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Abstract
Possibility, necessity, and credibility measures play a significant role to measure the
chances of occurrence of fuzzy events. In this paper, possibility, necessity, and
credibility measures of exponential fuzzy number, and its expected value has been
derived. A multi-item two-warehouse deterministic inventory model for deteriorating
items with stock-dependent demand has been developed. For the proposed inventory
model, the different costs and other parameters are considered in exponential fuzzy
nature. Solution methodology of this model using expected value has been discussed.
A numerical example is considered to illustrate the multi-item two-warehouse
deterministic inventory model. Finally, few sensitivity analyses are presented under
different rates of deterioration to check the validity of the proposed model.

Keywords: Exponential fuzzy variable, Possibility, Necessity, Credibility, Expected
value, Multi-item inventory, Deteriorating items

Introduction
Commonly speaking, uncertainty is usual to all real-life problems, for example fuzziness
and randomness. Since Zadeh [1] introduced the fuzzy set theory, it has been well devel-
oped and applied in a wide variety of real-life problems. Possibility theory was proposed
by Zadeh [2] and developed by many researchers, e.g., Dubois and Prade [3], Klir [4],
Yager [5] and others. A self dual measure called credibility measure was introduced by
Liu and Liu [6]. The mean value of a fuzzy number was introduced by Dubois and Prade
[7]. Thereafter, Carlsson and Fuller [8] defined a possiblistic mean and variance of fuzzy
numbers. The expected value of fuzzy variable using possibility theory was proposed by
Hilpern [9], and application of expected value operator called expected value model was
introduced by Liu and Liu [6].
Classical economic order quantity model which was developed in 1965 had the specific

requirement of deterministic cost and demand. Classical inventory models generally deal
with a single item. But in real-world situations, a single-item inventory rarely occurs and
multi-item inventory is common. Ghare and Schrader [10] were the first researchers to
develop an economic order quantity model (EOQ) for an item with exponential decay. A
multi-item inventory model with constant demand and infinite replenishment under the
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restriction on total average shortage, shortage area, and total average inventory invest-
ment cost developed by Das et al. [11]. Maiti and Maiti [12] investigated a production
policy for damageable items with variable cost function in an imperfect production pro-
cess, and Mondal and Maiti [13] developed a multi-item EOQ model. Recently, many
researchers studied on multi-item EOQ inventory model such as Mousavi et al. [14],
Pasandideh et al. [15], Wee et al. [16], Lau and Lau [17], Nahmias and Schmidt [18], and
Vairaktarakis [19].
In general, deterioration in the inventory system is defined as damage, decay, spoilage,

evaporation, pilferage, obsolescence, etc.. The classical economic order quantity (EOQ)
inventory model developed in 1915 had the specific requirements of deterministic cost
and lack of deterioration of the stock item. A finite rate of production with a variable
rate of deterioration inventory model was formulated by Misra [20]. Raafat [21] was the
first researcher to develop a continuous deterioration of the on-hand inventory model
and later more discussion by Goyel and Giri [22]. From then on, the inventory models
of deteriorating items in different manners were developed by many researchers such as
Benkherouf [23], Cohen [24], Kang and Kim [25], Goyal and Gunasekaran [26].
The deterministic inventory model with two levels of shortage and infinite replen-

ishment rates developed by Sarma [27] and this model extended by Murdeshwar and
Sathe [28]. Pakkala and Achary [29] improved a deterministic inventory model for dete-
riorating items with two warehouses and finite replenishment rate. Bhunia and Maiti
[30] proposed a two-warehouse inventory model for deteriorating items with a linear
trend in demand and shortages. Goswami and Chaudhuri [31] first introduced the inven-
tory model with two storage and stock-dependent demand rates. A multi-warehouse
inventory model for multi-items with time-varying demand and shortage was developed
by Zhou [32].
Inmany cases, the parameters in inventory problemsmay not be crisp and be somewhat

vague in nature. For example, the holding cost for an item is supposed to be dependent
on the amount of storage. Similarly, the replenishment cost depends upon the total quan-
tity to be produced in a scheduling period. Moreover, because of the inventory system,
the total profit in a scheduling period may be uncertain, and uncertainties may be asso-
ciated with these variables and the above goals and parameters are normally vague and
imprecise, i.e., fuzzy in nature. Maximum total average profit is imprecise in a practical
inventory problem. In these situations, fuzzy set theory can be used for the formulation
of inventory models. Maity and Maiti [33] solved a multi-item fuzzy inventory model
with possibility and necessity constraints. Yao and Lee [34] developed an inventory model
considering fuzzy order quantity, fuzzy production quantity, and fuzzy demand. Nia
et al. [35] developed amulti-item EOQmodel under shortage with fuzzy vendormanaged.
Recently, many researchers such as Kar et al. [36] and Roy and Maiti [37] have developed
several fuzzy inventory models.
In spite of the abovementioned developments, following additions can also be made

in exponential fuzzy number, the formulation and solution of inventory models for
deteriorating items under imprecise environments.

• Possibility, necessity, and credibility measures of exponential trapezoidal fuzzy
number

• Expected value of exponential trapezoidal fuzzy number based on credibility measure
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• Multi-item two-warehouse deterministic inventory model for deteriorating items
with stock dependent demand

• Expected value method to solve a multi-item inventory model for deteriorating items

The rest of the paper is organized as follows: In Section “Basic Preliminaries”, we present
some basic knowledge of exponential trapezoidal fuzzy number and its arithmetic
operations. Section “Possibility Necessity and Credibility Measures of Exponential
Trapezoidal Fuzzy Number” provides the possibility, necessity, and credibility measures
of exponential trapezoidal fuzzy number and its graphical representation. In Section
“Expected Value of Exponential Trapezoidal Fuzzy Number”, expected value of
exponential trapezoidal fuzzy number has been discussed. Section“Assumption and
Notations” shows the assumptions and notations for the mathematical model. In Section
“Mathematical Formulation”, mathematical formulations are derived and the
solution procedure is discussed. Numerical examples are given in Section
“Numerical Illustration” to validate the proposed method. In Section
“Sensitivity Analysis”, sensitivity analysis is made for the change of deterioration and
is depicted using figures. Finally, conclusion and the scope of future research come in
Section “Conclusion”.

Basic Preliminaries
Definition 1 Exponential trapezoidal fuzzy number(ETFN): [38] Let ã = (a1, a2, a3, a4)

(ai ∈ R, i = 1, 2, 3, 4 and a1 ≤ a2 ≤ a3 ≤ a4) be a ETFN, then its membership function
(cf. Fig. 1) defined as follows

μã(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp
{

− (a2 − x)
(a2 − a1)

}

, if a1 ≤ x ≤ a2

1, if a2 ≤ x ≤ a3

exp
{

− (x − a3)
(a4 − a3)

}

, if a3 ≤ x ≤ a4

Definition 2 Let ã = (a1, a2, a3, a3, a4) and b̃ = (b1, b2, b3, b4) be two ETFN, then

(i) ã ⊕ b̃ = {a1 + b1, a2 + b2, a3 + b3, a4 + b4}
(ii) ã � b̃ = {a1 − b4, a2 − b3, a3 − b2, a4 − b1}
(iii) ã ⊗ b̃ ≈ {a1b1, a2b2, a3b3, a4b4}
(iv) kã =

{
(ka1, ka2, ka3, ka4) if k ≥ 0
(ka4, ka3, ka2, ka1) if k < 0

Definition 3 Let ã = (a1, a2, a3, a4) and b̃ = (b1, b2, b3, b4) be two ETFN with
membership function μã , μb̃ respectively, and let R be the set of real numbers. Then

Pos
(
ã	b̃

)
= sup

{
μã(x) ∧ μb̃(y) : x, y ∈ R; x 	 y

}

and

Nec
(
ã	b̃

)
= inf

{
μã(x) ∨ μb̃(y) : x, y ∈ R; x 	 y

}

where Pos represents the possibility of membership function and Nec represents the neces-
sity of membership function, 	 denote any relation of =,>,<,≤,≥ and ∨ = max,∧ =
min respectively.
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Fig. 1 Membership function of ã

Definition 4 let ã = (a1, a2, a3, a4) be a ETFN. Then the measure of ã defined as

Me(ã) = λPos(ã) + (1 − λ)Nec(ã)

where λ(0 ≤ λ ≤ 1) is the optimistic-pessimistic parameter, we determine the combined
nature of decision maker λ, as follows If λ = 1, thenMe = Pos; it means the decision maker
is optimistic and maximum chance of ã holds. If λ = 0, then Me = Nec; it means the
decision maker is pessimistic and minimal chance of ã holds. If λ = 0.5, then Me = Cr; it
means the decision maker takes compromise attitude of ã holds. where Cr is the credibility
measure and defined by Cr = Pos + Nec

2
.

Possibility Necessity and Credibility Measures of Exponential Trapezoidal
Fuzzy Number
Let ã = (a1, a2, a3, a4) and b̃ = (b1, b2, b3, b4) be two ETFN. FromDefinition 3, possibility
of ã ≤ b̃ and ã ≥ b̃ are defined as follows

Pos
(
ã ≤ b̃

)
=

⎧
⎨

⎩

1, if a2 ≤ b3

exp
{

− (a2 − b3)
(b4 − b3) + (a2 − a1)

}

, if a2 > b3, b4 > a1
(1)

and

Pos
(
ã ≥ b̃

)
=

⎧
⎨

⎩

1, if b2 ≤ a3

exp
{

− (b2 − a3)
(a4 − a3) + (b2 − b1)

}

, if b2 > a3, a4 > b1
(2)

In particular the possibility measure of ã ≤ x(cf. Fig. 2) and ã ≥ x(cf. Fig. 3) are

Pos (ã ≤ x) =
⎧
⎨

⎩

1, if x ≥ a2

exp
{

− (a2 − x)
(a2 − a1)

}

, if a1 ≤ x ≤ a2
(3)

and
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Fig. 2 Membership function of ã and Pos(ã ≤ x)

Pos (ã ≥ x) =
⎧
⎨

⎩

1, if x ≤ a3

exp
{

− (x − a3)
(a4 − a3)

}

, if a3 ≤ x ≤ a4
(4)

Now from Definition 3, we evaluated necessity measure of ã ≤ b̃ and ã ≥ b̃ are as
follows

Nec
(
ã ≤ b̃

)
=

⎧
⎨

⎩

0, if b1 ≤ a3

1 − exp
{

− (a3 − b1)
(b2 − b1) + (a3 − a4)

}

, if b1 > a3, a4 > b2
(5)

and

Nec
(
ã ≥ b̃

)
=

⎧
⎨

⎩

0, if a2 ≤ b4

1 − exp
{

− (a2 − b4)
(a2 − a1) + (b3 − b4)

}

, if a2 > b4, a1 < b3
(6)

Fig. 3 Membership function of ã and Pos(ã ≥ x)
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Fig. 4 Membership function of ã and Nec(ã ≤ x)

In particular the necessity measure of ã ≤ x(cf. Fig. 4) and ã ≥ x(cf. Fig. 5) are

Nec (ã ≤ x) =
⎧
⎨

⎩

0, if x ≤ a3

1 − exp
{

− (a3 − x)
(a3 − a4)

}

, if a3 ≤ x ≤ a4
(7)

and

Nec (ã ≥ x) =
⎧
⎨

⎩

0, if x ≥ a2

1 − exp
{

− (x − a2)
(a1 − a2)

}

, if a1 ≤ x ≤ a2
(8)

Fig. 5 Membership function of ã and Nec(ã ≥ x)
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Fig. 6 Membership function of ã and Cr(ã ≤ x)

From Definition 4, measure of ã ≤ x(cf. Fig. 6) and ã ≥ x(cf. Fig. 7) can be defined as
follows

Me (ã ≤ x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ exp
{

− (a2 − x)
(a2 − a1)

}

, if a1 ≤ x ≤ a2

λ, if a2 ≤ x ≤ a3

1 − (1 − λ) exp
{

− (x − a3)
(a4 − a3)

}

, if a3 ≤ x ≤ a4

(9)

and

Me (ã ≥ x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − (1 − λ) exp
{

− (a2 − x)
(a2 − a1)

}

, if a1 ≤ x ≤ a2

λ, if a2 ≤ x ≤ a3

λ exp
{

− (x − a3)
(a4 − a3)

}

, if a3 ≤ x ≤ a4

(10)

Fig. 7 Membership function of ã and Cr(ã ≥ x)
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When λ = 1
2
, measure denoted as credibility measure

Cr (ã ≤ x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 exp

{

− (a2 − x)
(a2 − a1)

}

, if a1 ≤ x ≤ a2
1
2 , if a2 ≤ x ≤ a3

1 − 1
2 exp

{

− (x − a3)
(a4 − a3)

}

, if a3 ≤ x ≤ a4

(11)

and

Cr (ã ≥ x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − 1
2 exp

{

− (a2 − x)
(a2 − a1)

}

, if a1 ≤ x ≤ a2
1
2 , if a2 ≤ x ≤ a3
1
2 exp

{

− (x − a3)
(a4 − a3)

}

, if a3 ≤ x ≤ a4

(12)

Expected Value of Exponential Trapezoidal Fuzzy Number

Definition 5 Let ã = (a1, a2, a3, a4) be a ETFN, then the expected value of ã defined as
follows

EMe(ã) =
∫ ∞

0
Me{ã ≥ x}dx −

∫ 0

−∞
Me{ã ≤ x}dx (13)

Theorem 1 Let ã = (a1, a2, a3, a4) be a ETFN. Then its expected value is

EMe(ã) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(
1− 1

e
) λ

a4 − a3
− (1 − λ)

a2 − a1
+ λ

a2 − a1
1
e

)

+exp
(

− a2
a2 − a1

)

if a1≤0≤ a2
(

(1 − λ)

a2 − a1
− λ

a2 − a1

)

+ λ(a3 − a2) + a2,
(
1 − 1

e
)
(

λ

a4 − a3
− λ

a2 − a1

)

+ λ(a3 + a2), if a2≤0 ≤ a3
(

(1 − λ)

a4 − a3
− λ

a4 − a3
1
e

− λ

a2 − a1
(
1 − 1

e
)
)

+ exp
(

a3
a4 − a3

)

(
λ

a4 − a3
− (1 − λ)

a4 − a3

)

− λ(a3 − a2) + a3, if a3≤0 ≤ a4

Proof Since there 3 cases, let’s discuss every case in turn
Case 1: a1 ≤ 0 ≤ a2

EMe(ã) =
∫ ∞

0
Me{ã ≥ x}dx −

∫ 0

−∞
Me{ã ≤ x}dx

=
∫ a2

0
Me{ã ≥ x}dx +

∫ a3

a2
Me{ã ≥ x}dx +

∫ a4

a3
Me{ã ≥ x}dx

+
∫ ∞

a4
Me{ã ≥ x}dx −

(∫ a1

−∞
Me{ã ≤ x}dx +

∫ 0

a1
Me{ã ≤ x}dx

)

=
∫ a2

0

(

1 − (1 − λ) exp
(

− a2 − x
a2 − a1

))

dx +
∫ a3

a2
λdx

+
∫ a4

a3
λ exp

(

− x − a3
a4 − a3

)

dx −
∫ 0

a1
λ exp

(

− a2 − x
a2 − a1

)

dx

=
((

1 − 1
e

)
λ

a4 − a3
− (1 − λ)

a2 − a1
+ λ

a2 − a1
1
e

)

+ exp
(

− a2
a2 − a1

)

(
(1 − λ)

a2 − a1
− λ

a2 − a1

)

+ λ(a3 − a2) + a2
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Case 2: a2 ≤ 0 ≤ a3

EMe(ã) =
∫ ∞

0
Me{ã ≥ x}dx −

∫ 0

−∞
Me{ã ≤ x}dx

=
∫ a3

0
Me{ã ≥ x}dx +

∫ a4

a3
Me{ã ≥ x}dx +

∫ ∞

a4
Me{ã ≥ x}dx

−
(∫ a1

−∞
Me{ã ≤ x}dx +

∫ a2

a1
Me{ã ≤ x}dx +

∫ 0

a2
Me{ã ≤ x}dx

)

=
∫ a3

0
λdx+

∫ a4

a3
λ exp

(

− x − a3
a4 − a3

)

dx−
(∫ a2

a1
λ exp

(

− a2 − x
a2 − a1

)

dx+
∫ 0

a2
λdx

)

=
(

1 − 1
e

) (
λ

a4 − a3
− λ

a2 − a1

)

+ λ(a3 + a2)

Case 3: a3 ≤ 0 ≤ a4

EMe(ã) =
∫ ∞

0
Me{ã ≥ x}dx −

∫ 0

−∞
Me{ã ≤ x}dx

=
∫ a4

0
Me{ã ≥ x}dx +

∫ ∞

a4
Me{ã ≥ x}dx −

(∫ a1

−∞
Me{ã ≤ x}dx

+
∫ a2

a1
Me{ã ≤ x}dx +

∫ a3

a2
Cr{ã ≤ x}dx +

∫ 0

a3
Me{ã ≤ x}dx

)

=
∫ a4

0
λ exp

(

− x − a3
a4 − a3

)

dx

−
(∫ a2

a1
λ exp

(

− a2 − x
a2 − a1

)

dx+
∫ a3

a2
λdx+

∫ 0

a3

(

1− (1− λ) exp
(

− x − a3
a4 − a3

))

dx
)

=
(

(1 − λ)

a4 − a3
− λ

a4 − a3
1
e

− λ

a2 − a1

(

1 − 1
e

))

+ exp
(

a3
a4 − a3

)

(
λ

a4 − a3
− (1 − λ)

a4 − a3

)

− λ(a3 − a2) + a3

Remarks 1 When λ = 1
2 , we have

ECr(ã) = 1
2

(

1 − 1
e

) (
1

a4 − a3
− 1

a2 − a1

)

+ 1
2
(a2 + a3)

Definition 6 Let ã = (a1, a2, a3, a4) be a ETFN, then the expected value of ã is defined
by

E(ã) = 1
2

(

1 − 1
e

) (
1

a4 − a3
− 1

a2 − a1

)

+ 1
2
(a2 + a3)

Definition 7 If a2 = a3, i.e, ã degenerates to exponential triangular fuzzy num-
ber(ETrFN), then the expected value of ETrFN ã is

E(ã) = 1
2

(

1 − 1
e

) (
2a2 − a1 − a4

(a2 − a1)(a4 − a2)

)

+ a2

Theorem 2 [39] Let ã = (a1, a2, a3, a4) be trapezoidal fuzzy number. Then its expected
value is

E[ ã]= a1 + a2 + a3 + a4
4
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Definition 8 Let ã = (a1, a2, a3, a4) and b̃ = (b1, b2, b3, b4) be two ETFN, then we get
following orders

(i) ã ≺ b̃ iff E(ã) < E(b̃)
(ii) ã � b̃ iff E(ã) > E(b̃)
(iii) ã � b̃ iff E(ã) = E(b̃)

Example 1 Consider the following Linear Programming Problem

Z = Maximize ã1x1 + ã2x2
subject to ã3x1 + ã4x2 ≤ ã5;

ã6x1 + ã7x2 ≤ ã8;

x1 ≥ 0, x2 ≥ 0

where ã1, ã2, ã3, ã4, ã5, ã6, ã7 and ã8 all are fuzzy numbers.
Solution:
Case 1: Let ã1 = (2, 4, 7, 8), ã2 = (2, 3, 4, 6), ã3 = (1.5, 2.5, 3.5, 5.5), ã4 =

(1, 2.5, 4, 4.5), ã5 = (3, 4, 5, 7), ã6 = (1, 1.5, 2, 2.5), ã7 = (2, 3.5, 4, 6.5) and ã8 = (2, 4, 6, 8)
all are trapezoidal fuzzy numbers. Using the Theorem 2, optimum value of the objective
function is Z = 7.673 and optimum solution is x1 = 1.461, x2 = 0.
Case 2: Let ã1 = (2, 4, 7, 8), ã2 = (2, 3, 4, 6), ã3 = (1.5, 2.5, 3.5, 5.5), ã4 =

(1, 2.5, 4, 4.5), ã5 = (3, 4, 5, 7), ã6 = (1, 1.5, 2, 2.5), ã7 = (2, 3.5, 4, 6.5) and ã8 = (2, 4, 6, 8)
all are exponential trapezoidal fuzzy numbers. Using the Theorem 1, optimum value of the
objective function is Z = 8.644 and optimum solution is x1 = 1.527, x2 = 0.

Assumption and Notations
A multi-item deterministic inventory model is developed under the following assump-
tions and notations.

Assumption:

(i) The inventory system involve multi items, and rate of replenishment is infinite.
(ii) The time horizon of the inventory system is infinite and lead-time is zero.
(iii) Shortage are permitted and unsatisfied demand back-logged.
(iv) The capacity of rented warehouse(Y1Y2) is unlimited. But, the owned

warehouse(OY1) has a limited capacity of wi units.
(v) The deterioration cost of the i th items per unit time in OY1 is getter than in Y1Y2.
(vi) The goods of OY1 are wasted only after wasting the goods kept in Y1Y2.

Notations:

The inventory model involves ′n′ items and for ith (i = 1, 2, ...., n) items following
notations are considered;

(i) n = number of items
(ii) Di(qji(t)) = demand rate per unit time t for i th item (j = 1, 2, 3)

where



Garai et al. Journal of Uncertainty Analysis and Applications  (2017) 5:8 Page 11 of 20

Di(qji(t)) =
{
ai + biqji(t) if qji(t) > 0;
ai if qji ≤ 0;

(iii) Ãi = replenishment cost per order for i th item
(iv) Mi = maximum inventory level per cycle of the i th item
(v) wi = capacity of the owned warehouse for i th item
(vi) Qi = ordering quantity per cycle for i th item
(vii) ˜cpi = purchasing cost per unit of the i th item
(viii) ˜c1i = holding cost per unit item per unit time of the i th item in OY1
(ix) ˜c2i = holding cost per unit item per unit time of the i th item in Y1Y2
(x) ˜c3i = shortage cost per unit item per unit time for i th item
(xi) s̃i = selling price per unit of the i th item
(xii) R̃i = opportunity cost per unit for i th item
(xiii) t1i = time at which the inventory level reaches zero in Y1Y2
(xiv) t2i = time at which the inventory reaches zero in OY1
(xv) t3i = length of period during which shortages occurred
(xvi) Ti = length of the inventory per cycle of the i th item, here Ti = t2i + t3i
(xvii) ε1i = deterioration rate of the i th item in Y1Y2, where 0 ≤ ε1i < 1
(xviii) ε2i = deterioration rate of the i th item in OY1, where 0 ≤ ε2i < 1
(xix) q1i(t) = the inventory level of the i th item in Y1Y2 at time t
(xx) q2i(t) = the inventory level of the i th item in OY1 at time t
(xxi) q3i(t) = the inventory level of the i th item at time period [t2i,Ti], where shortage

occurred
(xxii) B̃ = available budget for replenishment
(xxiii) F̃ = available shortage space in this inventory system
(xxiv) TP(t2, t3) = the total average profit per unit time in the two-warehouse case

Mathematical Formulation
Using the above assumptions and notations, a multi-item deterministic inventory model
for deteriorating items with stoke-dependent demand has been developed. During the
time interval [ 0, t1i], the inventory levels q1i(t) and q2i(t) are positive at Y1Y2 and OY1.
Then shortage allowed to occur in the interval [ t2i,Ti]. The inventory is consumed by
cause of deterioration at OY1, and at Y1Y2, the inventory is consumed due to the mixed
effects of deterioration and demand. The nature of the inventory system is depicted in
Fig. 8.
Case-I: When shortages do not occur;
The differential equation describing the inventory level q1i(t)(i = 1, 2, ..., n) for the ith

item in [ 0, t1i] is given by

dq1i(t)
dt

= −Di − ε1iq1i(t) 0 ≤ t ≤ t1i (14)

with boundary condition q1i(t1i) = 0.
Using the boundary conditions, we have the solution of Eq. (14) as

q1i(t) = ai
ε1i + bi

[
e(ε1i+bi)(t1i−t) − 1

]
0 ≤ t ≤ t1i (15)
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Fig. 8 Graphical representation of a multi-item two-warehouse inventory model

And inventory level q2i(t)(i = 1, 2, ..., n) governed by the differential equations, for the
ith item in [ 0, t1i]

dq2i(t)
dt

= −ε2iq2i(t) 0 ≤ t ≤ t1i (16)

with initial conditions q2i(0) = wi. Using the initial conditions, we have the solution
Eq. (16) as

q2i(t) = wie−ε2it 0 ≤ t ≤ t1i (17)

During the time t ∈[ t1i, t2i], the inventory in OY1 is reduced due to the joint effects
of demand and deterioration. Hence, the inventory level q2i(t)(i = 1, 2, ..., n) at OY1 is
governed by the differential equations as

dq2i(t)
dt

= −Di − ε2iq2i(t) t1i < t ≤ t2i (18)

with boundary conditions q2i(t2i) = 0.
The solution of Eq. (18) is given by

q2i(t) = ai
ε2i + bi

[
e(t2i−t)(bi+ε2i) − 1

]
t1i < t ≤ t2i (19)

At the point t = t1i, by the continuity property of q2i(t), we have from Eqs. (17)
and (19) as

wie−ε2it1i = ai
ε2i + bi

[
e(t2i−t1i)(bi+ε2i) − 1

]

⇒ t2i = t1i + 1
bi + ε2i

ln
[

1 + wi
ai

(bi + ε2i)e−ε2it1i
] (20)

Here t2i is a function of t1i. We take the derivative of t2i with respect to t1i on the both
sides of Eq. (20) as

dt2i
dt1i

= 1 + wibi
ai e−ε2it1i

(
1 + wibi

ai e−ε2it1i
)

+ wiε2i
ai e−ε2it1i

< 1. (21)

Then
dt2i
dt1i

− 1 < 0 holds.
Case-II: When shortage occurs;
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If q3i(t) be the inventory level at time t over the time period [ t2i,Ti], then the governing
differential equations are

dq3i(t)
dt

= −Diδi t2i < t ≤ Ti (22)

with the boundary conditions q3i(t2i) = 0
Using the boundary conditions, we have the solution of Eq. (22) as

q3i(t) = aiδi(t2i − t) (23)

The ordering quantity over the replenishment cycle for the ith item is

Qi = q1i(0) + q2i(0) − q3i(0)

= ai
ε1i + bi

[
e(ε1i+bi)t1i − 1

]
+ wi + (−aiδi(Ti − t2i))

= ai
ε1i + bi

[
e(ε1i+bi)t1i − 1

]
+ wi + aiδit3i

where t3i = Ti − t2i.
The maximum inventory level in each cycle for ith item is

Mi = q1i(0) + q2i(0)

= ai
ε1i + bi

[
e(ε1i+bi)t1i − 1

]
+ wi

Now we calculate the different types of cost for ith item (i = 1, 2, ..., n), which are based
on previous equations.
The ordering cost in each cycle for ith item is Ai
Holding cost in each cycle for ith item in OY1 is

= ˜c1i
(∫ t1i

0
q1i(t)dt +

∫ t2i

t1i
q2i(t)dt

)

= ˜c1i
{∫ t1i

0
wie−ε2itdt +

∫ t2i

t1i

ai
ε2i + bi

[
e(bi+ε2i)(t2i−t) − 1

]
dt

}

= ˜c1i
{
wi
ε2i

(
1 − e−ε2it1i) + ai

(bi + ε2i)2

[
e(bi+ε2i)(t2i−t1i) − (t1i − t2i)(bi + ε2i) − 1

]}

Holding cost in each cycle for ith item in Y1Y2 is

= ˜c2i
∫ t1i

0
q1i(t)dt

= ˜c2i
∫ t1i

0

ai
ε1i + bi

(
e(ε1i+bi)(t1i−t) − 1

)
dt

= ˜c2iai
(ε1i + bi)2

(
e(ε1i+bi)t1i − t1i(ε1i + bi) − 1

)

Sales revenue cost in each cycle for ith item is
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= s̃i

{∫ t2i

0
Didt +

∫ Ti

0
Diδidt

}

= s̃i

{∫ t1i

0
Didt +

∫ t2i

t1i
Didt +

∫ Ti

0
Diδidt

}

= s̃i

{∫ t1i

0
(ai + biq1i(t)) dt +

∫ t2i

t1i
(ai + biq2i(t)) dt +

∫ Ti

t1i
aiδidt

}

= s̃i
[

ait2i + aibi
(ε1i + bi)2

{
e(ε1i+bi)t1i − (ε1i + bi)t1i − 1

}

+ aibi
(ε2i + bi)2

{
e(bi+ε2i)(t2i−t1i) − (t2i − t1i)(bi + ε2i) − 1

}]

Opportunity cost due to lost sales per cycle for ith item is

= R̃i

∫ Ti

t2i
Di (1 − δi) dt

= R̃iai(1 − δi)t3i

Purchase cost in each cycle for ith item is

= ˜cpiQi

= ˜cpi
{

ai
ε1i + bi

(
e(ε1i+bi)t1i − 1

)
+ wi − aiδit3i

}

Shortage cost in each cycle for ith item is

= ˜c3i
∫ Ti

t2i
−q3i(t)dt

= ˜c3i
∫ Ti

t2i
aiδi(t − t2i)dt

= 1
2

˜c3iaiδit23i
Total average profit per unit time of our model is

Average profit = sales revenue − holding cost − ordering cost − shortage cost

− opportunity cost − purchasing cost

˜PT(t2, t3)=
n∑

i=1

1
t2i + t3i

[

s̃i
(

ait2i + aibi
(ε1i + bi)2

{
e(ε1i+bi)t1i − (ε1i + bi)t1i − 1

}

+ aibi
(ε2i + bi)2

{
e(bi+ε2i)(t2i−t1i) − (t2i − t1i)(bi + ε2i) − 1

}
+ aiδit2i

)

− Ãi

− ˜c1i
{
wi
ε2i

(
1 − e−ε2it1i)+ ai

(bi + ε2i)2

(
e(bi+ε2i)(t2i−t1i)−(t2i−t1i)(bi+ε2i)−1

)}

− ˜c2iai
(ε1i + bi)2

{
e(ε1i+bi)t1i − t1i(ε1i + bi) − 1

}
− 1

2
˜c3iaiδit23i − R̃iai(1 − δi)t3i

− ˜cpi
{

ai
ε1i + bi

(
e(ε1i+bi)t1i − 1

)
+ wi + aiδit3i

}]

(24)

where t2 = (t21, t22, ..., t2n)T and t3 = (t31, t32, ..., t3n)T .
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Our problem is to maximize the total average profit under two constraints, budget con-
straints and space constraints. Hence, the multi-item fuzzy inventory model is given by

Z = Maximize ˜PT(t2, t3)

subject to
n∑

i=1
˜c3iQi ≤ F̃ ;

n∑

i=1
˜cpiQi ≤ B̃;

t2 ≥ 0, t3 ≥ 0

(25)

where t2 = (t21, t22, ....., t2n)T and t3 = (t31, t32, ....., t3n)T are decisions variables and Qi =
ai

ε1i + bi
[
e(ε1i+bi)t1i − 1

] + wi + aiδit3i.

Solution Methodology

To solved this multi-item fuzzy inventory model with two constraints, space constraints
and budget constraints, apply the expected value ETFN technique in the proposed model
(Eq. 25) and transform in to the crisp model, then the current model can be written as
follows:

Z∗ = MaximizeE[ ˜PT(t2, t3)]

subject to
n∑

i=1
E[ ˜c3iQi]≤ E[ F̃] ;

n∑

i=1
E[ ˜cpiQi]≤ E[ B̃] ;

t2 ≥ 0, t3 ≥ 0

(26)

where t2 = (t21, t22, ....., t2n)T and t3 = (t31, t32, ....., t3n)T are decision variables.

Numerical Illustration
To illustrate the proposed multi-item two-warehouse inventory model, we have consid-
ered an inventory problem with purchasing cost, shortage cost, available shortage space,
selling price, capacity of owned warehouse, and holding cost. In most inventory prob-
lems in real life, we observed that the different costs and other parameters are normally
vague and imprecise in nature. For example, the holding cost of an item is supposed to be
dependent on the amount of storage. Similarly, the total shortage cost depends upon the
amount of stock in a scheduling period, etc. So, in this inventory system, the total average

Table 1 Input fuzzy parameters

Item-I Item-II

c̃pi (6.250, 9.560, 12.164, 13.450) (6.123, 8.263, 11.560, 12.900)

c̃1i (1.234, 1.370, 2.680, 3.250) (1.234, 1.388, 2.750, 3.350)

c̃2i (2.450, 2.569, 2.700, 3.450) (1.234, 1.324, 2.950, 3.100)

c̃3i (1.234, 1.486, 2.900, 3.200) (1.150, 1.638, 2.950, 3.400)

s̃i (10.250, 13.350, 14.500, 16.250) (9.850, 14.609, 15.210, 17.230)

R̃i (5.263, 6.957, 8.985, 10.452) (4.563, 6.513, 7.925, 9.561)

Ãi (95.520, 107.192, 108.500, 110.250) (94.200, 101.654, 102.213, 105.120)

B̃ (9100, 9450, 9550, 9700) F̃ (1800, 1950, 2050, 2150)
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Table 2 Input crisp parameters

ai bi ε1i ε2i δi wi

Item-I 300 0.051 0.055 0.068 1.650 307

Item-II 315 0.064 0.045 0.063 1.550 315

profit in a scheduling period may be uncertain, and uncertainties may be associated with
these variables, and the above goals and parameters are normally vague and increase. This
uncertain and vague nature of a parameter can be capture by linear or non-linear fuzzy
numbers.
Sometimes, the use of linear fuzzy number in describing decision satisfaction may lead

to loss of information. Moreover, the linear fuzzy number does not allow decision mak-
ers to provide any kind of biasness towards objective. In order to capture decision maker
biasness, we may used non-linear fuzzy number to represent the inventory model in a
much more realistic way. In developing countries like India and Bangladesh, different
cost, related to inventory model, rapidly changes from time to time. To capture those
rapid changes, we have chosen appropriate non-linear fuzzy numbers, for example expo-
nential fuzzy numbers may be more suitable than other fuzzy numbers. In this paper, we
have considered holding cost, shortage cost, purchasing cost, opportunity cost, etc. as
exponential fuzzy numbers. Nowadays, due to fluctuation of the market, purchasing cost
increases rapidly. This purchasing cost rapidly increases for some items (like onion, rice,
and potato). To capture both property uncertainness and fleetness for some items, we
have considered the multi-item two-warehouse inventory model under exponential fuzzy
environment. Therefore, for this proposed inventory problem, the holding cost, purchas-
ing cost, shortage cost, available shortage space, capacity of owned warehouse, and selling
price are considered in the exponential fuzzy environment. The exponential fuzzy param-
eters of the proposed inventory model are given in Table 1, and its input crisp parameters
are given in Table 2.
Our problem is to find out the length of the inventory (Ti), optimal order quantity(Qi),

and total average profit (Z∗) for the proposed inventory problem. The optimal solutions
of the proposed inventory problem with respect to different deterioration are presented
in Table 3.

Table 3 Optimal solution for different values of ε1i & ε2i

ε1i ε2i t1i t2i t3i Ti Qi Z∗

Item-I 0.55 × 10−1 0.68 × 10−1 0.11013 × 10−6 2.22391 0.24954 2.47345 430.5268 6194.915

Item-II 0.45 × 10−1 0.63 × 10−1 0.47338 × 10−7 2.16807 0.26176 2.42983 442.8061

Item-I 0.64 × 10−1 0.74 × 10−1 0.74232 × 10−7 2.21691 0.25374 2.47065 432.6060 6187.219

Item-II 0.49 × 10−1 0.69 × 10−1 00000.00000 2.16191 0.26484 2.42675 444.3113

Item-I 0.66 × 10−1 0.80 × 10−1 0.38212 × 10−8 2.20997 0.25793 2.46790 434.6750 6179.556

Item-II 0.54 × 10−1 0.75 × 10−1 00000.00000 2.15580 0.26791 2.42371 445.8107

Item-I 0.71 × 10−1 0.88 × 10−1 00000.00000 2.20309 0.26209 2.46518 436.7364 6171.924

Item-II 0.58 × 10−1 0.81 × 10−1 0.51075 × 10−7 2.14975 0.27097 2.42072 447.3045

Item-I 0.77 × 10−1 0.95 × 10−1 00000.00000 2.19626 0.26623 2.46249 438.7878 6164.325

Item-II 0.63 × 10−1 0.88 × 10−1 0.28856 × 10−8 2.14371 0.27402 2.41773 448.7924

Item-I ε1i −→ 0 ε2i −→ 0 00000.00000 2.29729 0.20647 2.50376 409.2066 6273.692

Item-II 00000.00000 2.23230 0.23026 2.46256 427.4288
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Fig. 9 ε1i vs Z∗

Using the parameters given in Tables 1 and 2, problem (26) have been solved by using
a soft computing technique, generalized reduced gradient (GRG) method. We have also
considered problem (26) for non-deteriorating items and solve it using the parameters of
Tables 1 and 2 and the results are given in Table 3.

Sensitivity Analysis
Sensitivity analysis are performed for maximization of the total average profit (Z∗) in
inventory problem, length of the inventory (Ti), and order quantity (Qi) with respect to
change of deteriorations (εki)(k = 1, 2). From Table 3, the following decisions can be
constructed, which are also reflected in Figs. 9, 10, 11, and 12.

Fig. 10 ε2i vs Z∗
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Fig. 11 ε2i vs Ti

(i) If the value of deterioration rate εki(k = 1, 2) increases, then the total average profit
Z∗ decreases (cf. Figs. 9 and 10).

(ii) Table 3 shows that length of the inventory per cycle Ti decreases with increase of
ε1i(cf. Fig. 10)

(iii) Again Table 3 shows that the order quantity per cycle Qi increases when the
deterioration rate increases (cf. Fig. 12).

Conclusion
For the first time, possibility, necessity, and credibility measures of exponential trape-
zoidal fuzzy numbers and its expected value are presented here. In Example 1, we have
shown the advantage of the expected value operator technique for exponential trapezoidal

Fig. 12 ε1i vs Qi
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fuzzy numbers. The multi-item deterministic inventory model is developed for deteri-
orating items with stock-dependent demand, permitting shortage and finite warehouse
capacity. In this model we have considered different deterioration costs and holding costs
for OY1 and Y1Y2 because of different conservation conditions. Finally, this model is
also formulated under exponential trapezoidal fuzzy environment and solved using a soft
computing technique, generalized reduced gradient method. The model is also discussed
for non-deteriorating items as a special case of the deteriorating items and results are
given in Table 3. To show the validity of the proposed model, few sensitivity analyses with
respect to the different rates of deterioration have been carried out. The proposedmethod
can also be applied for multi-objective, multi-constraint, and multi-supplier inventory
problem with non-linear demand, which may be areas of future work.
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