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Abstract

In order to solve the optimization problem of selecting the decision with maximal
chance to meet the Sugeno event in Sugeno environment, dependent-chance
programming on Sugeno measure space is proposed, which can be considered
as a generalized extension of the stochastic dependent-chance programming.
Firstly, the theoretical framework of dependent-chance programming on Sugeno
measure space is established. Secondly, a Sugeno simulation-based hybrid approach,
which consists of back propagation neural network and genetic algorithm, is presented
to construct an approximate solution of the complex dependent-chance programming
models on Sugeno measure space. Finally, some numerical examples are given to
illustrate the effectiveness of the approach.

Keywords: Sugeno measure space, Dependent-chance programming, Sugeno
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Introduction
There are a lot of uncertainties in decision sciences, engineering, information sciences,

system sciences, etc. By uncertain mathematical programming, we can solve

optimization problems under uncertain environment. The first method of uncertain

mathematical programming is the expected value model (EVM) [1–4] which optimizes

the expected objective functions to satisfy some expected constraints. The second

method is named chance-constrained programming (CCP) [5–10] which is a way to

solve optimization problems by assigning a confidence level at which the constraint

holds. Occasionally, a complex decision system undertakes multiple tasks called events,

and the decision maker wishes to maximize the chance functions of satisfying some

events [11]. In order to solve the problems, Liu initiated the third method of uncertain

mathematical programming named dependent-chance programming (DCP). He firstly

proposed the DCP in stochastic environments [12], and then, he gave the theoretical

frameworks of DCP in fuzzy environments [11, 13], random fuzzy DCP [14], and fuzzy

random DCP [9]. In the past few years, DCP has been used to solve many optimization

problems, such as the dynamic facility layout problem [15], the bi-level resource-

constrained project scheduling problems [16], and the inventory modeling problems

without and with backordering [17].

In spite of multiple DCP being made, there also exist some limitations. For example,

stochastic DCP is established on the basis of the probability measure which should
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satisfy the additivity, and fuzzy DCP deals with the problems containing fuzziness. But

in reality, this requirement for additivity cannot be easily satisfied or might not be satis-

fied at all [18]. In addition, we may deal with problems without fuzziness. Therefore,

we introduce DCP on the Sugeno measure space. Sugeno measure space is one meas-

ure space based on Sugeno measure. Sugeno measure is one type of representative non-

additive measures and an important generalization of probability measure [19]. Let us

give an example of purchasing apples to illustrate the point. For convenience, let the

universe of discourse consist of two properties characterizing the apples such as suit-

able price (a) and suitable quality (b), say X = {a, b}. Let P(X) denotes the power set of

X and μ describes an importance degree or a purchasing possibility of various elements

of P(X). Apparently, apples with too high price (no suitable price) and too low quality

(no suitable quality) will not be purchased. In this case, the purchasing possibility is

equal to 0. Moreover, we will purchase apples with suitable price and suitable quality.

In this case, the purchasing possibility is equal to 1. Usually, the quality is more import-

ant than the price, so this might result in purchasing possibilities of purchasing apples

with only suitable price and only suitable quality are 0.5 and 0.2, respectively. Let

μ Eð Þ ¼
0; E ¼ ϕ

0:5; E ¼ af g
0:2; E ¼ bf g
1; E ¼ X:

8>>><
>>>:

This measure could express the subjectivity permeating above problem. Evidently, the

above measure μ is nonadditive (μ(X) ≠ μ({a}) + μ({b})), that is, μ is not a probability

measure. We can show that μ is a Sugeno measure with λ = 3 [19]. Sugeno measure

and Sugeno measure space have been researched by many scholars. Wang and Klir [19]

gave the basic definitions and properties of Sugeno measure. Ha et al. [18] proposed

the key theorem and the bounds on the rate of uniform convergence of learning theory

on Sugeno measure space. Ha et al. [20, 21] gave the key theorem and the theoretical

foundations of statistical learning theory based on fuzzy random samples in Sugeno

measure space. Shi and Gao [22] researched on quality evaluation of lexical cohesion

based on Sugeno measure. Zhang and Zhang [23] proved Borel-Cantelli lemma for

Sugeno measure. In order to solve the optimization problems on Sugeno measure

space, Ha et al. [24] proposed the expected value models on Sugeno measure space and

Zhang et al. [25] proposed the chance-constrained programming on Sugeno measure

space. The elemental concepts and properties were given, and hybrid algorithms to

solve the above programming were proposed.

The remainder of this paper is organized as follows. "Preliminaries" section discusses

the gλ variable and its characterization, redefines its expected value and variance, and then

revises the strong law of large numbers in [24]. "Dependent-chance Programming on

Sugeno Measure Space" section firstly proposes the concepts of Sugeno environment,

event and chance function, and then gives the principle of uncertainty which is the theor-

etical basis of the DCP on Sugeno measure space. At the end of this section, the theoret-

ical framework of the DCP on Sugeno measure space is established. "A Hybrid Approach

to Solve the DCP on Sugeno Measure Space" section gives a Sugeno simulation-based hy-

brid approach which consists of back propagation (BP) neural network and genetic algo-

rithm (GA) to solve DCP on Sugeno measure space. Section 5 provides numerical
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examples to illustrate the methodology and effectiveness of the approach. Finally, conclu-

sions are drawn in "Numerical examples" section.

Preliminaries
For the sake of convenience and completeness of our investigations, we offer some

basic definitions and properties.

Definition 1 [19] Let X be a nonempty set, ζ be a nonempty class of subsets of X,

and μ be a nonnegative real valued set function on ζ. If there exists λ∈ − 1
supμ ;∞

� �
∪ 0f g

where sup μ = supE ∈ ζμ(E) such that

μ ∪∞
i¼1

Ei

� �
¼

1
λ

Y∞
i¼1

1þ λ⋅μ Eið Þ½ �−1
( )

; λ≠0

X∞
i¼1

μ Eið Þ ; λ ¼ 0

8>>>><
>>>>:

for any disjoint class {En} of set in ζ whose union is also in ζ, then we say that μ satisfies

the σ − λ -rule (on ζ).

Definition 2 Let ℱ be a σ-algebra of subsets of a nonempty set X and μ be a non-

additive real valued set function on ℱ. Then, μ is called a Sugeno measure, if it satisfies

the σ-λ-rule and μ(X) = 1 [18]. Usually, Sugeno measure μ is denoted by gλ. Then, the

triple (X,ℱ, gλ) is called a Sugeno measure space [19].

Obviously, gλ is a flexible non-additive measure due to the parameter λ which could

take different numeric values [18]. When λ = 0, gλ reduces to probability measure and a

Sugeno measure space reduces to a probability measure space. Therefore, we stipulate

that λ ≠ 0 in the remainder of the article.

The following theorem shows the transformations between Sugeno measure and

probability measure.

Theorem 1 [19] If gλ is a Sugeno measure and

θλ xð Þ ¼ ln 1þ λxð Þ
ln 1þ λð Þ x∈ −

1
λ
;þ∞

� �� �
;

then θλ ∘ gλ is a probability measure.

Conversely, if P is a probability measure and

θλ
−1 xð Þ ¼ 1þ λð Þx−1½ �=λ x∈ −∞;þ∞ð Þð Þ;

then θλ
− 1 ∘ P is a Sugeno measure.

Definition 3 [18] Let (X,ℱ, gλ) be a Sugeno measure space. A function ξ : X→ R is

called a gλ variable if {ω|ξ(ω) ≤ x} ∈ℱ for all x ∈ℜ.

Definition 4 [18] The Sugeno distribution function of a gλ variable ξ is defined as

Fgλ xð Þ ¼ gλ ξ≤xf g; ∀x∈ℜ:

Example 1 [24] A gλ variable ξ has a Sugeno normal distribution if its Sugeno distri-

bution function is
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Fgλ xð Þ ¼

1
λ

1þ λð Þ
1ffiffiffiffiffiffi
2π

p
σ

Z x

−∞
e
−
t−μð Þ2
2σ2 dt

−1

8>>>><
>>>>:

9>>>>=
>>>>;
; λ≠0

1ffiffiffiffiffiffi
2π

p
σ

Z x

−∞
e
−
t−μð Þ2
2σ2 dt ; λ ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

denoted by ξ ~ SN(μ, σ2, λ), where μ, σ, and λ are all three real numbers.

Example 2 A gλ variable ξ has a Sugeno λ ‐ 0 ‐ 1 distribution if its Sugeno distribution

function is as follows:

when λ ≠ 0,

Fgλ xð Þ ¼
0; x ≤ 0

1þ λð Þx−1½ �=λ; 0 < x < 1

1; x ≥ 1;

8><
>:

and when λ = 0,

Fgλ xð Þ ¼
0; x≤0

x; 0 < x < 1

1; x≥1;

8<
:

denoted by ξ ~ SU(λ), where λ is a real number.

We can note that ξ ~ SN(μ, σ2, λ) equals to ξ ~N(μ, σ2) and ξ ~ SU(λ) equals to ξ ~U

when λ = 0.

In the following Definitions 5 and 6, the expected value and the variance of a gλ vari-

able are redefined, which revise the definitions in [24].

Definition 5 Let ξ be a gλ variable and Fgλ xð Þ be the distribution function of ξ. IfZ ∞

−∞
xj jdθλ Fgλ xð Þ� �

< ∞ , then we call θλ
−1

Z ∞

−∞
xdθλ Fgλ xð Þ� �	 


an expected value of ξ

and denote it by Egλ ξð Þ or E(ξ).
Definition 6 Let ξ be a gλ variable. If Egλ ξ−θλ Egλξ

� �� �2n o
exists, then we call Egλ

ξ−θλ Egλξ
� �� �2n o

the variance of ξ and denoted it by Dgλ ξð Þ or D(ξ).
Definition 7 [18] The joint distribution function Fgλ : ℜ

2→ 0; 1½ � of a gλ vector (ξ, η)

is defined as Fgλ x; yð Þ ¼ gλ ξ≤x; η≤yf g, for any x, y ∈ℜ.

Definition 8 [18] The gλ variables ξ and η are called independent if for all x and y,

Fgλ x; yð Þ ¼ θλ
−1 θλ gλ ξ≤x; η < ∞ð Þ� �

⋅θλ gλ ξ < ∞; η≤yð Þ� �
 �
:

Definition 9 [24] Suppose that ξ, ξ1, ξ2,⋯ are gλ variables defined on the Sugeno

measures space (X,ℱ, gλ). We say that the sequence {ξn} converges in Sugeno measure

to ξ if lim
n→∞

gλ ξn−ξj j≥εf g ¼ 0 for every ε > 0. In this case, we note lim
n→∞

ξn ¼ ξ (gλ) or

ξn →
gλ

ξ.

Definition 10 [24] Suppose that ξ, ξ1, ξ2,⋯ are gλ variables defined on the Sugeno

measures space (X,ℱ, gλ). The sequence {ξn} is said to be convergent almost surely (a.s.)
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to ξ if and only if there exists a set A ∈ℱ with gλ(A) = 0 such that lim
n→∞

ξn ωð Þ ¼ ξ ωð Þ for
every ω ∈Ā. In this case, we note limn→∞ ξn ¼ ξ (gλ − a. s.) or ξn →

gλ−a:s:ξ .

In the following, the strong law of large numbers of gλ variable is proved, which re-

vises the theorem in [24].

Lemma 1 Let ξ1, ξ2,⋯, ξn be independent gλ variables. If Eξk <∞ and |ξk| ≤ c (k =

1, 2,⋯, n), then for every ε > 0

gλ max
k≤n

Sk−θλ ESkð Þj j≥ε
	 


≤
1þ λð Þ

X
k¼1

n
θλ Dξk½ �
ε2 −1

λ
:

Proof We stipulate that Sn ¼
X
k¼1

n
ξk . Let

Ak ¼ max
j≤k

Sj−θλ E Sj
� �� ��� �� < ε

n o
,

and

Bk ¼ Ak−1−Ak ¼ S1−θλ E S1ð Þ½ �j j < ε;⋯; Sk−1−θλ E Sk−1ð Þ½ �j j < ε; Sk−θλ E Skð Þ½ �j j≥εf g:

Then, the sets Bk, k = 1, 2,⋯, n are disjoint. Let A0 = X. We can see that

Ac
0 ¼ A0−An ¼ A0−A1ð Þ∪ A1−A2ð Þ∪⋯∪ An−1−Anð Þ ¼ ∪

n

k¼1
Bk

and

Bk⊂ Sk−1−θλ E Sk−1ð Þ½ �j j < ε; Sk−θλ E Skð Þ½ �j j≥εf g:

Moreover, we haveZ
Bk

jSn−θλ½EðSnÞ�j2dθλ½Fgλ ðxÞ� ¼ θλEj
�
Sn−θλ½EðSnÞ�

�
χBn

j2

≥θλEj
�
Sk−θλ½EðSkÞ�

�
χBk

j2 ¼
Z þ∞

−∞
½�Sk−θλ½EðSkÞ�

�
χBk

�2dθλ½FgλðxÞ�Þ

≥ε2
Z
Bk

dθλ½FgλðxÞ�≥ε2θλgλðBkÞ:

Then,

Xn
k¼1

θλ Dξkð Þ ¼ θλ DSnð Þ ¼
Xn
k¼1

Z
Bk

Sn−θλ E Snð Þ½ �j j2dθλ Fgλ xð Þ� �
≥ε2
Xn
k¼1

θλ gλ Bkð Þ� � ¼ ε2θλ gλ ∪
n

k¼1
Bk

� �� �
:

Thus,

gλ Ac
n

� � ¼ gλ ∪
n

k¼1
Bk

� �
≤

1þ λð Þ

Xn
k¼1

θλ Dξk½ �
ε2

−1

λ
:

That is
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gλ max
k≤n

Sk−θλ ESkð Þj j≥ε
	 


≤
1þ λð Þ

Xn
k¼1

θλ Dξk½ �
ε2

−1

λ
:

Lemma 2 [24] Let ξ1, ξ2,⋯, ξn be gλ variables. Then, the following statements are

equivalent:

(1)ξn→
gλ−a:s: ξ ;

(2)∀ε > 0; gλ ∩∞
n¼k

∪∞
n¼k

ξn−ξj j≥εð Þ
n o

¼ 0;

(3)∀ε > 0; lim
k→∞

gλ ∪∞
n¼k

ξn−ξj j≥εð Þ
n o

¼ 0.

Lemma 3 Let ξ1, ξ2,⋯, ξn be independent gλ variables. If Eξk <∞, Dξk <∞ (k = 1, 2,

⋯, n) and
X
n

θλ Dgλ

ξn
n

� �� �
< ∞, then

Xn
k¼1

ξk
k
−θλ E

ξk
k

� �� �	 

→
gλ−a:s:

0:

Proof Let ξk
′ ¼ ξk

n , k = 1, 2,⋯, n. Then ξk′ (k = 1, 2,⋯, n) are also independent gλ vari-

ables. It follows that Sn′ ¼
Xn
k¼1

ξk
n

¼ 1
n

Xn
k¼1

ξk ¼ Sn
n and θλ ES′n

� � ¼ θλ E
Xn
k¼1

ξk
k

� �" #( )
.

We need to prove Sn′−θλ ES′n
� �

→
gλ−a:s: 0.

Clearly, ∪
k

S′nþk−ES
′
nþk

�� ��≥ε
 � ¼ ∪
k

max
v≤k

S′nþk−ES
′
nþk

�� ��≥ε	 

is a union of some non-

decreasing sequences. By Lemma 1, we have

gλ ∪∞
k¼1

S′nþk−θλ ES′nþk

� ��� ��≥ε
 �	 

¼ lim

m→∞
gλ ∪

m

k¼1
S′nþk−θλ ES′nþk

� ��� ��≥ε
 �	 


¼ lim
m→∞

gλ max
k≤m

S′nþk−θλ ES′nþk

� ��� ��≥ε	 

≤ lim

m→∞

1þ λð Þ

Xm
k¼1

θλ Dξ′nþk

� �
ε2 −1

λ

¼ 1þ λð Þ

X∞
k¼nþ1

θλ Dξ′k
� �

ε2 −1
λ

:

Since
X∞
k¼1

θλ Dξ′k
� �� � ¼X∞

k¼1

θλ D
ξk
k

� �� �
<∞ , we have

X∞
k¼nþ1

θλ Dξ′k
� �

→0 (n→∞).

Then,

gλ ∪k S′nþk−θλ E S′nþk

� �� ��� ��≥ε
 �	 

→0:

Thus, gλ ∪∞
n¼k

S′n−θλ E S′n
� �� ��� ��≥ε
 �	 


≤gλ ∪
k

S′nþk−θλ E S′nþk

� �� ��� ��≥ε
 �	 

→0.

By Lemma 2, we have Sn′−θλ E S′n
� �� �

→
gλ−a:s: 0. That is
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Xn
k¼1

ξk
k
−θλ E

ξk
k

� �� �	 

→
gλ−a:s:

0:

Lemma 4 [24] Let A1, A2,⋯ be a sequence of sets. If
X∞
k¼1

θλ gλ Akð Þ� �
< ∞ , then gλ

∩
∞

n¼1
∪
k≥n
Ak

	 

¼ 0.

Lemma 5 Suppose that ξ1, ξ2,⋯, ξn,⋯ are identically distributed gλ variables whose

Sugeno distribution function is Fgλ xð Þ with the same expected value a (a <∞). Let ξ�k

¼ ξkχ ξkj j≤kf g ωð Þ , k = 1, 2,⋯. If
Xn
k¼1

θλ gλ ξ�k≠ξk

 �� �

< ∞ and 1
n

Xn
k¼1

ξ�k−
1
n θλ E

Xn
k¼1

ξ�k

 !" #

→
gλ−a:s: 0, then

1
n

Xn
k¼1

ξk−θλ a½ � →
gλ−a:s:

0:

Proof Let ξn ¼ 1
n

Xn
k¼1

ξk , ξ
�
n ¼ 1

n

Xn
k¼1

ξ�k , Eξ
�
n ¼ E 1

n

Xn
k¼1

ξ�k

 !
¼ θλ−1

1
n

Xn
k¼1

θλ Eξ�k
� �" #

and

Eξk = a. We have

ξn−θλ að Þ�� �� ¼ ξn−ξ
�
n þ ξ

�
n−θλ E ξ

�
n

� �h i
þ θλ E ξ

�
n

� �h i
−θλ að Þ

��� ���
≤ ξn−ξ

�
n

��� ���þ ξ
�
n−θλ E ξ

�
n

� �h i��� ���þ θλ E ξ
�
n

� �h i
−θλ að Þ

��� ��� ð1Þ

Because
Xn
k¼1

θλ gλ ξ�k≠ξk

 �� �

< ∞ , we conclude that ξn−ξ
�
n

��� ���→gλ−a:s:0 from Lemma 4

and Lemma 2.

By the condition of 1
n

Xn
k¼1

ξ�k−
1
n θλ E

Xn
k¼1

ξ�k

 !" #
→

gλ−a:s:

0, we have

ξ
�
n−θλ E ξ

�
n

� �h i��� ��� →gλ−a:s: 0:
Because θλ½Eðξ�nÞ� ¼

Z
−n

n
xdθλ½FgλðxÞ�→

Z
−∞

∞
xdθλ½FgλðxÞ� ¼ θλðaÞ as n→∞, then

θλ E ξ
�
n

� �h i
¼ 1

n

Xn
k¼1

θλ Eξ�k
� �

→ 1
n

Xn
k¼1

θλ að Þ ¼ θλ að Þ as n→∞.

By (1), we have 1
n

Xn
k¼1

ξk−θλ að Þ→gλ−a:s:0 (n→∞).

Lemma 6 [26] Let x1, x2,⋯ be sequence of real numbers and
Xn
k¼1

xk
k
< ∞ ; then, we

have 1
n

Xn
k¼1

xk→0, as n→∞.

Theorem 2 (Strong law of large numbers) Let ξ1, ξ2,⋯, ξn,⋯ be independent and

identically distributed gλ variables with the same expected value a (a <∞). Then, we
have
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1
n

Xn
k¼1

ξk−θλ að Þ →
gλ−a:s:

0:

Proof Let ξ�k ¼ ξkχ ξkj j≤kf g ωð Þ.

Since Eξk <∞, we have
Z þ∞

−∞
xj jdθλ Fgλ xð Þ� �

< ∞ , then
X∞
k¼1

θλ E
ξk�2

k2

� �� �
< ∞ [28].

Thus,

X∞
k¼1

θλ D
ξ�k
k

� �� �
≤
X∞
k¼1

θλ E
ξk�2

k2

� �� �
< ∞:

By Lemma 3, we have
Xn
k¼1

ξk
k
−θλ E

ξk
k

� �� �	 

→
gλ−a:s: 0. By Lemma 6, we have 1

n

Xn
k¼1

ξ�k−
1
n

θλ E
Xn
k¼1

ξ�k

 !" #
→
gλ−a:s: 0 . By Lemma 5, we have 1

n

Xn
k¼1

ξk−θλ að Þ→gλ−a:s:0 since

X∞
k¼1

θλ gλ ξ�k≠ξk

 �� �

< ∞.

That proves the theorem.

Dependent-Chance Programming on Sugeno Measure Space
Uncertain Environment, Event, Chance Function, and Principle of Uncertainty

Uncertain environment, event, and chance function are basic concepts in DCP. Let us

redefine them in Sugeno decision systems at the beginning of this part.

Definition 11 Let x be a decision vector and ξ be a gλ vector. Then, the Sugeno con-

straints represented by

gj x; ξð Þ≤0; j ¼ 1; 2;⋯; p ð2Þ

are called a Sugeno environment.

Definition 12 Let x be a decision vector and ξ be a gλ vector. Then, a system of

Sugeno inequalities

hk x; ξð Þ≤0; k ¼ 1; 2;⋯; q ð3Þ

is called a Sugeno event.

Definition 13 Let x be a decision vector and ξ be a gλ vector. Then, the chance func-

tion of an event characterized by (3) is defined as the Sugeno measure of the event, i.e.,

f xð Þ ¼ gλ hk x; ξð Þ≤0; k ¼ 1; 2;⋯; qf g

subject to the Sugeno environment (2).

Definition 14 [14] Let x = (x1, x2,⋯, xn) be a decision vector and r(x) = r(x1, x2,⋯, xn)

be an n-dimensional function. Then, the ith decision variable xi is said to be de-

generate if

r x1;⋯xi−1; xi
′; xiþ1;⋯; xn

� � ¼ r x1;⋯xi−1; xi
′′; xiþ1;⋯; xn

� �
for any xi′ and xi

′ ′; otherwise, it is nondegenerate. In this case, the set of all nondegen-

erate decision variables is called nondegenerate set under r(x) which can be denoted by

ND[r(x)].
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For example, r(x1, x2, x3, x4, x5, x6) = x1 − x2 + 3x5 is a 5-dimensional function. The var-

iables x1, x2, x5 are nondegenerate and x3, x4, x6 are degenerate. So,

ND r x1; x2; x3; x4; x5; x6ð Þ½ � ¼ x1; x2; x5f g:

Definition 15 Let x be a decision vector, ξ be a gλ vector, and E be an event charac-

terized by hk(x, ξ) ≤ 0, k = 1, 2,⋯, q in the Sugeno environment gj(x, ξ) ≤ 0, j = 1, 2,⋯, p.

If j ∈ J and ND[gj(x, ξ)] ∩ND[hk(x, ξ)] ≠ ϕ, we write

ε�� ¼ ND gj x; ξð Þ
h i

∪ND hk x; ξð Þ½ �; k ¼ 1; 2;⋯; q; j∈J

Then the jth constraint gj(x, ξ) is called a dependent constraint of the event E if

ND[gj(x, ξ)] ∩ ε
* * ≠ ϕ; otherwise, it is independent.

Definition 16 Let E be a Sugeno event characterized by hk(x, ξ) ≤ 0, k = 1, 2,⋯, q in

the Sugeno environment gj(x, ξ) ≤ 0, j = 1, 2,⋯, p where x is a decision vector and ξ is a

gλ vector. Then, for each decision x and realization of a gλ vector ξ, the Sugeno event E

is said to be consistent in the Sugeno environment if the following two conditions hold:

(1) hk(x, ξ) ≤ 0 k = 1, 2,⋯, q and (2) gj(x, ξ) ≤ 0, j ∈ J* where J* is the index set of all

dependent constraints.

Generally, a decision could meet an event if the decision meets both the event itself

and the dependent constraints [14]. So, we obtain the following principle of uncertainty

in the Sugeno environment which is theoretical basis of DCP on Sugeno measure

space.

Principle of Uncertainty The chance of a Sugeno event is the Sugeno measure of

the event which is consistent in the Sugeno environment.

Let x be a decision vector and ξ be a gλ vector. There are m events Ei characterized

by hik(x, ξ) ≤ 0, k = 1, 2,⋯, qi for i = 1, 2,⋯,m in the Sugeno environment gj(x, ξ) ≤ 0, j

= 1, 2,⋯, p. According to the principle of uncertainty, the chance function of the ith

event Ei in the Sugeno environment is

f xð Þ ¼ gλ hik x; ξð Þ≤0; k ¼ 1; 2;⋯; qi
gj x; ξð Þ≤0;j∈J i

8>><
>>:

9>>=
>>;

where

J i ¼ j∈ 1; 2⋯pf g gj x; ξð Þ≤0 is the dependent constraint of Ei

���n o

for i = 1, 2,⋯,m.

DCP on Sugeno Measure Space

In this part, we extend the DCP to the Sugeno measure space. Therefore, the frame-

work of DCP on the Sugeno measure space is constructed. In order to maximize the

chance function of an event subject to a Sugeno environment, we give the following

dependent-chance single-objective programming on Sugeno measure space:
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max gλ hk x; ξð Þ≤0; k ¼ 1; 2;⋯; qf g
s:t:

gj x; ξð Þ≤0; j ¼ 1; 2;⋯; p;

8><
>:

where x is a decision vector, ξ is a gλ vector, hk(x, ξ) ≤ 0, k = 1, 2,⋯, q represent an

event, and gj(x, ξ) ≤ 0, j = 1, 2,⋯, p represent a Sugeno environment.

In order to maximize multiple chance functions subject to a Sugeno environment, we

give the following dependent-chance multi-objective programming on Sugeno measure

space which maximizes multiple chance functions in a Sugeno environment:

max

gλ h1k x; ξð Þ≤0; k ¼ 1; 2;⋯; q1f g
gλ h2k x; ξð Þ≤0; k ¼ 1; 2;⋯; q2f g

⋯

gλ hmk x; ξð Þ≤0; k ¼ 1; 2;⋯; qmf g

2
6664

3
7775

s:t:

gj x; ξð Þ≤0; j ¼ 1; 2;⋯; p;

8>>>>>>>><
>>>>>>>>:

where x is a decision vector, ξ is a gλ vector, hik(x, ξ) ≤ 0, k = 1, 2,⋯, qi for i = 1, 2,⋯,m

represent the events, and gj(x, ξ) ≤ 0, j = 1, 2,⋯, p represent a Sugeno environment.

In multi-objective decision-making system, goal programming is posed to minimize

the deviations, positive, negative, or both, between the objective functions and ideal

objective targets, which are present in a certain prior structure set by the decision

maker [11]. Furthermore, dependent-chance goal programming on Sugeno measure

space may be considered as an extension of goal programming in Sugeno decision

system. Then, we give the following dependent-chance goal programming on Sugeno

measure space:

min
Xl
j¼1

Pj

Xm
i¼1

uijd
þ
i þ vijd

−
i

� �
s:t:

gλ hik x; ξð Þ≤0; k ¼ 1; 2;⋯; qif g þ dþ
i ‐d

−
i ¼ bi; i ¼ 1; 2;⋯;m

gj x; ξð Þ≤0; j ¼ 1; 2;⋯; p

dþ
i ; d

−
i ≥0 ; i ¼ 1; 2;⋯;m;

8>>>>>>>><
>>>>>>>>:

where x is a decision vector, ξ is a gλ vector, Pj is the preemptive priority factor which

expresses the relative importance of various goals, for all j, uij, and vij are the weighting

factors corresponding to positive deviation and negative deviation for goal i with prior-

ity j assigned, respectively,

dþ
i ¼ min gλ hik x; ξð Þ≤0; k ¼ 1; 2;⋯; qif g−bi; 0


 �
; i ¼ 1; 2;⋯;m

and

d−
i ¼ min bi−gλ hik x; ξð Þ≤0; k ¼ 1; 2;⋯; qif g; 0
 �

; i ¼ 1; 2;⋯;m

are the positive and negative deviations of the target of goal i, respectively, gj is a

function in system constraints, bi is the target value according to goal i, l is the number

of priorities, m is the number of goal constraints, and p is the number of system

constraints.

Example 3 Now, we give a simple example of the DCP on Sugeno measure space:
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max gλ x1 þ x2 ¼ 4f g
s:t:

x1 þ 3x2ð Þ=4≤ξ
2x3 þ x4≥20
x1; x2; x3; x4 are positive integers;

8>>>>><
>>>>>:

where ξ is a discrete gλ variable with the Sugeno distribution of the form in Table 1:

and λ = 2.

In this model, the event E is characterized by x1 + x2 = 4. And the dependent con-

straints of the event E are (1) (x1 + 3x2)/4 ≤ ξ and (2) x1, x2 are positive integers. By

principle of uncertainty, the chance function is

gλ

x1 þ x2 ¼ 4

x1 þ 3x2≤4ξ
x1; x2arepositive integers

8<
:

9=
;:

Obviously, (x1, x2) can be (1, 3), (2, 2) or (3, 1). According to the different values of

(x1, x2), we should compare the values:

gλ{ξ ≥ 2.5} = gλ{ξ = 3} = 1/2,

gλ ξ≥2f g ¼ gλ ξ ¼ 3f g ¼ 1=2;

and

gλ ξ≥1:25f g
¼ gλ ξ ¼ 3f g∪ ξ ¼ 7=4f gð Þ
¼ gλ ξ ¼ 3f g þ gλ ξ ¼ 7=4f g þ λ⋅gλ ξ ¼ 3f g⋅gλ ξ ¼ 7=4f g
¼ 3=4:

Therefore, the best solution is (x1, x2) = (3, 1) with the corresponding chance is 3/4.

A Hybrid Approach to Solve the DCP on Sugeno Measure Space
Sugeno Simulation

In order to estimate the accurate values in Sugeno programming, we resort to Sugeno

simulation as one of the attractive alternatives. For the sake of solving general DCP on

Sugeno measure space, we must deal with the following type of uncertain function

U xð Þ : x→gλ f x; ξð Þ≤0f g

by Sugeno simulation.

Example 4 Let ξ be a gλ vector and f :ℜn→ℜ be a measurable function. In the fol-

lowing, we obtain L = gλ{f(x, ξ) ≤ 0} by Sugeno simulation.

In order to construct a gλ variable ξ with Sugeno distribution Fgλ ⋅ð Þ, a uniformly dis-

tributed variable u over the interval [0, 1] is produced at first, then ξ is assigned to be

Fgλ
−1 uð Þ [24]. Therefore, we generate ωk according to the Sugeno measure gλ and pro-

duce ξk = ξ(ωk) for k = 1, 2,⋯ ,N.

Table 1 The Sugeno distribution of ξ
x 1/2 7/4 3

gλ(ξ = x) 1/10 1/8 1/2
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Let N′ denote the number of vectors satisfying the system of inequalities f(x, ξk) ≤ 0,

k = 1, 2,⋯,N, and

h x; ξkð Þ ¼ 1; if f x; ξkð Þ≤0
0; otherwise:

	

Then, we have E[h(x, ξk)] = L for all k and N ′ ¼
XN
k¼1

h x; ξkð Þ.

It follows from the Theorem 2 that when N→∞,

N ′

N
¼

XN
k¼1

h x; ξkð Þ

N
→

gλ−a:s: 1þ λð ÞL−1
λ

:

Thus, L can be estimated by ln[1 + λ(N′/N)]/ln(1 + λ) provided that N is suffi-

ciently large.

A Hybrid Approach

In order to solve the DCP on Sugeno measure space, we propose a Sugeno simulation-

based hybrid approach which combines BP neural network with GA in this part. The

form of the DCP on Sugeno measure space is as follows:

max gλ hk x; ξð Þ≤0; k ¼ 1; 2;⋯; qf g
s:t:

gj x; ξð Þ≤0; j ¼ 1; 2;⋯; p:

8<
:

Firstly, we generate the input-output data for the uncertain function according to the

Sugeno simulation. Secondly, we train the BP neural network to approximate the

underlying functional relationship U and predict the outputs. Thirdly, we make use of

GA to enhance the optimization process and arrive at a solution to the optimization

problem. Finally, we find the best chromosome to be the optimal solution by selection,

crossover, and mutation.

The hybrid algorithm for solving the DCP on Sugeno measure space can be summa-

rized as follows:
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Numerical Examples
Here, we give two numerical examples to illustrate the effectiveness of the approach.

Example 5 Let us consider the following DCP on Sugeno measure space:

max gλ x1 þ x2 þ 2x3 þ 2x4 ¼ 5f g
s:t:

x12 þ x22≤ξ1
x32 þ x42≤3ξ2
x1; x2; x3; x4≥0;

8>>>>><
>>>>>:

where λ = 5; ξ1 is a Sugeno normal distributed variable characterized by ξ1 ~ SN(3, 22,

4); ξ2 is a λ ‐ 0 ‐ 1 distributed variable characterized by ξ2 ~ SU(3).

The event of this model is x1 + x2 + 2x3 + 2x4 = 5, and the chance function of the event is

f xð Þ ¼ gλ

x1 þ x2 þ 2x3 þ 2x4 ¼ 5

x12 þ x22≤ξ1
x32 þ x42≤3ξ2
x1; x2; x3; x4≥0

8>>><
>>>:

9>>>=
>>>;
:

It is easily to find that x4 ¼ 5−x1−x2−2x3
2 . In order to solve the model, we generate 3000

input-output data for the uncertain function U : (x1, x2, x3)→ f(x) by Sugeno simulation.

Next, a three-layer BP neural network of the 3-5-1 topology is constructed to approximate
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the uncertain function U. The activation functions utilized in the BP neural network are a

hyperbolic tangent function (hidden layer) and a linear function (output layer), respectively.

The BP neural network is trained to adjust the weights and thresholds of the connections

between two layers and minimize root mean squared error (RMSE) of the output layer. The

maximum number of iterations, the learning rate, the momentum term, and the tolerance

criterion for the BP neural network are set to be 5000, 0.0001, 0.85, and 0.001, respectively.

Although the settings of these parameters may not be optimal, they ensure the convergence

of the learning process realized by the BP neural network. As shown in Fig. 1, we obtain the

values of the error function of RMSE in successive iterations.

Moreover, we use the GA to improve the solution of the DCP on Sugeno measure space.

Here, the population size, the number of generations, the mutation rate, and the crossover

rate of the GA are set to be 30, 300, 0.2, and 0.3, respectively. It should be mentioned here

that the settings of these GA parameters may not be optimal. However, under these condi-

tions, the value of fitness (the objective function) is improved. The improvements are illus-

trated in Fig. 2.

Finally, the best solution obtained in the above way is

x� ¼ x1; x2; x3; x4ð Þ ¼ 1:1379; 0:7077; 0:7579; 0:8183ð Þ

where the corresponding chance is f(x*) = 0.9067.

Example 6 Let us consider the following dependent-chance goal programming on

Sugeno measure space:

lexmin dþ
1 ; d

þ
2 ; d

þ
3


 �
s:t:

gλ x1 þ x42 ¼ 2f g þ d−
1−d

þ
1 ¼ 0:80

gλ x2 þ x52 ¼ 2f g þ d−
2−d

þ
2 ¼ 0:85

gλ x3 þ x62 ¼ 3f g þ d−
3−d

þ
3 ¼ 0:85

x21 þ x5 þ x24≤0:5ξ1
x3 þ x22 þ x6≤2:5ξ2
xi≥0; i ¼ 1; 2;⋯6

dþ
i ; d

−
i ≥0; i ¼ 1; 2;⋯6;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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SE

Fig. 1 Training error curves for f(x) obtained for 3000 input–output data
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where λ = 3; ξ1 and ξ2 are gλ variables characterized by ξ1 ~ SN(3, 1, 2) and ξ2 ~ SN(2, 1, 3),

respectively.

The event at the first priority level is x1 + x4
2 = 3 whose chance function is

f 1 xð Þ ¼ gλ

x1 þ x42 ¼ 2

x21 þ x5 þ x24≤0:5ξ1
x1; x4; x5≥0

8><
>:

9>=
>;:

The event at the second priority level is x2 + x5
2 = 2 whose chance function is

f 2 xð Þ ¼ gλ

x2 þ x25 ¼ 2

x21 þ x5 þ x24≤0:5ξ1
x3 þ x22 þ x6≤2:5ξ2
xi≥0; i ¼ 1; 2;⋯6

8>>><
>>>:

9>>>=
>>>;
.

The event at the third priority level is x3 + x6
2 = 2 whose chance function is

f 3 xð Þ ¼ gλ

x3 þ x62 ¼ 3

x3 þ x22 þ x6≤2:5ξ2
x2; x3; x6≥0

8><
>:

9>=
>;:
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Fig. 2 Values of objective function for 300 generations of the GA
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Fig. 3 Training error curves for f1(x) obtained for 3000 input–output data
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We can find that x4 ¼
ffiffiffiffiffiffiffiffiffiffi
2−x1

p
, x5 ¼

ffiffiffiffiffiffiffiffiffiffi
2−x2

p
and x6 ¼

ffiffiffiffiffiffiffiffiffiffi
3−x3

p
. In order to solve

this model, we generate 3000 input-output data for the uncertain function

U : (x1, x2, x3)→ (f1(x), f2(x), f3(x)) by Sugeno simulation. Next, we construct a

three-layer BP neural network of the 3-5-3 topology to approximate the uncertain

function U. The BP neural network is trained by the standard BP algorithm with

a momentum term while the error function is RMSE. The maximum number of

iterations, the learning rate, the momentum term, and the tolerance criterion for

the BP neural network are set to be 5000, 0.0001, 0.85, and 0.001, respectively.

The values of the error functions obtained in successive iterations are shown in

Figs. 3, 4 and 5, respectively.

Then, we use the GA to improve the solution of the DCP on Sugeno measure

space, whose population size, number of generations, mutation rate, and crossover

rate are set to be 30, 300, 0.2, and 0.7, respectively. The GA enhances the fitness

as shown in the Fig. 6,

Finally, the optimal solution is

x� ¼ 1:0274; 2:000; 0:0001; 0:9863; 0; 1:7320ð Þ;
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Fig. 4 Training error curves for f2(x) obtained for 3000 input–output data
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Fig. 5 Training error curves for f3(x) obtained for 3000 input–output data
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which satisfies the first goal and the second goal; otherwise, the third objective is

0.1495.

In the process of solving the above two models, we can see that the time complexity

of the hybrid approach is the sum of the time spent for the Sugeno simulation, for BP

neural network, and for GA. The time spent for the three parts are essential since we

can assumed that there is no alternative method to the hybrid approach.

Conclusions
In this paper, an uncertain mathematical programming named dependent-chance pro-

gramming (DCP) on Sugeno measure space was proposed. To provide general solutions

to the programming, a Sugeno simulation-based hybrid approach integrated by BP

neural network and GA was given. Compared with the existing kinds of DCP, the DCP

on Sugeno measure space has the features as follows: (1) It deals with gλ variables. (2)

It may be resorted to when the decision maker wishes to maximize the chance func-

tions of satisfying the events in the Sugeno environment.

Further research directions might be devoted to the wide applications of DCP on

Sugeno measure space in area of water resources management, waste management

planning, and electric power system planning, and so on, where some characteristics

may not satisfy the additivity. Moreover, the DCP based on other kinds of variables,

such as fuzzy variables, on Sugeno measure space may be studied. And the hybrid ap-

proach for DCP combined with more algorithms such as PSO may be also studied.
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