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human property that cannot be quantified by another person; to have a
machine-driven method quantify this unobservable and intangible internal property is
challenging. In this paper, we make an attempt to address this issue. We propose a
novel approach to estimate this internal state of a human. We formulate the interest
prediction problem as a hidden state estimation problem and deduce a solution
through Bayesian inference. In doing so, we apply indirect inference rules to estimate
interest from activity. Activity as a consequence of interest is computed via a
subjective-objective weighted approach. We further propose a model for interest by
taking inspiration from physics. We use mean reverting stochastic procedures to
capture the long-term dynamics of interest. With this perspective, a solution is
provided via Monte Carlo simulations. To demonstrate the feasibility of the framework,
we develop a web-based prototype and experiment with real-world datasets.
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Introduction

To numerically estimate interest towards any entity is one of the challenging problems
in literature. Through one’s social experience, one has often come across the following
question: How “much” are you interested in Facebook, WhatsApp, Twitter (or anything)?
In other words, we are asking to quantify interest towards any object in the real world.
Simply put, we are asking to find a number for someone’s interest. Indeed, the ques-
tion is simple and straightforward. However, we know that the answer to this trivially
formed question is challenging. To think of this purely as a human being, we ourself can-
not precisely answer the question, it is undeniably a challenge to have a machine quantify
interest.

Interest is an old topic of research. According to [1], interest is an everyday term used to
describe the preference of a person towards real-world objects. It has also been specified
that interest is an active propulsive state that is aligned towards real entity, subject, topic,
activity, etc. and has a high personal definition [1-4]. We must specify here that there are
ample definitions of interest in literature; moreover, the notion spans a broad spectrum
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with work refining and contextualizing the idea over time, for instance, some authors call
it as a mental state [5], an affective state [6], others even mix it with intrinsic motivation
[1]. However, in this paper, we work along the definition proposed in [7-10] and call inter-
est as a persistent cognitive and emotional state of mind that makes one to engage, get
inspired, sometimes even compels one to take actions towards the object of his/her inter-
est. Interest motivates a person to extend his/her normative capability, thereby reaching
the extent of exception, hence, indicating the presence of some very promising feature of
the human spirit.

After introducing the notion of interest, let us revisit the question asked in the first
paragraph of this paper. That is, if a person is interested in any worldly object, then can
we have a method that can model and correspondingly quantify a person’s interest. It
should be noted here that we are neither asking for a method that can predict one’s level
of interest (e.g., high, low, medium) nor do we want to deduce one’s topic of interest (e.g.,
what type of games does one like). Literature has thoroughly investigated these two topics
in the context of machine learning, e.g., to infer one’s level of interest, there is a plethora of
work in machine learning [6, 11-13]. Similarly, for deducing one’s topic of interest, there
is a dedicated body of work [14—17]. But, in contrast to these works, we are asking for a
method that can statistically model, thus, give us a number for interest. Moreover, and in
contrast to this application-specific line of work, we are interested in quantifying interest
towards any entity, thereby making the procedure of interest quantification application
independent. In non-technical terms, we have raised the following concern: How “much”
is one interested in any entity? If we take a close look at the problem, we see that there are
several challenges. These are as follows:

1) Interest in its innate form has a tendency to evolve. We have experienced
numerous times that interest (in any object) has an inherent characteristic, even a
natural propensity, to evolve itself. To exemplify this, a person was highly
interested to participate at Facebook, for example, but the desire to engage in the
daily activities decreased over time (for any reasons). Therefore, the issue here is
How to model the evolving dynamics of interest especially considering the typical
erratic and unpredictable circumstances in one’s routine.

2)  We know, and it has been verified in literature, that interest in an object makes a
person put in extra efforts and take actions. Naturally, these actions are visible in
the form of activity [18—21]. However, an appropriate question in this context is
How to measure activity. If we take a close look at the term (activity), we realize
that it is an abstract concept. A person always expresses his/her actions through
multiple viewpoints. That is, activity spans several perspectives that clearly specify
that the actions, stimulated by interest, are not limited to a single dimension.
Therefore, how to transform the idea of activity, an abstract term having a wide
array of dimensions, into a computationally operable construct?

3)  How to model the transformation of interest into activity? It was discussed in the
previous point that interest results into actions. However, the transformation
dynamics of interest into activity is unknown. In other words, we do not have a
statistical procedure that can model the transformation of interest into activity.

The set of problems identified in the above three points are not only theoretically
important but also have a significant impact from a practical point of view. In this paper,
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therefore, we aim to address these issues and make an attempt to take one more step

towards estimating the property of interest. We lay the foundation of this paper in find-

ing a solution to the interest quantification problem and try to show a possible roadmap

that can facilitate machines to estimate interest automatically. In this regard, the following

points summarize the contribution of this paper:

The problem to estimate interest is formulated as a hidden state estimation problem
and a solution deduced via Bayesian inference. We use principles of uncertainty
quantification and machine-oriented procedures to infer the numerical value of
interest indirectly from activity.

To provide a computationally feasible method to calculate activity, we use a
subjective-objective weighted approach. We combine several different perspectives
of activity into a discreet and computationally acceptable construct.

We draw inspiration from physics and propose a square-root-based mean reverting
stochastic procedure to model the dynamics of interest.

We use a regression model to dynamically transform interest into activity.

We combine the contribution of the previous points and present a solution via
Monte Carlo simulations. We use particle filter to provide a computationally viable
solution to the interest prediction problem.

To demonstrate the viability of the model in real scenarios, we perform experiments
on real datasets. With numerical simulations performed on the Stack Overflow
databases, we show that model-based procedures are a good way to estimate
variables that are not directly observable.

To validate the proposed framework in practice, we develop a prototype. We
implement the framework as a web service and deploy it on a web server. The
prototype is developed using RESTful architecture, thereby providing a uniform
interface to access the method by any remote or local application.

We must point out that the idea of interest is broad and that the concept has man-

ifold interpretation (theoretical) in literature. Therefore, to study and correspondingly

analyze the property of interest via machines, as well as the notion, can be impre-

cise. However, it captures the phenomenon of practical importance. Interest in any

object makes a person engage and put in extra efforts, consequently, there is activ-

ity [18-21]. In this context, and drawing on existing terms in artificial intelligence,

e.g.,

[6, 11, 15, 17], the motive of the paper is propose the use of automatic meth-

ods to quantify the phenomenon that provokes activity. In this context, the authors
of [22] have specified “As a branch of the science of “Big Data’; the field of human-

interest dynamics is at its infancy”. We base the motivation of this paper along these

lines and try to complement work in literature by offering it a possible roadmap

to study and analyze interest and other related properties through machine-based

procedures.

The rest of the paper is organized as follows: In the “Introduction” section, we discuss

the main body of work and present the proposed model. Subsequently, we present the

results in the “Results” section. As we are trying to predict the internal state of a human,

therefore, we discuss the limitations of the framework in the “Discussion and Limitations”

section. Finally, we conclude with the future work in the “Conclusion and Future Work”

section.
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Methods
Interest Prediction: The Bayesian Perspective
In this section, we describe the theoretical foundation of the proposed work. The method
takes its inspiration from the Bayesian inference. Bayesian statistics is a branch of study
that has found its way in many disciplines and is especially well appreciated in cases of
linearity and non-linearity. With respect to the Bayesian inference and considering the
case of the interest prediction problem, the goal of the paper is as follows:

Given a series of activity for a person x measured for m time units, where the activity
vector is defined as A, = {Al ,Ai, ..., A%}, AT is the numerical value of activity at the
mth unit of time, we have to infer the interest vector I, , where I, is defined as follows:

Le={n,.. o
Here, I'’ is the interest at the mth unit of time.

To begin with the Bayesian inference, the procedure employed in the paper is graph-
ically explained in Fig. 1. As per this figure, and for interest quantification problem,
we need two functions, viz., (1) the transformation function and (2) the measurement
function. With respect to the first function, we know that interest evolves itself with
time. Therefore, to mathematically represent the phenomenon, we need a transformation
function. This is expressed as follows:

Iy = ft(lt—l; ), (1)

where Tt: R1 x RY — R is called as the transformation function. The function evolves
numerical interest values in the interest space, ; is i.i.d. noise element with {tr; € A'(.)}.
For the interest quantification problem, the objective is also to transform the interest
space into the observation space. In simple words, interest stimulated the self to take
actions, thus, there is activity. To computationally map this event, we need a measurement
function. This is defined as follows:

Ay = gy, hot) (2)

Transition Function

Human Internal

State Space ® Measurement Function Observation Space

Fig. 1 Bayesian inference for interest prediction problem
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where 771;: R7 x R” — RP, hyy is i.i.d error.

Further, it is common in practical Bayesian inference problems that the two specified
functions are parameterized. In this regard, let us assume that the functions are parame-
terized by y, also called as the parameter vector. Following the rules of Bayesian statistics,
we first have to obtain the prior. This is done using Chapman-Kolmogorov equations:

p A1, y) = /P Uelg—1, A1, 7)) p Us11As—1,¥) dl; 1 (3)
I

Bayesian inference works in two stages: (1) predict and (2) update. Using Eq. (3), we
predicted the interest’s value from activity. In the update stage, as soon as new observa-
tion (regarding activity) is fed to the algorithm, we modify the current information and
calculate the posterior probability density. We use the following equation for this:

Al v) p Uil A1, y)
pUilAy, y) = LEe VP Y (4)
p AslAs—1,y)

The denominator is expressed as

pAdAr ) = / 2 Aull At ) p Ul Aret, v) dls (5)
I

From Egs. (3) to (5), we now have a theoretical understanding of the problem and
its possible solution. The next step is to provide a computationally feasible method. To
do that, we need specific definitions for the measurement function, the transformation
function, a procedure to calculate activity, and a Bayesian filter. We define each of these
components in the following sections. We start with the procedure to calculate activity.

Computationally Measuring Activity

It was discussed in the “Introduction” section that interest transforms into activity. How-
ever, we also pointed out that activity is an abstract concept. In this section, we present
a method to computationally measure activity. In this context, let us understand the
method from a general point of view. If we go into the details of the term activity, we
realize that it is a concept that has several aspects. To exemplify this, consider the case
where one is interested in a mobile game. In this case, the possible perspectives of activ-
ity are as follows: the amount of time spent playing, the number of gaming sessions in a
day, the gap between subsequent sessions, and so on. From this use case, we can see that
interest facilitates actions that span a broad array of perspectives. In other words, there
are several points of view of showing interest; therefore, we must record activity by taking
into account these different perspectives. In this regard, let us consider that activity has
z different perspectives. Mathematically, activity at any time period @ is a function of z
attributes. This is expressed as

A?:?(u‘f,a&p,....af) (6)

where the attribute af denotes the bth perspective of activity at time @, e.g., if we consider
the previous use case (a person is interested in a mobile game), a; can denote the amount
of time spent playing (on any day), 451 can denote the number of gaming sessions, and
SO on.

After discussing the perspectives of activity, the next objective is to define the function
1. To that end, we choose a weighted approach [23, 24]. Using this method, we get the
following equation:
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l(ay,an, . ...a;) = Z wia; (7)
i=1

where wi € {0, 1} is the weight of the ith attribute @; and } ;_, wf! = 1.

It should be noted here that for the function J, the attributes (or perspectives) of activity
are always context and application dependent. Moreover, they must be considered sepa-
rately for every object of interest. For instance, consider the scenario where a person is
interested in a social networking website (for any reason), the possible perspectives of
activity are the following: the number of messages, the number of profiles browsed, the
number of times a user logged in, the duration of each login session, etc., whereas when
a person is interested in an outdoor sport (e.g., football), the perspectives could be the
amount of time spent playing, time spent practicing, time spent learning game strategies,
and so on. To generalize this behavior, we can see that we do not have a single, definite, and
universal attribute set for every aspect and application-dependent perspectives of activ-
ity. We have to identify the attributes and have to measure activity for every application
or entity of interest separately.

After outlining the idea of perspectives, let us proceed to the next issue: how to calcu-
late weights (w;‘\). This is because weights specify the numerical preference of a person
towards the available perspectives of activity. In practice, there are a number of factors
that influence the choice and alignment of a person towards a particular perspective of
activity. We have observed it many times that two people interested in the same object
need not show the same preference towards a specific perspective. To exemplify this, con-
sider the case of social networking websites, e.g., Facebook, some people can show bias
towards the number of messages. That is, if they engage in chats, it signifies a much higher
level of interest. On the other hand, some people could show bias towards the number
of profiles browsed, i.e., they like to browse the profiles of other people. Similarly, oth-
ers spend a long duration of time surfing through their respective walls. Another way of
stating and generalizing the idea is human behavior is sensitive to a variety of factors that
shape one character. Moreover, one’s choices are mostly, though not always, influenced by
one’s subjectivity. Therefore, the method to calculate weights must incorporate the sub-
jective nature of humans. Literature, however, has pointed out that sometimes choices
made under subjectivity are not the best [25]. One must therefore also consider the ele-
ment of objectivity. With respect to this reasoning, we employ a subjective-objective
approach for allocating weights. We use the formulations presented in [26, 27] for the
purpose.

From the discussion in this section, we have integrated subjectivity and objectivity in the
model. Further, we have the different perspectives of activity. Consequently, the numerical
value of activity (Af) at any time period @ is computed as

Af = aWSAT? + (1 — ) WOAT? ®)

where W is the subjective weight matrix, WO is the objective weight matrix, AT®
denotes the attribute matrix, and @ € (0, 1) is the bias parameter.

Modeling Human Interest
In this section, we present a method to model interest. More specifically, we define the
transformation function shown in Eq. (1). However, before we begin the discussion, we
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must specify that owing to the limitations imposed by the current literature, we do not
have a comprehensive understanding about the continuous and long-term evolution of
interest. As a result, we model interest by discussing a few observations, then we present
the assumptions of the paper. We begin this section with the observations.

1. Interest is stochastic. The motive here is backed by work in analytical psychology
where internal human processes are often represented as stochastic procedures,
e.g., recognition [28]. We can therefore expect interest to be stochastic. If, however,
this is false, then interest is deterministic, and we can predict human behavior at
any time. One can see that this is a contradiction. Hence, interest is stochastic.

2. Interest does not increase continuously with time. To prove this, let us consider the
opposite: interest is an ever-increasing continuous function. However, owing to
typical erratic and inevitable circumstances in one’s daily routine, the cycle follows
an uncertain behavior (for instance, ups and downs). Therefore, using proof by
contradiction, interest is not an ever-increasing function.

3. There is no term called as negative interest. Mathematically speaking, interest can
be zero, i.e., not interested at all, or positive, a factor that specifies some degree of
interest. The everyday term negative interest imply one dislikes an entity. This
statement clearly indicates the absence of interest.

After outlining the observations, let us proceed to the assumptions.

1. Itis assumed that interest fluctuates around a constant numerical value in the long
run. We have observed and experienced many times that when one engages with
an entity (e.g., a video game), then interest is usually high in the beginning, but it
stabilizes in the long run.

2. Interest is assumed to be a diffusion process (A Markov process without jumps).

With this understanding, let us start the procedure to model interest. In this regard,
we draw inspiration from physics. Literature in physics often model some of the most
uncertain phenomena using stochastic differential equations (SDEs). An example of SDE

is given below:
dYt = /,LY[dt + O'YtdBt (9)

where Y is the stochastic variable, i denotes the mean, o corresponds to the volatility,
and dB is called as the Weiner process. It is described as

dB = VdtN(0,1) (10)

In this paper, we use the concept of stochastic differential equations to model interest.
In addition to physics, the motive to look into this procedure is also backed by litera-
ture in uncertainty quantification. Work in this discipline often uses similar equations to
quantify the so-called unquantifiable properties in the real world, e.g., [29, 30]. One can
understand that interest quantification is similar to quantifying uncertainty in the inter-
nal human states. Therefore, following this reasoning, we use this procedure to model
interest. Specifically, we employ a square root-based mean-reverting stochastic differen-
tial equation [31] to capture the dynamics of interest. It is an extension of the famous
Ornstein-Uhlenbeck process [32]. The equation for square root-based mean-reverting
stochastic procedure is described below
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dl; = M(u — I(t))dt + o+/1,dB; (11)

In this equation, A corresponds to the convergence speed, u is the mean value, o
denotes the volatility, and I; is the interest value at time t. Further, A,0, 4« > 0. The

following points summarize the equation in its physical form.

e The equation describes the motion of a particle in space. The movement of the
particle follows a random behavior at each interval of time.

e ) denotes the speed of the particle.

® ;. is the long-term mean value. 1 corresponds to the point in space where the particle
will settle down in the long run (this property is called as mean reversion).

¢ o is the volatility component that controls the extent of randomness in the particle’s
motion.

e The term o+/I; avoids the possibility of having negative interest values.

The expectation and variance of the equation are as follows:
E[L]=e o+ pu(1—e ™) (12)

and
2

o, _ _ o2 a2
Var [I,] = E[(I; — E[[]))*] = lo— (et —e ) + o (1—e™) (13)
The transition density for Eq. (11) is

v\4/2 172
u) By (2un)'?) (14)

Il = e~ (

where ¢ = 21/(02(1 — e™*)), u = cl,_1e™*", v = cl;, ¢ = 2Ap/0? — 1, and B, is
the modified Bessels function of the first kind of order g. Before we proceed further, let
us go back and focus on Eq. (11). An important point of note for this equation is when
t — 00, the process stabilizes around a numerical value (recall that interest stabilizes to a
particular value in the long run). From Egs. (12) and (13), we have
o2
tlirgoE[It] = Mtlggo Var[ 1] = BT (15)
Following these mathematical foundations and properties, we use Eq. (11) to capture the
dynamics of interest. The formulation of the process, however, is not complete. We must
point it out that we are trying to make the procedure of interest quantification automatic;
consequently, we need to go into more detail. In this context, and from Eq. (11), we see
that the framework is dependent upon three crucial parameters: A, 4, and o. We there-
fore need a method to estimate their values. This procedure is explained in the following
subsection.

Parameter Estimation

In literature, there is huge body of work dedicated to the study of parameter estima-
tion for stochastic differential equations (SDEs). It has been argued several times that if
the parameters of the equation are correct, we can get good numerical estimates of the
modeled phenomenon [33]. Parameter estimation for SDEs, however, is non-trivial (the
results are extensively elaborated upon in literature, e.g., [33]). Nevertheless, we must find
close-enough values. In this paper, we use one of the approximation techniques. More
specifically, we estimate the parameters of Eq. (11) using the method of least squares [34].
The procedure is elaborated upon in the following.
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To estimate the parameters, we apply Euler-Maruyama method [35] to Eq. (11) and get
the following expression:

L1 =L = A(u — DAt + o/ Ie; (16)
where €; ~ N (0, At). Simplifying the expression, we get

Ior — I = AMuAt — M At 4 0/1e (17)

It+1 _It _ )\,U,At
VI VI

For the parameter estimation problem, we first have to get the estimates (x, ) for (A, ).

— WAt +oe (18)

For this purpose, we minimize the following objective function:

n 2
oA . Iip1 — Iy Ault
(A, ) = argmin ( — + AﬁAt
2\

Taking the partial derivative of this expression w.r.t A and u, setting the derivatives equal

to zero and simplifying the result produces the following equations:

Q

5\ = 5 n—1 n—11 (19)
(n* =2n+1—=3 I )iy )t
and
n—1 n—1 I n—1
o =D e = TP I
P (20)
Q
where
n—1 n—1 1 n—1 n—1 1 nfll
) t+1
=n =2 1 I — — 1 —— (-1 —_— 21
R R N R o

The estimate & for o is calculated as the standard deviation of the residuals. The final
expression is shown below:

1 S (- i 2
o= — — —— 4+ A/ 22
n_22< N/ ff) 22

=1
Using this procedure, we have the estimates (A, [1,6) of (A, 1, o), hence, we have a data-

driven statistical method that can effectively model interest.

Interest Resulting Into Activity

From the discussion in the “Introduction” section, we know that interest results into activ-
ity. In this section, we describe the mathematical tool for the objective. Specifically, we
define the measurement function of Eq. (2). To formulate the function, we neither assume
that interest completely results into activity nor that the measurement function is accu-
rate. Consequently, following the method used in Bayesian inference problems [36], we
use a regression model to transform interest into activity. This is expressed as

Aj(8) = O + O1(t) + Y (23)

where A;(¢) is the activity at time ¢, ¥ is i.i.d error term, and ®p, @1 > 0. Note that the
numerical value of ®y & O is time dependent. Further, the values are estimated as soon
as new information is fed to the algorithm. In other words, we perform online estimation.
This, however, is comparatively simple. We use least square error [34] for this purpose.
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Similar to the parameter estimation problem discussed in the “Parameter Estimation”
section, the parameters of Eq. (23) are estimated by minimizing the following objective
function:

argmin W (0, ©1) = Z [A; — (O + O1L:(1)]
i=1

Differentiating the above equation w.rt. ®y and ©@;, equating the result to zero, and
simplifying, we get the final expressions as follows:

_ pI (Ii - j) (Ai _A)

1 — (24)
Z?:l (Ii - 1)
Op=A— 0,1 (25)
where I = %,A = %.

From the procedure discussed in this section, we have the definition for the mea-
surement function. Hence, we have a model-based structure that can estimate interest.
However, before we can solve the interest quantification problem, we need one more com-
ponent. In this context, we direct the attention to the “Interest Prediction: The Bayesian
Perspective” section and Bayesian inference. The Bayesian inference problems rely upon
three ingredients: (1) the measurement function, (2) the transformation function, and
(3) A Bayesian filter. Until now, we have the definition of the transformation function
(Eq. (11)) and the measurement function (Eq. (23)). We need a Bayesian filter. For this
purpose, we use Monte Carlo simulations. Specifically, we employ particle filters.

Particle Filters

Algorithm 1 Particle Filter.

Input: The Activity Vector, A¢, € € {1, 2,...,n}.

Output: The Interest Vector, I, £ € {1, 2,...,n}.

1. At t = 0, generate a series of Z particles Pr, where Pr = {p', p?, ., p*}, p* =(n*, w¥).

2 2
Further, sample each particle as: nk ~ ———e =) /2%,
P P 0 ORN 27
2. For iterations, j = 1,2,...,IT,

3.Forx =1,2,...,Z, sample nf|ny_, via Eq. (11).

4. Predict activity AA’; for every particle py via Eq. (23).

5. Set 7y, = (ny,_1, nF) and calculate weight. Weight w} is computed as: w} =
L ~(a-) 23

o210 '

6. Calculate the total weight of particles T:Zf:1 w}.

7. Normalize weights wf=T"1 x w?.

8. Resample particles based on importance factor (weights).

9. Measure interest by taking mean of the particles p(n;) € Pr.
Go to next Iteration.

end iteration.

Estimate the parameter of Egs. (11) and (23).
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Particle filters (PFs) are probabilistic algorithms that are frequently encountered in
uncertainty quantification and Bayesian inference problems. They are a member of the
Monte Carlo class of simulations. PFs have been found to be highly efficient in cases
where the underlying structure of the model is not accurate [36]. This property is espe-
cially beneficial for the interest quantification problem as precise evolutionary dynamics
of the model are unknown. PFs target high-density areas of the interest space to compute
close numerical values. The algorithm represents the posterior by a group of particles
and a set of associated weights. As the state space increases, the particles converge to
the approximate posterior density, thereby producing good numerical estimates of inter-
est. For this purpose, the system is provided a set of particles, Pr, at time t, Pr = (n}, w}).
Here, x = {1,2,..Z}, Z = the number of particles, 7! represents a numerical hypothesis
for interest, and w! is the weight (or the importance factor) of the xth hypothesis with
Zle w; = 1. The weights are chosen via importance sampling (step 5). PFs propagate
each probable estimate sequentially and support every hypothesis using the importance
factor, thereby providing good approximate values for interest. For reasons of brevity,
the exact procedure of the particle filter with encoded definitions of the transformation
function and the measurement function is summarized in Algorithm 1.

Gaps in Activity

Until now, we have discussed a method to infer interest from activity. However, the
framework has a shortcoming: The algorithm cannot infer interest in cases of activity
gaps. To understand this issue, let us assume a situation where a person is interested in
playing football on the field (and has been playing it everyday). But, as is common in
practical situations, for several uncertain and unexpected reasons (e.g., one is occupied
somewhere), the person is not able to play the game on the “current” day. Thus, there
is no activity. However, it is understood that interest is not zero on the day when there
is no activity. This use case exemplifies the problem of the activity gap. To tackle this
issue, we use the idea of K-step ahead prediction density. In other words, when contin-
uous observations are not available, we discard Eq. (3) and use the following theoretical

equation:

P (LsrlAi—1,y) = /;P (Tl Te-1,Ae-1, V) p (Tgk—11As—1, ¥) ALy k1 (26)

To provide a computationally feasible solution from the above representation, we use
Eq. (11) during activity gaps. To put the idea in simple words, when we face the situ-
ation of the activity gap, the system automatically evolves interest in the next interval
of time. For instance, in the previous use case (where one is interested in playing foot-
ball), the system automatically uses Eq. (11) on the day the person is not able to engage.
In this case, note, we can predict the interest’s value, but we cannot update it. How-
ever, once new information (about activity) is available, we use Egs. (11) and (23) to
predict and update the interest value using particle filter. Thus, we have a method
similar to the continuous time model of interest. This type of modeling is benefi-
cial as we mathematically expect any internal human state to be a continuous time
function.
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Results

Data Collection and Experimental Setup

To validate the viability of the proposed theory in practice, we experiment with real
datasets. More specifically, we use the datasets provided by StackOverflow!. This plat-
form is a mature and a highly respected Q&A discussion forum on the Internet. Further,
it has one of the largest public data repositories. Owing to these characteristics, it has
attracted a good amount of attention in literature. Work has found that the users of Stack-
Overflow are addicted to participate in its daily activities [37, 38]. Therefore, this online
platform presents an excellent opportunity to test the feasibility of the model in real sce-
narios. In this regard, and to test the model, we collected the granular details of 250 users
online?. This was done on a daily basis for one whole year. As the data was collected
on a day-by-day basis, therefore, interest was also estimated daily. For the purpose of
discretization (of SDEs), we use the Euler-Maruyama method [35].

In this paper, we have deduced interest from activity. Therefore, the first step in the
experimental setup is to calculate activity. Recall that we discussed in the “Computa-
tionally Measuring Activity” section that activity depended upon several attributes (or
perspectives). In this regard, and for the purpose of experimentation, we collected the fol-
lowing attributes: (1) the number of comments, (2) the number of answers, (3) the number
of questions, (4) the number of edits, and (5) the time to answer a question. Owing to rea-
sons of privacy, we could not include more attributes. Nevertheless, with these numerical
attributes, the procedure to calculate activity is elaborated upon in the following points.

Activity Calculation

1. We fed the system a pairwise comparison matrix to calculate the value of the
weights. This was done by following the method discussed in [26, 27]. The
subjective-objective weight matrices obtained after applying the procedure are
presented in Table 1.

2. To explain the procedure of activity calculation in detail, an example is discussed in
Table 2. In this table, we have presented the case of one random user. Further, and
for illustration purposes, we have shown activity calculation for 7 days only (one
can generalize the method for any number of days). It was specified in the above
paragraph that we collected five different attributes from StackOverflow. They are
represented under the column: AT1, ..., AT5. From this data, we then normalized
the attributes between 1 and 10. The normalized attributes are highlighted under
the column: NT1, ..., NT5. The matrix containing these normalized attributes is
called as the attribute matrix. Recall that to calculate activity via Eq. (8), we need

the attribute matrix, the subjective-objective matrices, and the bias parameter.

Table 1 Subjective-objective weights for the experiment

Attribute Subjective Objective
Answers 0.1549 0.5941
Questions 0.1333 0.1166
Comments 0.2127 0.0916
Edits 0.1944 0.0536

Time to answer 0.3047 0.1441
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Table 2 Activity calculation

AT1 AT2 AT3 AT4 ATS NT1 NT2 NT3 NT4 NTS Activity

Day 1 1 1 1 1 46 1 1 1 1 1.003 1.0005
Day 2 1 1 1 1 15 1 1 1 1 1 0.999
Day 3 1 1 1 1 236 1 1 1 1 1.0211 1.0043
Day 4 1 1 1 1 156 1 1 1 1 1.0138 1.0027
Day 5 5 1 1 2 91,920.2 10 1 1 10 10 763
Day 6 4 2 1 1 325 7.75 10 1 1 1.001 4933
Day 7 3 1 2 1 113 55 1 10 1 1.009 4.1451

Subjective weight matrix: [0.1549, 0.133,0.2127,0.1944, 0.3047], objective weight matrix: [0.5941, 0.1166, 0.0916, 0.0536, 0.1441],
bias parameter « = 0.6; activity for day 1 was calculated as: 0.6x(0.1549 % 1 4+ 0.133 % 1 + 0.2127 % 1 4 .1944 % 1 + 0.3047
1.003) + (1 — 0.6) x (05941 % 1+ 0.1166 % 1 + 0.0916 % 1 + 0.0536 * 1 4 0.1441 % 1.003) = 1.0005

Abbreviations: ATT attribute 1, AT2 attribute 2, AT3 attribute 4, ATS attribute 5, NTT normalized attribute 1, NT2 normalized
attribute 2, NT3 normalized attribute 3, NT4 normalized attribute 4, NT5 normalized attribute 5

3. From steps 1 and 2, we obtained the attribute matrix and the subjective-objective
weight matrices. Further, with the bias parameter (@) as specified in the table, we
used Eq. (8) to calculate the numerical values of activity. The resulting activity
vector is shown in the table under the heading activity. An example for day 1 is also
explained in the table.

4.  Steps 1-3 were followed on a daily basis for 250 users, thereby the data consisted of
250 activity vectors. The dataset for numerical activity is made public and can be
found at https://drive.google.com/file/d/0B-evB9aVUINtbm1YNIZnOVMtVmc/
view?usp=sharing.

Once we obtained the activity vector, the subsequent step was to predict interest. The
following points summarize the procedure to obtain the numerical interest values.

Interest Estimation

o After calculating activity, we coded the definitions of the transformation function
(Eq. (11)) and the measurement function (Eq. (23)) into the particle filter. In terms of
Bayesian statistics, the Bayesian filter was encoded with the state model and the
output model.

e Once the definitions of the two functions were encoded, the subsequent step was to
feed the particle filter the input data for activity. The data for activity was obtained by
following the procedure described under the “Activity Calculation ” section.

e Lastly, we used Algorithm 1 to predict the numerical interest vector for all the 250
users. In other words, using basic rules of the Monte Carlo simulations, we obtained

250 interest vectors.

As is commonly known in Bayesian inference problems, the method is not only able to
estimate interest, but it can also predict activity. Therefore, based on the predicted value
of activity and the actual activity available to the system, we evaluate the performance
of the model. We have chosen the traditional RMSE & MAE as the error metrics. The
procedure to obtain the error values is explained in the following points.

Procedure to Obtain RMSE and MAE
1. From the procedure discussed under the heading interest estimation, we obtained
250 interest vectors as well as 250 “predicted” activity vectors. Further, from the
procedure explained under the “Activity Calculation ” section, the system had 250


https://drive.google.com/ file/d/0B-evB9aVUINtbm1YNlZnOVMtVmc/view?usp=sharing
https://drive.google.com/ file/d/0B-evB9aVUINtbm1YNlZnOVMtVmc/view?usp=sharing
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“actual” activity vectors. Therefore, using the basic rules of error calculation, we
computed the RMSE and MAE for every user separately.

2. From the previous step, we obtained 250 RMSE and MAE values (one for each
user). We then took the average of all the 250 RMSE and MAE values, thereby we
obtained only one numerical value for RMSE and MAE.

3. We repeated steps 1 and 2 50 times. As a result, we obtained 50 numerical RMSE
and MAE values.

4.  We then took the average of the 50 numerical error values obtained from steps 1-3
and obtained a single number. We present this value in the paper. It represents an
overall measure of the predictive capability of the system.

Prototype Development

To demonstrate the feasibility of the method in practical deployment scenarios, we have
implemented a prototype. The proposed method has been successfully deployed as a
RESTful service on a web server. The application was developed using JAX-RS3. The
application container to host the services was Apache Tomcat v7.0.41. The mathemat-
ical functions were implemented from Apache Common Math library*. The prototype
was developed using JAVA programming language. The configuration of the machine to
conduct experiments was Intel i7 processor, 8 GB RAM, and Ubuntu 12.04 LTS OS. A
snapshot of the developed application is shown in Fig. 2.

Model Analysis

To begin with the analysis, we have shown the probability distribution function of interest
in Fig. 3 (the data in the graph is normalized). Further, the evolution of interest is also
presented in Fig. 4. In the two figures, the result for only one random user is presented (all
other users follow similar behavior). It is visible from Fig. 4 that the evolution of interest
repeatedly follows several ups and downs. Therefore, from this evidence, one can deduce
that interest takes on a wide array of numerical values. If we consider typical everyday
uncertainty and certain erratic circumstances in one’s daily routine, this type of evolution
is expected. For instance, if a person is interested in playing a mobile game, then it is
logical to expect that the person will not have the same interest in the game for every
hour of the day. Moreover, this pattern is in line with the stochastic (and chaotic) nature
of interest as discussed in the “Modeling Human Interest” section.

192.168.1.86: ve 8 3+ A O =

Prediction Results Stored in Database

B

;364D D BT

Fig. 2 A snapshot of the developed prototype




Ahmed and Srivastava Journal of Uncertainty Analysis and Applications (2016) 4:9 Page 15 of 21

0 1 1
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Fig. 3 Probability distribution of interest for one random user

The predictive capability of the framework is shown in Fig. 5. In this figure, the results
for activity prediction are presented. We have compared the actual activity with the pre-
dicted activity values. For reasons of brevity, the results for only one user is presented. It is
visible from the figure that that the result for activity prediction is not accurate. However,
from Fig. 5, we can see that the prediction is getting close in the later stages. We must
point out that the initial estimates are off margin owing to the problem of parameter esti-
mation. Recall that the framework is dependent upon several parameters. In this regard,

T ]
—>— Interest Values|]

i

Predicted Interest

0 I I I I
50 100 150 200 250
Instance ID

Fig. 4 Evolution of interest for one random user
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Fig. 5 Predicted observations vs actual observations

it is commonly known that to have a close-enough value of the parameters, we need sub-
stantial quantities of data. Moreover, even if we have enough data, parameter estimation
(for SDEs) is challenging [39]. In this context, we must also point out that we are dealing
with uncertainty quantification in the internal mental states. The objective in such type
of problems is to get close numerical approximations [36].

Comparison with Similar Procedures

In this section, we test the performance of the proposed model for interest. More specifi-
cally, we test the feasibility of the square root-based mean-reverting stochastic differential
equation (Eq. (11)) to capture the dynamics of interest. We have compared the perfor-
mance of the framework with some of the widely followed procedures in literature. We
compare the performance with random walk (RW), geometric Brownian motion (GBM),
and the Ornstein-Uhlenbeck (OU) process [32].

To begin with the purpose of comparison, we first predict activity using the proposed
model for interest, i.e., Eq. (11). Subsequently, we discard this equation and model the evo-
lution of interest via RW. Similarly, we next model interest via GBM and the OU process.
We keep the rest of the procedure as it is (i.e., Eq. (23) and Algorithm 1 is kept intact) and
estimate activity. With this experimental setup, the results are shown in Table 3. It is vis-
ible from the table that the results for RW and GBM are not satisfactory. These methods
are widely applied in many practical applications. Further, they are commonly followed to
model the internal mental states (of a human) in several papers, e.g., [40—42], but when
we model interest using these methods, the performance is not satisfactory. Specifically,
the results for RMSE are compromised. However, when we employ the OU process as a
model for interest, we see an improvement. This is because the OU process belongs to the
class of mean-reverting stochastic differential equations. With respect to this statement,
the performance of the proposed method is even better. We get the best performance
with the proposed method. If we focus on the numbers, then with respect to RW, GBM,
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Table 3 Comparison of the proposed model with similar procedures

MAE RMSE
Random walk 1.6702465926 2.763589123
Geometric Brownian motion 19440715077 5.025938536
Ornstein-Uhlenbeck process 16006146649 1.9056068
Proposed framework 146330893 1.78828697

and the OU process, MAE improved by 12.38, 24.72, and 8.57 % and RMSE improved by
35.29, 64.41, and 6.15 %, respectively. These figures demonstrate good performance of the

framework.

Impact of Varying the Parameters of Particle filters

In addition to testing the performance of the base model, we also experimented by varying
the parameters of the particle filter. In this direction, there are two parameters: (1) the
number of iterations and (2) the number of particles. When the number of iterations
is high, the particles are given enough time to explore a good solution, whereas if the
number of particles is high, then the space exploration of the algorithm is good. However,
both the two procedures increase the computation time. In this regard, the result for
the former parameter (iterations) is shown in Table 4. In this test, we have varied the
number of the iterations from 10 to 100. It is visible from the table that increasing the
number of iterations improves the accuracy. However, at the same time, it also increases
the computation time. Therefore, the results ask for a compromise between accuracy and
computation time.

Similar to varying the number of iterations, we also varied the size of particles. The
results for this test is shown in Table 5. From the table, we can see that when we increase
the number of particles, we improve the performance of the model. However, in contrast
to the results discussed in the previous paragraph, the improvement is by a small margin.
But it is visible from the table that the execution time increased by a good number. Thus,
from the results presented in Tables 4 and 5, one has to find an optimal balance between

particle size, iteration count, and execution time.

Discussion and Limitations
In this section, we analyze the practical implications of having a computational agent
deduce interest and, at much the same time, we examine the limitations with the proposed

work.

1. Theoretically speaking, the method can quantify interest from measurable activity.
However, from a practical point of view, it is not universal. The proposed model

Table 4 Accuracy and execution time for different iterations. Number of particle = 20

Number of iterations MAE RMSE Execution time (ms)
10 1.8205927612 2.0737191934 26,017

20 14398928187 1.7549857745 50,180

30 1.1140898629 15255709094 70,207

40 0.8602689489 1.3382325218 89,795

50 0.6233805855 1.2421697673 103,734

100 0.2821038912 1.0196928238 178,232
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Table 5 Accuracy and execution time for different numbers of particles. Iteration = 10

Number of particles MAE RMSE Execution time (ms)
10 1.8206345202 2.0835584618 12,818
20 1.8198054154 2.0735584618 24,876
30 1.8161826225 2.0460381487 31,761
40 1.8139458681 2.0417554565 38,753
50 1.8132130837 2.0382101465 45,859
100 1.8130539885 20361421347 86,864

will fail in situations when the system cannot measure activity. The prevailing
technology is not advanced enough to observe activity for every possible
application and object of interest, for instance, we cannot measure activity in the
case when a person is interested in reading books. In this scenario, the system is
incapable of recording activity; therefore, we do not have data. The presence of
data is imperative for the proper working of the system. Hence, for this and similar
situations, we cannot estimate interest.

Connected to the previous problem is the situation where a person is interested in
an entity but has not taken any steps to express interest. We understand that
interest is an intangible mental variable that we are trying to model via
computational approaches. Therefore, we have to face several mechanistic realities.
That is, if we expect to estimate interest via machines, then data must be fed to an
algorithm. If interest is only considered as an inner feeling, as something that can
be expressed without any perceptible medium (or media), then we cannot expect a
computational agent to quantify this construct. In this regard, and similar to the
previous point, we need data to support the operations of the system. The absence
of which leaves the system incapable of working.

One can deduce that through the procedure employed in this paper, we get a
number for interest. But a good question is What does the number imply. This
question has two points of view.

e First, comparing the interest of users. It should be noted here that there is no
criterion to compare the interest of people on a common scale. For example, a
user has an interest of 0.1, whereas another one has an interest of 0.4 (towards
a common entity). This does not imply that the second user is more interested
in the entity of common interest. We cannot compare the interest of one
individual with the interest of another by weighing them both on the same
scale. The rationale here is backed by work in psychology. To explain the idea,
we quote a few words: Interest is an active propulsive state that is aligned
towards real objects, and has a high personal definition [4]. In the context of
these lines, we must specify that interest has a “personal” meaning. In simple
words, every user has his/her own way to express interest. For the interest
quantification problem, we must not make the mistake of defining a common
criterion to measure interest.

¢ The second point of view is How to devise an algorithm that can understand
or feel the number. This question is rather tough to answer. Although,
literature in affective computing have devised several methods for emotion
quantification, but an accurate computational method that can

Page 18 of 21
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understand/feel human like emotions, or any other internal mental state, is
tough to implement. Nevertheless, we must point out that we have not tried
to answer this question. We have tried to find the number.

4.  The last problem is the mathematical framework.

® We have modeled interest using a square root-based mean-reverting
stochastic differential equation. Mean-reverting stochastic differential
equations are employed in a plethora of work that deals with uncertainty, e.g.,
[43-46]. However, it is not claimed here that the proposed model is accurate.
Interest quantification is a challenging task. We need more efforts. Moreover,
efforts need not be limited to mean-reverting procedures.

e The second problem is parameter estimation. Accurately predicting
parameters of SDEs is a standing problem in literature. Work has specified: if
the parameters are precise, we can obtain good approximates of the
underlying phenomenon [39]. However, parameter estimation is non-trivial.
We therefore employed one of the approximation techniques. Consequently,
the method suffers from performance issues. Nevertheless, the numbers
presented in the “Results” section show acceptable performance.

® We modeled the transformation of interest into activity through a regression
model. To back this rationale, we quote a few words: “Existing computational
assume a positive correlation between stimulation and curiosity” [47]. In this
paper, we worked along the idea behind these lines. Although it is acceptable
that interest and activity can have a positive correlation, but we do not claim
that this idea is universal. One has to understand that similar to modeling
interest, engineering a statistical procedure to transform interest into activity
is also non-trivial. We need more efforts to statistically understand the way

interest transforms into activity.

Conclusion and Future Work

In this paper, we proposed a method to model and correspondingly estimate interest
using statistical procedures. Interest prediction problem was formulated as a hidden state
estimation problem, and a solution was provided via Bayesian inference. Activity was
calculated via a subjective-objective weighted approach. Subsequently, indirect inference
rules were employed to infer numerical estimates of interest from activity. A model for
interest was proposed by drawing inspiration from physics. Interest was modeled as a
square root-based mean-reverting stochastic procedure. Particle filter was employed to
provide a computationally feasible solution to the problem. A prototype was developed
and experimentation was performed on real datasets. Through numerical investigation, it
was found that the procedure showed acceptable performance. Several limitations of the
proposed method were discussed in detail.

The work presented in this paper just scratched the surface on estimating and modeling
interest. For the future work, we need to improve the accuracy of the model. Purely from
an engineering point of view, we saw that mean-reverting stochastic procedures are a
good option to model interest. However, we need to test the mathematical aspects of
the theory in detail. Moreover, we need to look into advanced procedure to model the
evolution of interest.
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