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Abstract

Linear uncertainty analysis based on a first order Taylor series expansion, described in
ASME PTC (Performance Test Code) 19.1 “Test Uncertainty” and the ISO Guide for the
“Expression of Uncertainty in Measurement,” has been the most widely technique used
both in industry and academia. A common approach in linear uncertainty analysis is to
use local derivative information as a measure of the sensitivity needed to calculate the
uncertainty percentage contribution (UPC) and uncertainty magnification factors (UMF)
due to each independent variable in the measurement/process being examined. The
derivative information is typically obtained by either taking the symbolic partial derivative
of an analytical expression or the numerical derivative based on central difference
techniques. This paper demonstrates that linear multivariable regression is better suited
to obtain sensitivity coefficients that are representative of the behavior of the data
reduction equations over the region of interest. A main advantage of the proposed
approach is the possibility of extending the range, within a fixed tolerance level, for
which the linear approximation technique is valid. Three practical examples are presented
in this paper to demonstrate the effectiveness of the proposed least-squares method.
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Introduction
The topic of estimation of experimental uncertainty is covered in a wide variety of forums.

The American Society of Mechanical Engineers publishes an uncertainty standard as part

of the performance test codes: ASME PTC 19.1-1998 “Test Uncertainty” [1]. The Inter-

national Organization for Standardization (ISO) also publishes a guide on uncertainty cal-

culation and terminology entitled “Guide to the Expression of Uncertainty in

Measurement” [2]. These two approaches are compared by Steele et al. [3]. Most textbooks

on experimental measurements include a section on uncertainty propagation as well (for

example, Refs. [4–6]). Some textbooks specialize in uncertainty [7, 8]. The technical litera-

ture also has numerous treatments of uncertainty estimation and propagation in specific

applications (for example, Refs. [9–12]). Although there are more sophisticated uncertainty

quantification methods, including Monte Carlo [13], Bayesian [14], Latin square sampling

techniques [15, 16], by far ASME PTC 19.1-1998 “Test Uncertainty” standard [1] is the

most widely adopted in the current industrial applications. A main goal of this paper is to

provide a simple improvement to the practical method provided by the ASME standard.
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One element of experimental uncertainty analysis deals with the manner in which uncer-

tainty in measurements propagates into a final result. The validity of the uncertainty estimate

of the result rests on both the validity of the measurement uncertainties and the method of

propagation of those uncertainties through the analysis equation. A 2-D example of

the uncertainty analysis concept is presented in Fig. 1. Point (x*,y*) has a probability,

P*, obtained from the probability density function, pdfxy, i.e., P* = pdfxy(x*,y*). This point

is evaluated through the function of f to find a value of z* = f(x*,y*) and the probability,

Pz*, of z* is obtained from pdfz(z*). The objective is to find the confidence interval (95 %

is commonly used in engineering applications) for the output of z.

Most approaches [Coleman and Steele [7], Abernethy et al. [17], International

Organization for Standardization (ISO) Guide [2], etc. to engineering uncertainty

propagation are based on the assumption of linear behavior for small perturbations in

the measured variables. These approaches rely on a first order Taylor series approxi-

mation at a nominal location obtained from the mean of the measured variables. The

problem with the first order Taylor series approximation arises when large truncation

errors are present. While the Taylor series approximation is usually quite good over

regions of high probability, it can give a very poor estimate of the 95 % confidence

interval for highly non-linear functions. This is illustrated conceptually in Fig. 2. In

this paper, the authors describe a least-squares approach to obtain better sensitivity

coefficients that result in better predictions for the 95 % confidence interval.

Background
Total Uncertainty and Covariance Matrix

For Gaussian distributed variables, the total uncertainty can be obtained by summing

the square of bias and precision uncertainties [7];

Fig. 1 2-D example of uncertainty analysis concept
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UT
2 ¼ UB

2 þ UP
2 ð1Þ

where UT, UB, and UP are the total, bias, and precision uncertainty, respectively. The

bias and precision uncertainties are obtained separately at a prescribed confidence

interval (i.e., at 95 % confidence interval). The total bias and precision uncertainties are

then calculated using the sensitivity coefficient (gradient) of each variable in the ana-

lysis equation. The total bias uncertainty is obtained from: [7]

UB
2 ¼

XJ

i¼1

θi⋅Bið Þ2 þ 2
XJ−1
i¼1

XJ

k¼iþ1

θi⋅θk⋅Bik ð2Þ

where θi is the gradient df Xið Þ
dXi

� �
of each variable, Bi is the bias uncertainty of each vari-

able, and Bik is the correlation among variables. The bias uncertainties of each variable

are generally given by the manufacturer or are estimated by engineering judgment. Bias

uncertainties of some variables may be correlated, e.g., when two thermistors are cali-

brated by the same thermometer, they will share a common error due to the uncertain-

ties in the thermometer. The total precision uncertainty is obtained from: [7]

UP
2 ¼

XJ

i¼1

θi⋅Pið Þ2 ð3Þ

where Pi is the precision uncertainty of each variable. Precision uncertainties represent

the random scattering of each variable and are assumed to be uncorrelated.

Alternatively, the total uncertainty can be determined using covariance matrices. For

a Gaussian distribution, covariance matrices of the bias and precision propagations for

2-D case can be determined as

Fig. 2 Truncation errors by Taylor series approximation at a nominal point within uncertainty region
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CBias ¼ σX;B2 ρ⋅σX;B⋅σY ;B
ρ⋅σX;B⋅σY ;B σY ;B2

� �
ð4Þ

CPrecision ¼ σX;P2 0
0 σY ;P2

� �
ð5Þ

where ρ is the correlation coefficient of the bias errors and σ is the standard deviation.

Guidelines for bias errors and correlation coefficients for realistic experimental situa-

tions are given by Coleman and Steele [7]. Since bias and precision errors are statisti-

cally independent, their covariance matrices can be added to obtain the covariance

matrix of the combined error.

C ¼ σX;B2 þ σX;P2 ρ⋅σX;B⋅σY ;B

ρ⋅σX;B⋅σY ;B σY ;B2 þ σY ;P2

� �
ð6Þ

The total standard deviation is

σT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BT ⋅C⋅B

p
ð7Þ

where A is an nx1 matrix which contains sensitivity coefficients of each variable,

e.g., B = [θ1 θ2]
T
, and C is an nxn covariance matrix (Eq. (6)) and is assumed symmetric

and positive definite. The total uncertainty is then determined as

UT ¼ t⋅σT ð8Þ

where t is the value obtained from the t-distribution corresponding to a particular con-

fidence level (i.e., 95 % confidence level corresponds to 1.96 t value) [2].

Covariance Matrix Based on Uncorrelated Bias Errors
Consider a scalar function f �xð Þ of n variables. The errors, ē, can be expressed in terms

of sources of error that are assumed to be uncorrelated. In such a case, the covariance

matrix can be obtained as follows:First the errors in �x are expressed as:

�e ¼ I A½ �⋅ �ep
�eb

� �
ð9Þ

where ēp are the precision errors, ēb are the bias errors associated with �x , I is the nxn

identity matrix and A is an nxm matrix where m is the number of uncorrelated bias

terms. Matrix A is made up of zeros and ones and determines how each source of bias

error influences a particular input. The covariance matrix is then given by:

C ¼ E �e�eT
� � ¼ I A½ �⋅E �ep�epT �ep�ebT

�eb�epT �eb�ebT

� �	 

⋅

I
AT

� �

¼ I A½ �⋅ σp
� �2

0
0 σb½ �2

" #
I
AT

� �

or

C ¼ σp
� �2 þ A⋅ σb½ �2⋅AT ð10Þ

where [σp]
2 and [σb]

2 are diagonal nxn and mxm matrices, respectively. In the example

section, Eq. (10) is used to estimate the 95 % of confidence interval of a convective heat

transfer coefficient (h).
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Gaussian multivariate probability density function

The Gaussian multivariate probability density function (pdf ) in two dimensions is

given by

pdf x; yð Þ ¼ e
−1
2⋅

x
y

� �T

⋅C−1⋅
x
y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þ2⋅ Cj j

q ð11Þ

A 3-D plot of this pdf(x,y) is shown in Fig. 3. For dimensions larger than two,

Eq. (11) can be expanded to account for the additional dimensions.

Development
Geometrical Interpretations

Covariance matrices can be decomposed as [18]

C ¼ S⋅Λ⋅ST ð12Þ

where S is an orthonormal matrix (rotation matrix) containing a set of orthonormal ei-

genvectors of C, and Λ is a diagonal matrix containing the eigenvalues of C.
ffiffiffiffiffiffiffiffi
Λ0;0

p
andffiffiffiffiffiffiffiffi

Λ1;1
p

represent the principal standard deviations about the rotated coordinates, e.g.,

the x and y coordinate system shown in the 3-D example in Fig. 3. Using the t-

distribution, major and minor axes for an ellipse that bounds the 95 % probability re-

gion in 2-D are obtained by multiplying
ffiffiffiffiffiffiffiffi
Λ0;0

p
and

ffiffiffiffiffiffiffiffi
Λ1;1

p
by t = 1.96. The resulting el-

lipse can then be divided into small sections. One way to partition the sections is to

ensure that each section has the same probability. Another way to create sections is to

ensure that each section has the same area.

Fig. 3 3-D plot of probability density function
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Roberts et al. [19] suggest that the uniform space approach requires fewer function

evaluations compared to the uniform probability approach to obtain comparable results

for 1-D cases. Therefore, uniform-space geometry is used to describe the uncertainty

region in this paper. An easy way to generate a uniform-space grid is to inscribe the el-

liptical area within a rectangular area. Furthermore, to generate a large number of sam-

ples for an increased accuracy of the uncertainty results, an efficient sampling

technique, such as Latin hypercube sampling technique [15, 16], can be employed to

reduce computational cost.

Least-Squares Approach

The first order Taylor series approximation at a nominal point in the measured variables is

often used to determine engineering uncertainty. However, this approach fails when applied

to systems that are nonlinear in the uncertainty region so that the large truncation errors

occur. A least-squares approximation minimizes the truncation errors. Therefore,

the least-squares approximation can provide better representation of the analysis

equation, especially in the region of the confidence interval, as shown in Fig. 4.

Figure 4 shows that the least-squares approach yields larger truncation errors near

the high probability region, but improves the truncation errors over the entire the

interval of interest leading to a better estimate of the 95 % confidence interval. Al-

though Fig. 4 illustrates a conceptual comparison, the results of the examples repre-

sented in the following section support this idea.

For a two dimensional problem, the data reduction function is fit with a plane. The

2-D least-square plane can be obtained as follows.

�f x; yð Þ ¼ a⋅xþ b⋅yþ c ð13Þ

where a, b, and c are the least-square coefficients.

The uncertainty values can be obtained by applying Eqs. (1), (2), and (3) using the

sensitivity coefficients based on the least-squares approximation:

Fig. 4 Comparison of Taylor series and least-squares approaches
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θi ¼ d�f Xið Þ
dXi

ð14Þ

Note that the sensitivity coefficients in Eq. (14) are equal to the values of a and b from Eq.

(13). Alternatively, Eqs. (7) and (8) can be used to find the uncertainty bands which must be

centered about the mean of the least-squares approximation. This latter mean is given by

�f μx; μy

� �
¼ cþ a⋅μx þ b⋅μy

� �
ð15Þ

Piece-wise approach

The piece-wise approach is a method used to estimate probability distribution by

sorting discrete probabilities cumulatively. This method was described in detail for

one dimension in [20]. The extension to multiple dimensions can be used to esti-

mate accurate values for the confidence interval in cases where the exact solution

is not available.

Examples
Three simple examples will be presented to illustrate the least-squares approach to un-

certainty estimation.

The first example uses a simple one-dimensional parabola as the data reduction

equation. This equation has the benefits of extreme simplicity and a readily accessible

exact result for calculating the confidence interval. The equation is:

y ¼ x2 þ 0:5 ð16Þ

The asymmetric 90 % confidence interval was calculated over a range of values in the

independent variable, x, using 20 points for the least-square fit. In all cases, the least-

square result was closer to the exact solution for the upper and lower bounds of the

90 % confidence interval than the Taylor series estimate. Figure 5 shows the results of

the calculations between 1 < x < 2.5.

Fig. 5 Asymmetric 90 % confidence interval
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The second example uses a moment of inertia calculation for the rectangular area

shown in Fig. 6. It is desired to find the moment of inertia about the x axis along with

the associated uncertainty. The analysis function is:

I ¼ b⋅h3

3
ð17Þ

where b and h are the base and height lengths of the rectangular. Assume that a ruler

is used to measure the lengths of b and h. For this example, the nominal values of b

and h are measured as 5 and 3 cm, respectively. Since both measurements of b and h

are measured from the same device, the values are correlated. The bias uncertainty of

the ruler is given by 0.5 cm from the manufacturer. The correlation in the bias, ρ, is 1

since the same ruler is used to measure b and h. We assume that bias uncertainty

has 95 % confidence level, so the standard deviation for bias uncertainty is

0.255 cm (=0.5/1.96). Suppose that 20 measurements each of b and h are taken in

order to find precision uncertainty. Standard deviations of each variable b and h

are calculated as 0.2 and 0.3 cm, respectively, based on these measurements. These

values are summarized in Table 1.

Bias and precision covariance matrices are determined by Eqs. (4) and (5).

CB ¼ 0:2552 1ð Þ⋅ 0:255ð Þ⋅ 0:255ð Þ
1ð Þ⋅ 0:255ð Þ⋅ 0:255ð Þ 0:2552

� �
and CP ¼ 0:22 0

0 0:32

	 

The covariance matrix, linearly combined by CB and CP, is then defined by Eq. (6).

C ¼ 0:105 0:065
0:065 0:155

	 


Fig. 6 Rectangular area

Table 1 Numerical values of parameters used to find uncertainty

(Unit: cm)

b (Base) h (Height)

Mean (nominal value) 5 3

Bias uncertainty 0.5

Bias standard deviation 0.255 (=0.5/1.96)

Correlation in bias 1

Precision standard deviation 0.2 0.3
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The matrices Λ and S are then determined from eigenvalue decomposition of the co-

variance matrix:Λ ¼ 0:06 0
0 0:2

� �
and S ¼ 0:824 0:566

−0:566 0:824

� �
A set of six points shown in Fig. 7 is sampled based on the uniform space approach

[19] as discussed in Section 3.1 and these points represent an uncertainty region for

Eq. (17). The points shown in Fig. 7 are evaluated using the original function, Eq. (17),

and its result is used to perform a least-squares fit to determine the equation of the

least-squares plane, Eq. (13). The result of this fit is shown below.

�f x; yð Þ ¼ 9:20⋅xþ 47:2⋅yþ 54:4

where x and y represent the deviation from the nominal values of b and h.

The total uncertainty at 95 % confidence level is obtained using Eqs. (7) and (8) to obtain

UT ¼ �39:8 cm4
� �

The mean of the least-squares fit is given by

�f μx; μy

� �
¼ 54:4 cm4

� �

The 95 % confidence region is then given by

14:6≤f x; yð Þ≤94:2 cm4
� �

Finally, the nominal value is obtained from the original function:

f μx; μy

� �
¼ 45 cm4

� �

and it is seen that the 95 % confidence bounds are not symmetrical about the nominal

value from the original function.

Fig. 7 Results from geometrical interpretation in Section 3.1 for least-squares approach
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The results of the above method are compared to a more accurate solution obtained

by the piece-wise approach which sections the input XY probability region into a thou-

sand points.

The results of 95 % confidence interval for Taylor series approximation, least-squares,

and piece-wise approaches are compared in Fig. 8. The results are compared as

the correlation coefficient, ρ, changes from −1 to 1. Figure 8 shows that the confi-

dence interval for the least-squares approach provides a better approximation to

the more realistic (but much more computationally intensive) piece-wise approach

than does the Taylor series approach.

The third example demonstrates application of the least-squares approach to a 3-

dimensional problem. A gas temperature measurement system is used for this example.

A thermocouple is used to measure the exhaust gas temperature of a diesel engine.

The thermocouple is 3.175 mm (1/8 in.) diameter. The system is illustrated in Fig. 9.

Assuming the system is at steady-state and that the thermocouple and wall are both at

Fig. 8 Results of confidence interval for Taylor series approximation, least-squares, and
Piece-wise approaches

Fig. 9 Gas temperature measurement system
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uniform temperature and neglecting heat conduction through the thermocouple wires,

the equation used to determine the gas temperature is

h⋅ Tg−Tt
� � ¼ ε⋅σ⋅ T 4

t−T
4
w

� � ð18Þ

(convection to the probe = radiation from the probe)

where

Tg gas temperature (K)

Tt thermocouple temperature (K)

Tw pipe-wall temperature (K)

ε emissivity of the thermocouple

σ Stefan-Boltzmann constant (2.043 × 10−7 kJ/hr-m2-K4)

h convective heat transfer coefficient (kJ/hr-m2-K).

It is desired to investigate whether it is a good idea to use Eq. (18) to determine the

convective heat transfer coefficient. To this effect, Eq. (18) can be rewritten as

h ¼ ε⋅σ⋅ T 4
t−T

4
w

� �
Tg−Tt
� � ð19Þ

Assume that a thermocouple calibration block which introduces an error with stand-

ard deviation of 3 K is used to calibrate both the thermocouple shown in Fig. 9 and a

thermocouple used to measure the temperature of the pipe-wall. It follows that these

thermocouples are correlated, and the common bias error is found to have a standard

deviation of 3 K. Assume that a thermometer is used to measure the gas temperature

and the standard deviation of the bias is given from the manufacturer as 4 K. The nom-

inal, bias, and precision values of each variable are listed in Table 2.

The precision and bias standard deviations shown in Table 2 are used to determine

the covariance matrix in Eq. (10). The covariance is then obtained as

C ¼ I A½ �⋅ σp
� �2

0
0 σb½ �2

" #
⋅

I
A

� �

¼
1 0 0 1 0
0 1 0 1 0
0 0 1 0 0

2
4

3
5⋅

122 0 0 0 0
0 102 0 0 0
0 0 142 0 0
0 0 0 62 0
0 0 0 0 82

2
66664

3
77775⋅

1 0 0
0 1 0
0 0 1
1 1 0
0 0 1

2
66664

3
77775

Note that correlation of the variables can be determined in the matrix I A½ �:
The same procedure presented in the previous example is applied to this problem after

obtaining the covariance matrix. The result of the least-squares fit is determined as

Table 2 Nominal, bias, and precision values of each variable

Tg
(Temp. gas)

Tt (Temp.
thermocouple)

Tw (Temp.
pipe-wall)

ε (Emissivity) σ (Stefan-Boltzmann constant)

Mean (nominal value) 838 K 811 K 672 K 0.55 2.043 × 10−7 kJ/hr-m2-K4

Precision standard
deviation

8 K 7 K 5 K N/A N/A

Bias standard
deviation

4 K 3 K N/A N/A
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�f x; y; zð Þ ¼ 99:9⋅x−61:4⋅y−88:4⋅z−975

The total uncertainty at 95 % confidence level is obtained using Eqs. (7) and (8) to obtain

UT ¼ �2:28� 103 kJ=hr‐m2‐K
� �

The mean of the least-squares fit is given by

�f μx; μy; μz

� �
¼ 1:52� 103 kJ=hr‐m2‐K

� �
The 95 % confidence region is then given by

−758≤f x; y; zð Þ≤3:80� 103 kJ=hr‐m2‐K
� �

Since the value of the convective heat transfer coefficient cannot be negative, the

95 % confidence region can be re-evaluated as

0≤f x; y; zð Þ≤3:80� 103 kJ=hr‐m2‐K
� �

The nominal value of the convective heat transfer coefficient is

f μx; μy; μz

� �
¼ 952 kJ=hr‐m2‐K

� �
The 95 % confidence region obtained from the least-squares approach is compared to

the 95 % confidence regions obtained by the piece-wise approach and by Taylor series

approximation, and the comparison is presented in Table 3.

The comparison of the results in Table 3 shows that the confidence interval of the

convective heat transfer coefficient (h) for the least-squares approach provides a better

approximation to the more realistic (but much more computationally intensive) piece-

wise approach than the Taylor series approach. Furthermore, the narrow uncertainty

Table 3 A comparison of the 95 % confidence interval
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interval produced by the Taylor series approximation can lead to a “false sense of secur-

ity” regarding the numerical value of the heat transfer coefficient.

Conclusions
A least-squares approach to linear uncertainty analysis has been described and illus-

trated. This approach can provide improved results over ordinary uncertainty propaga-

tion using a first order Taylor series approximation by minimizing the truncation errors

in the linear approximation of the equation being analyzed. A drawback of this ap-

proach is that there is no explicit formula to find the sensitivity coefficients. However,

in many instances the sensitivity coefficients are obtained through numerical deriva-

tives. In such cases, there is little or no additional computational effort in obtaining the

least-squares solution. This paper also shows a simple way to obtain the covariance

matrix used in the uncertainty analysis. In many engineering applications, it is cumber-

some to determine the correlation coefficients of the bias errors (ρ), i.e., reasonable en-

gineering judgment is required. Therefore, the authors recommend using covariance

matrix expressed in terms of uncorrelated bias errors as shown in the third example.

The results in the examples illustrate the advantages of using the least-squares

approach.
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