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Abstract
In real game situations, players are often not perfectly informed about true states but
can observe signals, and decision-making may involve several periods. In order to
formulate such situations, this paper uses a hidden Markov model to describe the state
process, thus introducing a repeated game with hidden Markovian states, called hidden
Markov Bayesian game. For the new model, a notion of Nash equilibrium is presented
and an algorithm is developed to facilitate obtaining the equilibrium quickly. An
analysis of the Chinese education game shows that the observed signals play an
important role in analyzing players’ behavior.
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Introduction
Game models have been successfully applied in various areas, including operation
research, computer science, and social science. They are able to formulate and analyze
complex interactions between decision-makers, such as investors in financial markets,
firms along a supply chain, and countries with conflicting interests. Realistic features—
e.g., dynamic decisions, imperfect information, and behavioral elements—are usually
incorporated by game models to reflect real-life situations.
According to decision-making structure (e.g., static or dynamic) and information struc-

ture (e.g., perfect or imperfect information), game models can be classified into different
types. Various equilibrium notions that refine the Nash equilibrium have been invented
in order to describe players’ strategies in the different types of games [1]. For dynamic
games with sequential or simultaneous moves, the subgame perfect equilibrium is usu-
ally used to characterize players’ rational choices [2]; the grim trigger strategy is also a
reasonable alternative for players in repeated games [3]. Regarding information aspects,
Bayesian games consider imperfect or incomplete information scenarios where players
have beliefs on uncertain factors and aim to maximize their respective expected utilities
[4]. By Harsanyi’s approach [5] of introducing nature as a player, games of incomplete
information can be converted to games of imperfect information.
In this paper, we propose a repeated game with hidden Markovian states, called hidden

Markov Bayesian game. Starting with the repeated game, the proposed model consid-
ers situations where at each period, players are not aware of the actual state but can
observe signals that are driven by the state. Particularly, the state process over the periods
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is modeled by a hidden Markov model (HMM); in an HMM [6], states follow a Markov
process, and beliefs on them can be updated over time based on the observed sequence
of signals.
Specifically, the proposed game model proceeds as follows. At the beginning of each

period, a nature state is realized and each player observes a signal that may provide
information about the state. Then, players simultaneously choose actions. Then, the next
period begins, and the procedure is repeated. Note that their payoffs cannot be realized
until the end of the final period (this assumption is consistent with a lot of previous litera-
ture [7]). We also define a Nash equilibrium for the model. At the Nash equilibrium, each
player chooses a strategy to maximize the expectation of his total payoff over all peri-
ods, given his signal observations and the other players’ strategies. Moreover, we design
an algorithm to quickly calculate the probability distributions of hidden states under all
possible signal sequences. These probability distributions are essential to obtaining the
model’s equilibria.
Furthermore, the proposed model is able to capture many real-life situations and pro-

duce insights. For example, we apply it to controversial Chinese education issues. From
the perspective of the static game with perfect information, schools, overwhelmed by
examination-oriented education, are trapped in the classic prisoner’s dilemma. But our
model is capable to shed light on the dynamic and informational aspects. The results show
that schools tend to prefer examination-oriented education if the education policy keeps
changing. Also, schools lacking information might keep choosing their previous way of
education.
The main feature that differentiates our model from existing game models is that we

introduce signals into our model and then describe nature states as an HMM. In stochas-
tic games [8], players choose actions, for multiple periods, not knowing the actual states.
But different from our model, stochastic games do not consider signals that players may
receive. In dynamic games with incomplete information [9], a player can view another
player’s action as a signal in order to update his belief on the unobservable state (often
referring to some player’s type). But signals in our model are defined to be some informa-
tion observed outside the game (which cannot be maneuvered by opponents) rather than
opponents’ actions.
The HMM provides a theoretical tool to describe signal process systems and has been

widely applied to speech recognition [10], activity sequences [11], etc. For example,
Netzer et al. [12] proposes an HMM to model latent customer-firm relationship states
and customer buying behavior (signals). Dias and Ramos [13] gave a dynamic clustering
of energy by an extended hiddenMarkov approach. Ansari et al. [14] and Kujala et al. [15]
employed hidden Markov approaches to analyze some game situations. Since our model
considers both nature states and observable signals over multiple periods, applying the
HMM in a game context—although different from existing approaches—is appropriate in
our setting.
The rest of this paper is organized as follows. In the “Preliminaries” section, we pro-

vide a brief review on the concepts of finitely repeated games, Bayesian games, and
hiddenMarkovmodels. In the “Model: HiddenMarkov BayesianGame” section, we intro-
duce our model and defined its Nash equilibrium. The algorithm is provided in the
“Algorithm” section. We apply our model to education issues in the “Application” section
and concluded in the “Conclusions” section.
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Preliminaries
Finitely Repeated Game

In a repeated game, players make actions simultaneously over multiple periods [16]. It can
be further categorized into two types based on the number of periods, namely, finitely and
infinitely. Our model is based on the framework of the finitely repeated game. A finitely
repeated game is defined as follows:

Definition 1. A finitely repeated game is a tuple < N , (Ai), (ui), δ,T >, where

N is a finite set of n players
Ai is a set of actions available for i ∈ N , action profile is denoted as A = ×i∈NAi
ui is the payoff function of i ∈ N at every period, ui : A → R
δ is the discount factor, 0 ≤ δ ≤ 1
T is the number of the periods.

The discount factor δ reflects time’s effect on the payoff. For example, the payoff at
period t should bemultiplied by δt−1 when calculating the total payoff over all the periods.

Bayesian Game

Our model carries out a Bayesian game at each period. A key component in the specifi-
cation of a Bayesian game is the set of states [16]. At the start, a state is realized but is not
observable to players. Players have prior beliefs on the states and can update their beliefs
after observing signals based on Bayes’ rule. At the (Bayesian) Nash equilibrium, players
maximize their expected payoffs. A Bayesian game can be defined as [17] follows:

Definition 2. A Bayesian game is a tuple < S,V ,π ,N , (Ai), (ui), (τi) >, where

N is a finite set of n players
S is a finite set of states
V is a finite set of signals
τi is player i’s signal function, at state w, player i receive τi(w) ∈ V with some
probability distribution
π is a prior belief about the states
Ai is a set of actions available for i ∈ N
ui is the payoff function of i ∈ N .

Hidden Markov Model

Ourmodel extends the Bayesian game to finitely periods. It models the discrete stochastic
process of the state by HMM. The state in the HMM is a Markov chain, which undergoes
changes according to the state transition probability distribution. Besides, under each
state, players observe signals according to observation signal probability distribution. An
HMM is defined as [6] follows:

Definition 3. An HMM is a tuple λ =< S,V ,R,B,π >, where

S is a finite set of states
V is a finite set of signals
R is the state transition probability distribution, R = (rij), where rij indicates the
probability of state i changing to state j
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B is the observation signal probability distribution in state j, B = (bj(k)), where bj(k)
indicates the probability of signal k being observed in state j
π is the initial state distribution π = (πi), where πi is the probability of state i before
the model starts.

Model: HiddenMarkov Bayesian Game
Definition

Our model is a finitely repeated game with hidden Markovian states and can be classified
as a repeated game with imperfect information. At the beginning of each period, a nature
state is realized, but players do not observe this state. Rather, each player observes a signal
which is driven by the state. Then, players simultaneously choose actions, and the next
period begins. The procedure is repeated for a finite number of periods.
We further assume that players are not informed about their payoffs until the end of the

final period. Thus, when each player is choosing actions, he knows all the players’ previous
actions and his own observed signal sequence but knows nothing about other players’
signals and his payoffs in previous periods. Then, based on the definitions presented in
the “Finitely Repeated Game,” “Bayesian Game,” and “Hidden Markov Model” sections,
our model can be defined as follows:

Definition 4. A hidden Markov Bayesian game is a tuple < λ,N , (Ai), (ui), δ,T >, where

N is a finite set of n players
λ is an HMM of the states and λ =< S,V ,R,B,π >

Ai is a set of actions available for i ∈ N , action profile is denoted as A = ×i∈NAi
ui is the payoff function of i ∈ N at every period, ui : A × S → R, and ui(a,w) is said
to be i’s payoff under action profile a and the state w
δ is the discount factor, 0 ≤ δ ≤ 1
T is the number of the periods.

Obviously, if the state process λ is a constant, meaning that there is only one state
and players have perfect information, this model becomes a normal repeated game. That
is, < c,N , (Ai), (ui), δ,T > (c is a constant) is a T-period repeated game with the dis-
count factor δ. Furthermore, if there is only one period involved, i.e., T = 1, the model
< λ,N , (Ai), (ui), δ, 1 > becomes a traditional Bayesian game. Thus, both finitely repeated
games and traditional Bayesian games can be considered as special cases of the model.
Consider period t, 1 ≤ t ≤ T . The signal sequence player i ∈ N has observed so far is

denoted as

Ot
i = (o1, o2, · · · , ot), (1)

where oj is the signal player i observes at period j, 1 ≤ j ≤ t. Then, player i would update
his belief (probability distribution) on the hidden state wt as

Pr
(
wt|Ot

i
)
. (2)

Besides the belief of the states, player i ∈ N chooses the action also according to all
players’ previous actions, which are denoted by

ht = (
a0, a1, a2, · · · , at−1) , (3)
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where aj represents the action profile of all the players at period j, 1 ≤ j ≤ t − 1, and
a0 = φ. Then, in this period t, player i chooses his action according to the signal sequence
Ot
i he has observed and all players’ previous actions ht .
In addition, each player is not sure about the true state and thinks every state is possible.

Thus, at this period t, the expected payoff of player i when he chooses the action ati is
expressed as

Ui,t(ati , at−i) =
∑
wt∈S

Pr
(
wt|Ot

i
)
ui

(
ati , at−i,wt

)
, (4)

where at−i denotes the action profile of all the players except player i, and Pr(wt|Ot
i) can

be precisely calculated by the algorithm we proposed later.

Nash Equilibrium

Assume that before the whole game begins, players have determined their strategies.
Thus, player i’s strategy σi is a function assigning an action to all possibleOt

i and ht , that is,

σi
(
ht ,Ot

i
) ∈ Ai, (5)

where i ∈ N , 1 ≤ t ≤ T . Let σ be players’ strategy profile. Then, given σ , player i’s total
discounted payoff (in expected value) over all the T periods is expressed as

Ui(σ ) =
T∑
t=1

δt−1Ui,t
(
σ1

(
ht ,Ot

1
)
, σ2

(
ht ,Ot

2
)
, · · · , σn

(
ht ,Ot

n
))
, (6)

where Ui,t is defined in (4).
Let ϕi be the set of player i’s all strategies. Then, the definition of Nash equilibrium of

our model can be given.

Definition 5. A Nash equilibrium of a hidden Markov Bayesian game < λ,N , (Ai),
(ui), δ,T > is a strategy profile σ , with the property that for every player i ∈ N, we have

Ui(σi, σ−i) ≥ Ui(σ
′
i , σ−i) for all σ

′
i ∈ ϕi. (7)

Under Nash equilibrium, player i (i ∈ N) would choose a strategy σi that maximizes his
total discounted payoff Ui(σi, σ−i), given the other players’ strategies σ−i. Then, during
the game, player iwould choose his action as ati = σi

(
ht ,Ot

i
)
, where ht is the history about

all players’ previous actions andOt
i is the signal sequence that player i has observed so far.

We should note that this equilibrium definition is based on our assumption that players
update beliefs on the nature state only according to the signal sequence they observed, as
(2). Our model does not consider cases where the beliefs can be also updated according
to other players’ actions, for example, a player’s belief may be influenced by the actions
of another player having more accurate observation. Due to this assumption, the belief
system of our model becomes quite simple.
To describe players’ rational strategies, Nash equilibrium alone may not be sufficient

and there may be a need to refine it following the concept of subgame perfection [1]. This
is because a strategy profile that constitutes Nash equilibrium for the whole game may
not represent players’ rational choices at a subgame. Here, we investigate the subgame
perfect equilibrium (SPE) for a special case of our model and leave the task of defining
the perfect Bayesian equilibrium (PBE) to future research. Consider the case where all the
players observe identical signals, that is, players share the same HMM. Then, the start of
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any period t ≤ T would form a well-defined subgame because every player has the same
belief on the nature state. The SPE for this special case of model is defined as follows:

Definition 6. For a hidden Markov Bayesian game where all the players observe identi-
cal signals, a subgame perfect equilibrium is a strategy profile σ , with the property that
at the start of every period t = 1, . . . ,T, given the previously occurred signal sequence
(o1, o2, · · · , ot−1) and actions ht−1, for every player i ∈ N, we have

Ui(σi, σ−i) ≥ Ui(σ
′
i , σ−i) for all σ

′
i ∈ ϕi. (8)

An Example

As we know, the return of an investment usually depends on economic conditions, as well
as decisions of competitors. But true economic conditions are not completely observable
to investors. Besides, in many cases, the investment requires multiple decision periods,
and its return can only be collected at the end of the last period. Such an investment
problem can bemodeled as a hiddenMarkov Bayesian game. Here, we present an example
with three decision periods and two players. At each period, players have two alternative
actions: invest (Y ) or not invest (N). The economic condition has two states: good (s1) or
bad (s2). Players may use the real-estate price as a signal, which can be high (v1) or low
(v2), based on which they can update their beliefs on the economic condition.

In this example, the state transition probability distribution is R =
(
0.9 0.1
0.1 0.9

)
.

The observation signal probability distribution is (players observe same signals) B =(
0.7 0.3
0.3 0.7

)
. And the initial state distribution is π =

(
0.5
0.5

)
. The discount factor is δ = 1,

that is, we do not consider the discount factor’s effect in this example.
The players’ payoffs under s1 and s2 are represented respectively by Tables 1 and 2.

Obviously, these two players’ interests are consistent. The following strategy profile is one
Nash equilibrium (also an SPE) of this game (the method to obtain Nash equilibrium will
be discussed in the next section):

• Player 1 chooses N if the signal sequence that he observes is (v2), (v2, v2), (v1, v2, v2),
(v2, v1, v2), or (v2, v2, v2) and chooses N if observing other signal sequences,
irrespective of previous actions.

• Player 2 has the same strategy as player 1.

Algorithm
An essential part of obtaining the Nash equilibrium of our model is to calculate the
expected payoff defined in (4). To calculate the expected payoff, we must know the
hidden (nature) state wt ’s probability distribution given any observed signal sequence
(o1, o2, · · · , ot) at each period t = 1, . . . ,T , that is,

Pr(wt = si|o1, o2, · · · , ot), (9)

Table 1 Under good economic condition

Player 2

Y N

Player 1 Y 10,10 8,0

N 0,8 0,0
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Table 2 Under bad economic condition

Player 2

Y N

Player 1 Y −5,−5 −6,0

N 0,−6 0,0

where 1 ≤ i ≤ N . For example, we need to obtain Pr(w1 = s1|o1) for period 1 and
Pr(w2 = s1|o1, o2) for period 2. In the proposed algorithm, we have derived (9) for all the
periods, starting from t = 1, then t = 2, . . . , and at last, the final period t = T .
We begin with briefly reviewing the forward variable definition and the iterative algo-

rithm given by Rabiner [6]. For an HMM λ =< S,V ,R,B,π >, its forward variable for
period t is defined as

Pr(o1, o2, · · · , ot ,wt = si) (10)

which can be calculated by the following algorithm:

1. Initialization, period 1:

Pr(o1,w1 = si) = πibi(o1). (11)

2. Induction, period τ + 1, where 1 ≤ τ ≤ t − 1:

Pr(o1, o2, · · · , oτ+1,wτ+1 = si) = bi(oτ+1)
N∑
j=1

rji Pr(o1, o2, · · · , oτ ,wτ = sj). (12)

Iteratively running the induction step gives the value of Pr(o1, o2, · · · , ot ,wt = si). Then,
(9) can be calculated as:

Pr(wt = si|o1, o2, · · · , ot) = Pr(o1, o2, · · · , ot ,wt = si)∑N
i=1 Pr(o1, o2, · · · , ot ,wt = si)

. (13)

However, to find the equilibrium, we must know the hidden state’s distribution for any
period and for any possible signal sequence. Obviously, there is an enumeration method:
calculate the distribution at each period given each signal sequence using the above algo-
rithm until all possible cases are enumerated. But this method might waste a significant
amount of computing resources. For example, when calculating Pr(w3 = s1|v1, v2, v2), we
need to obtain Pr(v1, v2,w2 = si) during induction, but this value has been obtained when
we calculate Pr(w2 = s1|v1, v2). Such repeat calculation is not necessary. With this con-
cern, we develop an algorithm that can output all the distributions quickly without any
repeat calculation.
Given signal set V = v1, v2, · · · , vM, there areM + M2 + . . . + MT = MT+1−M

M−1 possible
signal sequences over the T periods, including (v1), (v1, vM), (v1, vM, v2), · · · . We arrange
these sequences as a tree, as Fig. 1 shows, where each node represents a signal sequence.
These nodes, from top to bottom and left to right, are indexed as X0,X1,X2,X3 . . .. For
example, the node in a square represents signal sequence (v1, vM, v1) at period t = 3 and
is indexed as X2M2+1.
In the new algorithm, the forward variable Pr(Xj,wt = si) (t is implied by Xj, 1 ≤ j ≤

MT+1−M
M−1 ) is stored in the node Xj. For convenience, we denote Pr(Xj,wt = si) as ξi(j) and

denote the hidden state’s distribution Pr(wt = si|Xj) as ηi(j). From (12), we know that ξi(j)
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Fig. 1 Signal sequences

only depends on its parent node (i.e., ξi(par(Xj))). Due to this property, the algorithm is
developed as follows:

1. for j = 1, 2, · · · ,M
ξi(j) = πibi(oj), 1 ≤ i ≤ N

2. for j = M + 1,M + 2, · · · , MT+1−M
M−1

ξi(j) = bi(late(j))
N∑
k=1

rkiξk(par(j)), 1 ≤ i ≤ N

(late(j) indicates the last signal in Xj, e.g., late(v1, vM, v2) = v2)
3. for j = M + 1,M + 2, · · · , MT+1−M

M−1

Output : ηi(j) = ξi(j)∑N
k=1 ξk(j)

, 1 ≤ i ≤ N

Then, we have the distribution ηi(j) given all possible signal sequence Xj.
With this algorithm, we examine the HMMused in the given example of the “An Exam-

ple” section. The probability distributions of the hidden state under all possible signal
sequences are shown in Fig. 2. In this figure, each node (the small circle) represents a
signal sequence, just as Fig. 1. Figure 2 can be thought of as Fig. 1 turning 90 degree.
For example, node A indicates signal sequence (v2, v1) observed at period 2, with hidden
state w2’s distribution being Pr(w2 = s1|v2, v1) = 0.740 (implying Pr(w2 = s2|v2, v1) =
1−0.740 = 0.260). Hereafter, results of probability distributions will be presented in such
figures.

Application
In this section, we apply our model to the highly controversial education issues, referred
to as Chinese education game. From the perspective of the static game with perfect infor-
mation, schools, overwhelmed by examination-oriented education, are trapped in the
classic prisoner’s dilemma. However, the background is changing over time. The educa-
tion game should contain multiple periods, and participants make decisions dynamically
under imperfect information. Our model emphasizes the dynamic and informational
aspects, and investigates on questions: why is examination-oriented education so popular
and under which conditions will this dilemma be overcome?
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Fig. 2 The probability of the hidden state being s1 under all possible signal sequences

Chinese Education Game

To simplify the problem, we assume there are two schools: school 1 and 2; each of them
has two choices: be examination-oriented (Y ), or not (N). The schools’ payoff closely
relates to factors such as university admission criteria, government policies, and parents’
expectations. We refer to these factors as background, which has two states: negative (s1)
and positive (s2). Schools’ payoff matrices under the two states are shown in Tables 3
and 4. Under negative background s1, schools’ strategy profile (N ,N) is optimal for both
schools, but it is not stable. In fact, (Y ,Y ) (both schools being examination-oriented)
is the only Nash equilibrium, which is exactly the prisoner’s dilemma. On the contrary,
under the positive state s2, the (N ,N) becomes the only equilibrium.
However, the background might not be completely observed by schools, that is, s1 and

s2 are hidden states. The background cannot be measured, but it can be estimated by
some indicators (signals). Let v1 and v2 be the signals, where vi (i = 1, 2) means si is more
likely to happen. We assume that the background evolves as a Markov chain over time.
Thus, the background process is actually an HMM. Relevant parameters are set as follows
(also shown in Fig. 3):

• Prior belief on the background (hidden states): π = {0.8, 0.2}
• State transition probability distribution R =

(
0.8 0.2
0.5 0.5

)
(The setting implies the

background is more likely to stay on s1 meaning turning positive is more difficult
than turning negative.)

• Observation signal probability distribution B =
(
0.7 0.3
0.3 0.7

)
(That is, schools have a

probability of 0.7 to observe the background correctly.)

Table 3 Under negative background s1
School 2

Y N

School 1 Y 2,2 4,1

N 1,4 3,3
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Table 4 Under positive background s2
School 2

Y N

School 1 Y 2,2 4,3

N 3,4 5,5

Then, we are ready to apply the hidden Markov Bayesian game to analyze this problem.
(The discounting factor is set as δ = 1).

Equilibrium

Let p denote the probability of the background being negative (s1). For one period, the
Nash equilibrium can be easily obtained, which is (N ,N) if p < 1/2, (Y ,Y ) or (N ,N)

if p = 1/2, and (Y ,Y ) otherwise. So, both schools will not choose being examination-
oriented only if p < 1/2.
For multiple periods, we calculate the probability distribution of background by the

algorithm proposed in the last section. The result is provided in Fig. 4. Figure 4 shows an
interesting pattern: at period t (t ≥ 2), if schools observe signal v2 at both periods t and
t − 1 (at each node, the two nodes connected to it on the right side are its child nodes;
the upward child means observing signal v2, the downward one means observing v1 ), the
probability of background being negative will be smaller than 0.5; otherwise, this prob-
ability will be greater than 0.5. In other words, schools will believe background is more
likely to be positive only when the signal sequence is (· · · , v2, v2). Therefore, the Nash
equilibrium (also a subgame perfect equilibrium) of the education game is the following
strategy profile:

• School 1 chooses not being examination oriented (N) when observing signal v2 in the
latest two consecutive periods (i.e., the sequence is (· · · , v2, v2)); school 1 chooses
being examination oriented (Y) otherwise.

• School 2 uses the same strategy as school 1.

This equilibrium might suggest that schools tend to prefer examination-oriented edu-
cation if the eduction policy keeps changing. It also implies the importance of a stable
positive background to schools’ education choices.

Fig. 3 The HMM of the background
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Fig. 4 Probability of the background being negative under possible signal sequences

The Effect of Observation Accuracy

The observation signal distribution B represents the relationship between signals and the
hidden states. It also represents the observation accuracy. Our previous setting of B indi-

cates a case of relatively accurate observation. Now, we reset B′ =
(
0.5 0.5
0.5 0.5

)
to indicate

the case of relatively inaccurate observation, which may be caused by schools lacking
information or the bad communication between schools and other parties. Under B′ , we
calculate the background distribution with our algorithm (see Fig. 5).
In Fig. 5, the curve converges to 0.5, indicating that when observation is inaccurate,

schools’ estimates on the hidden background are indifferent to the signals. No mat-
ter what signals they observe, their belief are the same, and they will keep choosing
examination-oriented education that is the only equilibrium. The result suggests the
importance of information or observation accuracy, because schools lacking information
might not change their previous education way.

Fig. 5 Probability of the background being negative under possible signal sequences, when observation is
relatively inaccurate
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Conclusions
In this paper, we introduce a repeated game with hidden Markovian states. The moti-
vation is to formulate and analyze situations where players lack full information but can
observe signals, and decisions aremade simultaneously for several periods.We also define
the Nash equilibrium and develop an algorithm to facilitate finding the equilibrium.
We then apply the model to controversial education issues. The results show that

schools tend to prefer examination-oriented education if the eduction policy keeps
changing. Also, schools lacking information might keep choosing their previous way of
education. Such insights highlight the impact of the observed signal sequence in players’
behavior, which may not be derived from other game models.
To implement the model for practical applications, we may estimate parameters of the

embedded HMM using a Markov chain Monte Carlo method [12]. For the purpose of
behavior analysis (with hypothetical parameter settings), we can make simplifications to
the model for tractability, such as assuming players all observe identical signals.
For future research, one may extend our model to incorporate other features, for exam-

ple, only one player can observe signals or the number of periods is not fixed. One may
analyze situations where beliefs can be updated based on previous actions of a more
informed player. The study of other equilibria including the mixed-strategy equilibrium
and the perfect Bayesian equilibrium should be important. It would also be interesting to
apply the model to other cases and generate insights.
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