were extended, like that, stability
in moment (Sheng and Wang [14]), almost sure stability (Liu et al. [15]), and exponential
stability (Sheng and Gao [16]).
Chen and Liu [11] figured out the analytic solution of the linear uncertain differential

equation. Liu [17] and Yao [18] considered a spectrum of analytic methods to solve some
special classes of nonlinear uncertain differential equations. Unfortunately, we cannot
obtain the analytic solution of every uncertain differential equation. Then, it is sufficient
to obtain the numerical results inmost situations. Yao and Chen [19] found a way to trans-
fer uncertain differential equations into a spectrum of ordinary differential equations.
They put up a Yao-Chen formula to calculate the inverse distribution of solution at a given
time. Based on the Yao-Chen formula, a numerical method was designed for giving the
solution to uncertain differential equations via the Euler method. Yao [20] also studied
the extreme value, first hitting time and time integral of solution of uncertain differential
equations.
The Runge-kutta method is wide-used in solving ordinary differential equations, and

it is more accurate than the Euler method. In this paper, we will present a way to
solve uncertain differential equations with the Runge-Kutta method. The rest of the
paper is organized as follows. The “Preliminaries” section presents some basic concepts
and properties in uncertainty theory, including uncertain calculus, uncertain differen-
tial equations, and α-path. The “Runge-Kutta Method” section shows a new numerical
method using the Runge-Kuttamethod. The “Numerical Experiments” section gives some
numerical experiments to illustrate the new method and to calculate the uncertainty dis-
tribution, expected value, extreme value, and time integral of solution of the uncertain
differential equation.

Preliminaries
Let L be a σ -algebra on a nonempty set �. A set function M : L →[ 0, 1] is called an
uncertain measure if it satisfies the following axioms:

Axiom 1. (Normality Axiom)M{�} = 1 for the universal set �;
Axiom 2. (Duality Axiom)M{�} + M{�c} = 1 for any event �;
Axiom 3. (Subadditivity Axiom) For every countable sequence of events �1,�2,. . . ,

we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

The triplet (�,L,M) is called an uncertainty space. Besides, Liu [5] defined the prod-
uct uncertain measure on the product σ -algebra L as follows in order to provide the
operational law,
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Axiom 4. (Product Axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, . . . . The
product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.

An uncertain process is essentially a sequence of uncertain variables indexed by time.
The study of the uncertain process was started by Liu [6] in 2008.

Definition 2.1. (Liu [6]) Let T be a totally ordered set (e.g., time), and let (�,L,M) be
an uncertainty space. An uncertain process is a function Xt(γ ) from T × (�,L,M) to the
set of real numbers such that {Xt ∈ B} is an event for any Borel set B of real numbers at
each time t.

An uncertain process Xt is said to have independent increments if

Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtk − Xtk−1

are independent uncertain variables where t0 is the initial time and t1, t2, . . ., tk are any
times with t0 < t1 < . . . < tk . An uncertain process Xt is said to have stationary incre-
ments if, for any given t > 0, the incrementsXs+t−Xs are identically distributed uncertain
variables for all s > 0.

Definition 2.2. (Liu [5]) An uncertain process Ct is said to be a canonical Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous;
(ii) Ct has stationary and independent increments;
(iii) every increment Cs+t − Cs is a normal uncertain variable with uncertainty

distribution

�(x) =
(
1 + exp

(−πx√
3t

))−1
, x ∈ �.

Definition 2.3. (Liu [5]) Let Xt be an uncertain process and let Ct be a canonical Liu
process. For any partition of closed interval [ a, b] with a = t1 < t2 < . . . < tk+1 = b, the
mesh is written as

	 = max
1≤i≤k

|ti+1 − ti|.

Then Liu integral of Xt with respect to Ct is defined as

∫ b

a
XtdCt = lim

	→0

k∑
i=1

Xti · (
Cti+1 − Cti

)

provided that the limit exists almost surely and is finite. In this case, the uncertain process
Xt is said to be integrable.
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Definition 2.4. (Chen and Ralescu [21]) Let Zt be an uncertain process and let Ct be a
canonical Liu process. If there exist two uncertain processes μt and σt such that

Zt = Z0 +
∫ t

0
μsds +

∫ t

0
σsdCs, ∀t ≥ 0.

Then Zt is called a Liu process with drift μt and diffusion σt . Furthermore, Zt has an
uncertain differential

dZt = μtdt + σtdCt .

Theorem 2.1. (Liu [5]) Let h(t, c) be a continuously differentiable function. Then Zt =
h (t,Ct) is a Liu process and has an uncertain differential

dZt = ∂h
∂t

(t,Ct) dt + ∂h
∂c

(t,Ct) dCt .

Definition 2.5. (Liu [6]) Suppose Ct is a canonical Liu process, and f and g are some
given functions. Then

dXt = f (t,Xt) dt + g (t,Xt) dCt

is called an uncertain differential equation. A solution is a Liu process Xt that satisfies the
above equation identically in t.

The existence and uniqueness theorem of solution of the uncertain differential equation
was proved by Chen and Liu [11] under linear growth condition and Lipschitz continuous
condition. More importantly, Yao and Chen [19] proved that the solution of an uncertain
differential equation can be represented by a spectrum of ordinary differential equations.

Definition 2.6. (Yao and Chen [19]) Let α be a number with 0 < α < 1. An uncertain
differential equation

dXt = f (t,Xt) dt + g (t,Xt) dCt

is said to have an α-path Xα
t if it solves the corresponding ordinary differential equation

dXα
t = f

(
t,Xα

t
)
dt + ∣∣g (

t,Xα
t
)∣∣�−1(α)dt

where �−1(α) is the inverse uncertainty distribution of standard normal uncertain
variable, i.e.,

�−1(α) =
√
3

π
ln

α

1 − α
.

Theorem 2.2. (Yao-Chen Formula [19]) Let Xt and Xα
t be the solution and α-path of the

uncertain differential equation

dXt = f (t,Xt) dt + g (t,Xt) dCt .

Then

M
{
Xt ≤ Xα

t , ∀t} = α, M
{
Xt > Xα

t , ∀t} = 1 − α.
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Theorem 2.3. (Yao and Chen [19]) Let Xt and Xα
t be the solution and α-path of the

uncertain differential equation

dXt = f (t,Xt) dt + g (t,Xt) dCt .

Then the solution Xt has an inverse uncertainty distribution,

�−1
t (α) = Xα

t .

Runge-Kutta Method
Runge-Kutta method is an efficient method for solving ordinary differential equations.
The widely used Runge-Kutta formula is a fourth-order formula. What we must notice
is that there are many different fourth-order schemes and we just present one common
form here. For an ordinary differential equation with initial value X0

dXt = F (t,Xt) dt,

the method uses the following formula

X (tn+1) = X (tn) + 1
6

(k1 + 2k2 + 2k3 + k4)

where the ki are

k1 = hF (tn,Xn) ,

k2 = hF
(
tn + 1

2
h,Xn + 1

2
hk1

)
,

k3 = hF
(
tn + 1

2
h,Xn + 1

2
hk2

)
,

k4 = hF (tn + h,Xn + hk3) ,

and tn = nh. The step size h has been assumed to be constant for all steps.
Based on Theorem 2.2, we can design a Runge-Kutta method for uncertain differential

equations. For an uncertain differential equation with initial value X0,

dXt = f (t,Xt) dt + g (t,Xt) dCt

and its α-path equations

dXα
t = f

(
t,Xα

t
)
dt + ∣∣g (

t,Xα
t
)∣∣�−1(α)dt,

we can solve it with the method given below.

Step 0: Fix a time s, an interation number N and a step length h = s/N . Set α = 0 and
i = 0.

Step 1: Set α ← α + 0.01.
Step 2: Solve the corresponding ordinary differential equation

dXα
t = f

(
t,Xα

t
)
dt + ∣∣g (

t,Xα
t
)∣∣�−1(α)dt, Xα

0 = X0

with the Runge-Kutta method as follows

Xα
i+1 = Xα

i + 1
6

(k1 + 2k2 + 2k3 + k4)
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where the kj, j = 1, 2, 3, 4 are

k1 = h
(
f
(
ti,Xα

i
) + ∣∣g (

ti,Xα
i
)∣∣�−1(α)

)
,

k2 = h
(
f
(
ti + 1

2
h,Xα

i + 1
2
hk1

)
+

∣∣∣∣g
(
ti + 1

2
h,Xα

i + 1
2
hk1

)∣∣∣∣�−1(α)

)
,

k3 = h
(
f
(
ti + 1

2
h,Xα

i + 1
2
hk2

)
+

∣∣∣∣g
(
ti + 1

2
h,Xα

i + 1
2
hk2

)∣∣∣∣�−1(α)

)
,

k4 = h
(
f
(
ti + h,Xα

i + hk3
) + ∣∣g (

ti + h,Xα
i + hk3

)∣∣ �−1(α)
)
.

Step 3: Set i ← i + 1.
Step 4: Repeat Step 2 and Step 3 for N times, then we can obtain the Xα

s . Go back to
Step 1 until α = 0.99.

Then we can get the Xα
s for every α, that is, we have a 99-table:
α 0.01 0.02 . . . 0.99
Xα
s X0.01

s X0.02
s . . . X0.99

s
According to Theorem 2.3, we have figured out the corresponding Xα

s which satisfies
M

{
Xs ≤ Xα

s
} = α. Then we obtain the inverse uncertainty distribution of Xs.

Numerical Experiments
Based on the Runge-Kutta method, we will give some numerical experiments to calculate
uncertainty distribution, expected value, extreme value and time integral of solution of
uncertain differential equation.

Runge-Kutta Method for Uncertainty Distribution of Solution

For linear uncertain differential equation, Chen and Liu [11] proved an analytic solu-
tion. Let u1t ,u2t , v1t , v2t be integrable uncertain processes. Then the uncertain differential
equation

dXt = (u1tXt + u2t) dt + (v1tXt + v2t) dCt

has a solution

Xt = Ut

(
X0 +

∫ t

0

u2s
Us

ds +
∫ t

0

v2s
Us

dCs

)

where

Ut = exp
(∫ t

0
u1sds +

∫ t

0
v1sdCs

)
.

We use Runge-Kutta method and method to solve the same linear uncertain differential
equation and compare their accuracy.

Example 4.1. Consider the following linear uncertain differential equation

dXt = (m − aXt) dt + σdCt , X0 = 0, σ > 0 (1)

and its α-path equation

dXα
t = (

m − aXα
t + σ�−1(α)

)
dt.
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The analytic solution of Eq. (1) is

Xt = m
a

(1 − exp(−at)) + σ exp(−at)
∫ t

0
exp(as)dCs,

and the inverse uncertainty distribution of Xt is

�−1
t (α) =

(m
a

+ σ

a
�−1(α)

)
(1 − exp(−at)).

We choose the parameters as follows, m = 5, a = 1, σ = 2, X0 = 0, t = 1,N = 100.
The curves are shown in Figs. 1 and 2. Figure 2 is in an enlarged view of Fig. 1.
We add up the errors between the analytic solution and solutions of the two methods

at the 99 points, the error of Runge-Kutta method is 0.9054, the errors of Euler method is
0.9146. We can see the error of Runge-Kutta method is less than the Euler method.

Example 4.2. Consider the following linear uncertain differential equation

dXt = uXtdt + vXtdCt , X0 = 1 (2)

and its α-path is

dXα
t =

(
uXα

t + |vXα
t |�−1(α)

)
dt.

The analytic solution of Eq. (2) is

Xt = X0 exp (ut + vCt) ,

and the inverse uncertainty distribution of Xt is

�−1
t (α) = X0 exp

(
ut + v�−1(α)

)
.

We choose the parameters as follows, u = 0.1, v = 1.25,X0 = 1, t = 1,N = 100. The
curves are shown in Figs. 3 and 4. The error of Runge-Kutta method is 3.6784, the errors
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Fig. 1 The uncertainty distribution cure of Example 4.1
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Fig. 2 An enlarged view of the uncertainty distribution cure of Example 4.1

of Euler method is 3.7146. We can see the error of Runge-Kutta method is less than the
Euler method too.

Example 4.3. Let a be a real number. Consider a nonlinear uncertain differential
equation

dXt = a − Xt
1 − t

dt + dCt , 0 ≤ t < 1 (3)

with given initial value X0 = 1.

The α-path of Eq. (3) is

dXα
t =

(
a − Xα

t
1 − t

+ �−1(α)

)
dt.

Set a = 2, t = 0.9 and N = 1, 000. The result is shown Fig. 5. And we can get that the
expected value of solution is E [Xt] = 1.6933.

Fig. 3 The uncertainty distribution cure of Example 4.2
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Fig. 4 An enlarged view of the uncertainty distribution cure of Example 4.2

Runge-Kutta Method for Extreme Value of Solution

Based on Yao-Chen formula, Yao [20] gave a formula to calculate extreme value of solu-
tion of an uncertain differential equation. Let Xt and Xα

t be the solution and α-path of the
uncertain differential equation

dXt = f (t,Xt) dt + g (t,Xt) dCt .

Then for any time s > 0 and strictly increasing (decreasing) function J(x), the
supremum

sup
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

�−1
s (α) = sup

0≤t≤s
J
(
Xα
t
) (

�−1
s (α) = sup

0≤t≤s
J
(
X1−α
t

))
;

Fig. 5 The uncertainty distribution cure of Example 4.3
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and the infimum

inf
0≤t≤s

J(Xt)

has an inverse uncertainty distribution

�−1
s (α) = inf

0≤t≤s
J
(
Xα
t
) (

�−1
s (α) = inf

0≤t≤s
J
(
X1−α
t

))
.

Example 4.4. We continue the Example 4.3. Consider the supremum

sup
0≤t≤s

exp(−rt)(Xt − K)

where r and K are real numbers.

The inverse uncertainty distribution of Equation of (4.4) is

�−1
s (α) = sup

0≤t≤s
exp(−rt)

(
Xα
t − K

)

for given times s > 0. We choose the parameters r = 0.02 and K = 1. Based on Runge-
Kutta method, the uncertainty distribution of extreme value at s = 0.9 is shown in Fig. 6.
And we can get

E
[
sup
0≤t≤s

exp(−rt)(Xt − K)

]
= 0.7936.

Runge-Kutta Method for Time Integral of Solution

Based on Yao-Chen formula, Yao [20] gave a formula to calculate time integral of solution
of an uncertain differential equation. Let Xt and Xα

t be the solution and α-path of the
uncertain differential equation

dXt = f (t,Xt) dt + g (t,Xt) dCt .

Fig. 6 The uncertainty distribution cure of extreme value at s = 0.9
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Then for any time s > 0 and strictly increasing (decreasing) function J(x), the time
integral ∫ s

0
J (Xt) dt

has an inverse uncertainty distribution

�−1
s (α) =

∫ s

0
J
(
Xα
t
)
dt

(
�−1

s (α) =
∫ s

0
J
(
X1−α
t

)
dt

)
.

Example 4.5. We continue the Example 4.3. Consider the time integral∫ s

0
exp(−rt)(Xt − K)dt (4)

where r and K are real numbers.

The inverse uncertainty distribution of Equation of (4) is

�−1
s (α) =

∫ s

0
exp(−rt)

(
Xα
s − K

)
dt

for given times s > 0. We choose the parameters r = 0.02 and K = 1. Based on Runge-
Kutta method, the uncertainty distribution of time integral at s = 0.9 is shown in Fig. 7.
And we can get

E
[∫ s

0
exp(−rt)(Xt − K)dt

]
= 0.7156.

Conclusions
Uncertain differential equations have lots of applications in many fields especially
in uncertain finance. Sometimes we just need the numerical solutions. This paper
gave a Runge-Kutta method for solving uncertain differential equations, the extreme
value and time integral of solution of uncertain differential equations. Examples in
this paper proved that it is a more accuracy and effective method than the former
algorithm.

Fig. 7 The uncertainty distribution of time integral at s = 0.9
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